1
|
Arulnangai R, Asia Thabassoom H, Vajiha Banu H, Thirugnanasambandham K, Ganesamoorthy R. Recent developments on ursolic acid and its potential biological applications. Toxicol Rep 2025; 14:101900. [PMID: 39897400 PMCID: PMC11786699 DOI: 10.1016/j.toxrep.2025.101900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/25/2024] [Accepted: 01/06/2025] [Indexed: 02/04/2025] Open
Abstract
A naturally occurring pentacyclic triterpenoid, ursolic acid (UA) has attracted a lot of interest due to its various pharmacological characteristics and its medical uses. The goal of this thorough review is to present a thorough examination of the therapeutic benefits of UA, including its anti-inflammatory, antioxidant, anticancer, antibacterial, and metabolic-regulating properties. We go over its origins, pharmacological characteristics, and advantages in the treatment of several illnesses, including cancer, neurological disorders, metabolic disorders, and cardiovascular diseases. We further emphasize its potential to improve exercise capacity and its growing function as an exercise mimic. UA's therapeutic potential is thoroughly explained in this review, which highlights the compound's potential as a natural remedy for several illnesses.
Collapse
Affiliation(s)
- R. Arulnangai
- PG & Research Department of Chemistry, Jamal Mohamed College, Trichy, Tamil Nadu, India
| | - H. Asia Thabassoom
- PG & Research Department of Chemistry, Jamal Mohamed College, Trichy, Tamil Nadu, India
| | - H. Vajiha Banu
- PG and Research Department of Microbiology, Jamal Mohamed College, Trichy, Tamil Nadu, India
| | - K. Thirugnanasambandham
- Nammazhvar Organic Farming Research centre, Tamil Nadu Agricultural University, Lawley Road, Coimbatore, Tamil Nadu 641 003, India
| | - R. Ganesamoorthy
- Department of Chemistry, Vinayaka Mission’s Kirupananda Variyar Arts and Science College, Salem, Tamil Nadu, India
| |
Collapse
|
2
|
Hossain MS, Chowdhury MEH, Reaz MBI, Ali SHM, Bakar AAA, Kiranyaz S, Khandakar A, Alhatou M, Habib R, Hossain MM. Motion Artifacts Correction from Single-Channel EEG and fNIRS Signals Using Novel Wavelet Packet Decomposition in Combination with Canonical Correlation Analysis. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22093169. [PMID: 35590859 DOI: 10.1109/access.2022.3159155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 05/27/2023]
Abstract
The electroencephalogram (EEG) and functional near-infrared spectroscopy (fNIRS) signals, highly non-stationary in nature, greatly suffers from motion artifacts while recorded using wearable sensors. Since successful detection of various neurological and neuromuscular disorders is greatly dependent upon clean EEG and fNIRS signals, it is a matter of utmost importance to remove/reduce motion artifacts from EEG and fNIRS signals using reliable and robust methods. In this regard, this paper proposes two robust methods: (i) Wavelet packet decomposition (WPD) and (ii) WPD in combination with canonical correlation analysis (WPD-CCA), for motion artifact correction from single-channel EEG and fNIRS signals. The efficacy of these proposed techniques is tested using a benchmark dataset and the performance of the proposed methods is measured using two well-established performance matrices: (i) difference in the signal to noise ratio ( ) and (ii) percentage reduction in motion artifacts ( ). The proposed WPD-based single-stage motion artifacts correction technique produces the highest average (29.44 dB) when db2 wavelet packet is incorporated whereas the greatest average (53.48%) is obtained using db1 wavelet packet for all the available 23 EEG recordings. Our proposed two-stage motion artifacts correction technique, i.e., the WPD-CCA method utilizing db1 wavelet packet has shown the best denoising performance producing an average and values of 30.76 dB and 59.51%, respectively, for all the EEG recordings. On the other hand, for the available 16 fNIRS recordings, the two-stage motion artifacts removal technique, i.e., WPD-CCA has produced the best average (16.55 dB, utilizing db1 wavelet packet) and largest average (41.40%, using fk8 wavelet packet). The highest average and using single-stage artifacts removal techniques (WPD) are found as 16.11 dB and 26.40%, respectively, for all the fNIRS signals using fk4 wavelet packet. In both EEG and fNIRS modalities, the percentage reduction in motion artifacts increases by 11.28% and 56.82%, respectively when two-stage WPD-CCA techniques are employed in comparison with the single-stage WPD method. In addition, the average also increases when WPD-CCA techniques are used instead of single-stage WPD for both EEG and fNIRS signals. The increment in both and values is a clear indication that two-stage WPD-CCA performs relatively better compared to single-stage WPD. The results reported using the proposed methods outperform most of the existing state-of-the-art techniques.
Collapse
Affiliation(s)
- Md Shafayet Hossain
- Department of Electrical, Electronic and Systems Engineering, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | | | - Mamun Bin Ibne Reaz
- Department of Electrical, Electronic and Systems Engineering, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Sawal Hamid Md Ali
- Department of Electrical, Electronic and Systems Engineering, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Ahmad Ashrif A Bakar
- Department of Electrical, Electronic and Systems Engineering, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Serkan Kiranyaz
- Department of Electrical Engineering, Qatar University, Doha 2713, Qatar
| | - Amith Khandakar
- Department of Electrical Engineering, Qatar University, Doha 2713, Qatar
| | - Mohammed Alhatou
- Neuromuscular Division, Department of Neurology, Al-Khor Branch, Hamad General Hospital, Doha 3050, Qatar
| | - Rumana Habib
- Department of Neurology, BIRDEM General Hospital, Dhaka 1000, Bangladesh
| | | |
Collapse
|
3
|
Hossain MS, Chowdhury MEH, Reaz MBI, Ali SHM, Bakar AAA, Kiranyaz S, Khandakar A, Alhatou M, Habib R, Hossain MM. Motion Artifacts Correction from Single-Channel EEG and fNIRS Signals Using Novel Wavelet Packet Decomposition in Combination with Canonical Correlation Analysis. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22093169. [PMID: 35590859 PMCID: PMC9102309 DOI: 10.3390/s22093169] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 05/14/2023]
Abstract
The electroencephalogram (EEG) and functional near-infrared spectroscopy (fNIRS) signals, highly non-stationary in nature, greatly suffers from motion artifacts while recorded using wearable sensors. Since successful detection of various neurological and neuromuscular disorders is greatly dependent upon clean EEG and fNIRS signals, it is a matter of utmost importance to remove/reduce motion artifacts from EEG and fNIRS signals using reliable and robust methods. In this regard, this paper proposes two robust methods: (i) Wavelet packet decomposition (WPD) and (ii) WPD in combination with canonical correlation analysis (WPD-CCA), for motion artifact correction from single-channel EEG and fNIRS signals. The efficacy of these proposed techniques is tested using a benchmark dataset and the performance of the proposed methods is measured using two well-established performance matrices: (i) difference in the signal to noise ratio ( ) and (ii) percentage reduction in motion artifacts ( ). The proposed WPD-based single-stage motion artifacts correction technique produces the highest average (29.44 dB) when db2 wavelet packet is incorporated whereas the greatest average (53.48%) is obtained using db1 wavelet packet for all the available 23 EEG recordings. Our proposed two-stage motion artifacts correction technique, i.e., the WPD-CCA method utilizing db1 wavelet packet has shown the best denoising performance producing an average and values of 30.76 dB and 59.51%, respectively, for all the EEG recordings. On the other hand, for the available 16 fNIRS recordings, the two-stage motion artifacts removal technique, i.e., WPD-CCA has produced the best average (16.55 dB, utilizing db1 wavelet packet) and largest average (41.40%, using fk8 wavelet packet). The highest average and using single-stage artifacts removal techniques (WPD) are found as 16.11 dB and 26.40%, respectively, for all the fNIRS signals using fk4 wavelet packet. In both EEG and fNIRS modalities, the percentage reduction in motion artifacts increases by 11.28% and 56.82%, respectively when two-stage WPD-CCA techniques are employed in comparison with the single-stage WPD method. In addition, the average also increases when WPD-CCA techniques are used instead of single-stage WPD for both EEG and fNIRS signals. The increment in both and values is a clear indication that two-stage WPD-CCA performs relatively better compared to single-stage WPD. The results reported using the proposed methods outperform most of the existing state-of-the-art techniques.
Collapse
Affiliation(s)
- Md Shafayet Hossain
- Department of Electrical, Electronic and Systems Engineering, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (M.S.H.); (S.H.M.A.); (A.A.A.B.)
| | - Muhammad E. H. Chowdhury
- Department of Electrical Engineering, Qatar University, Doha 2713, Qatar; (S.K.); (A.K.)
- Correspondence: (M.E.H.C.); (M.B.I.R.)
| | - Mamun Bin Ibne Reaz
- Department of Electrical, Electronic and Systems Engineering, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (M.S.H.); (S.H.M.A.); (A.A.A.B.)
- Correspondence: (M.E.H.C.); (M.B.I.R.)
| | - Sawal Hamid Md Ali
- Department of Electrical, Electronic and Systems Engineering, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (M.S.H.); (S.H.M.A.); (A.A.A.B.)
| | - Ahmad Ashrif A. Bakar
- Department of Electrical, Electronic and Systems Engineering, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (M.S.H.); (S.H.M.A.); (A.A.A.B.)
| | - Serkan Kiranyaz
- Department of Electrical Engineering, Qatar University, Doha 2713, Qatar; (S.K.); (A.K.)
| | - Amith Khandakar
- Department of Electrical Engineering, Qatar University, Doha 2713, Qatar; (S.K.); (A.K.)
| | - Mohammed Alhatou
- Neuromuscular Division, Department of Neurology, Al-Khor Branch, Hamad General Hospital, Doha 3050, Qatar;
| | - Rumana Habib
- Department of Neurology, BIRDEM General Hospital, Dhaka 1000, Bangladesh;
| | | |
Collapse
|
4
|
Rahman A, Chowdhury ME, Khandakar A, Tahir AM, Ibtehaz N, Hossain MS, Kiranyaz S, Malik J, Monawwar H, Kadir MA. Robust biometric system using session invariant multimodal EEG and keystroke dynamics by the ensemble of self-ONNs. Comput Biol Med 2022; 142:105238. [DOI: 10.1016/j.compbiomed.2022.105238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/15/2022] [Accepted: 01/16/2022] [Indexed: 11/16/2022]
|
5
|
Bullock M, Jackson GD, Abbott DF. Artifact Reduction in Simultaneous EEG-fMRI: A Systematic Review of Methods and Contemporary Usage. Front Neurol 2021; 12:622719. [PMID: 33776886 PMCID: PMC7991907 DOI: 10.3389/fneur.2021.622719] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/29/2021] [Indexed: 11/13/2022] Open
Abstract
Simultaneous electroencephalography-functional MRI (EEG-fMRI) is a technique that combines temporal (largely from EEG) and spatial (largely from fMRI) indicators of brain dynamics. It is useful for understanding neuronal activity during many different event types, including spontaneous epileptic discharges, the activity of sleep stages, and activity evoked by external stimuli and decision-making tasks. However, EEG recorded during fMRI is subject to imaging, pulse, environment and motion artifact, causing noise many times greater than the neuronal signals of interest. Therefore, artifact removal methods are essential to ensure that artifacts are accurately removed, and EEG of interest is retained. This paper presents a systematic review of methods for artifact reduction in simultaneous EEG-fMRI from literature published since 1998, and an additional systematic review of EEG-fMRI studies published since 2016. The aim of the first review is to distill the literature into clear guidelines for use of simultaneous EEG-fMRI artifact reduction methods, and the aim of the second review is to determine the prevalence of artifact reduction method use in contemporary studies. We find that there are many published artifact reduction techniques available, including hardware, model based, and data-driven methods, but there are few studies published that adequately compare these methods. In contrast, recent EEG-fMRI studies show overwhelming use of just one or two artifact reduction methods based on literature published 15–20 years ago, with newer methods rarely gaining use outside the group that developed them. Surprisingly, almost 15% of EEG-fMRI studies published since 2016 fail to adequately describe the methods of artifact reduction utilized. We recommend minimum standards for reporting artifact reduction techniques in simultaneous EEG-fMRI studies and suggest that more needs to be done to make new artifact reduction techniques more accessible for the researchers and clinicians using simultaneous EEG-fMRI.
Collapse
Affiliation(s)
- Madeleine Bullock
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia.,Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
| | - Graeme D Jackson
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia.,Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia.,Department of Medicine (Austin Health), The University of Melbourne, Melbourne, VIC, Australia
| | - David F Abbott
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia.,Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia.,Department of Medicine (Austin Health), The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|