1
|
Neves L, Martins M, Correia AI, Castro SL, Schellenberg EG, Lima CF. Does music training improve emotion recognition and cognitive abilities? Longitudinal and correlational evidence from children. Cognition 2025; 259:106102. [PMID: 40064075 DOI: 10.1016/j.cognition.2025.106102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/22/2025] [Accepted: 02/14/2025] [Indexed: 04/09/2025]
Abstract
Music training is widely claimed to enhance nonmusical abilities, yet causal evidence remains inconclusive. Moreover, research tends to focus on cognitive over socioemotional outcomes. In two studies, we investigated whether music training improves emotion recognition in voices and faces among school-aged children. We also examined music-training effects on musical abilities, motor skills (fine and gross), broader socioemotional functioning, and cognitive abilities including nonverbal reasoning, executive functions, and auditory memory (short-term and working memory). Study 1 (N = 110) was a 2-year longitudinal intervention conducted in a naturalistic school setting, comparing music training to basketball training (active control) and no training (passive control). Music training improved fine-motor skills and auditory memory relative to controls, but it had no effect on emotion recognition or other cognitive and socioemotional abilities. Both music and basketball training improved gross-motor skills. Study 2 (N = 192) compared children without music training to peers attending a music school. Although music training correlated with better emotion recognition in speech prosody (tone of voice), this association disappeared after controlling for socioeconomic status, musical abilities, or short-term memory. In contrast, musical abilities correlated with emotion recognition in both prosody and faces, independently of training or other confounding variables. These findings suggest that music training enhances fine-motor skills and auditory memory, but it does not causally improve emotion recognition, other cognitive abilities, or socioemotional functioning. Observed advantages in emotion recognition likely stem from preexisting musical abilities and other confounding factors such as socioeconomic status.
Collapse
Affiliation(s)
- Leonor Neves
- Centro de Investigação e Intervenção Social (CIS-IUL), Instituto Universitário de Lisboa (ISCTE-IUL), Lisboa, Portugal
| | - Marta Martins
- Centro de Investigação e Intervenção Social (CIS-IUL), Instituto Universitário de Lisboa (ISCTE-IUL), Lisboa, Portugal
| | - Ana Isabel Correia
- Centro de Investigação e Intervenção Social (CIS-IUL), Instituto Universitário de Lisboa (ISCTE-IUL), Lisboa, Portugal
| | - São Luís Castro
- Centro de Psicologia da Universidade do Porto (CPUP), Faculdade de Psicologia e de Ciências da Educação da Universidade do Porto (FPCEUP), Porto, Portugal
| | - E Glenn Schellenberg
- Centro de Investigação e Intervenção Social (CIS-IUL), Instituto Universitário de Lisboa (ISCTE-IUL), Lisboa, Portugal; Department of Psychology, University of Toronto Mississauga, Mississauga, Canada
| | - César F Lima
- Centro de Investigação e Intervenção Social (CIS-IUL), Instituto Universitário de Lisboa (ISCTE-IUL), Lisboa, Portugal.
| |
Collapse
|
2
|
Bidelman GM. Reply to Manley: Is there more to cochlear tuning than meets the ear? Hear Res 2025; 459:109218. [PMID: 39965528 DOI: 10.1016/j.heares.2025.109218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 02/13/2025] [Indexed: 02/20/2025]
Abstract
Enhanced psychophysical and cochlear tuning observed in musicians is unlikely to be explained by mere differences in human cochlear length. A parsimonious account of our 2016 data is improved efferent feedback from the medial olivocochlear efferent system that adjusts masking and tuning properties of the cochlea and is subject to attentional modulation-all functions reported to be enhanced in musically trained ears. Still, new experiments are needed to tease out "nature" vs. "nurture" effects in music-related brain plasticity and move beyond cross-sectional studies and definitions of "musicians" based solely on self-report.
Collapse
Affiliation(s)
- Gavin M Bidelman
- Department of Speech, Language and Hearing Sciences, Indiana University, Bloomington, IN, USA; Program in Neuroscience, Indiana University, Bloomington, IN, USA; Cognitive Science Program, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
3
|
Liu M, Arseneau-Bruneau I, Farrés Franch M, Latorre ME, Samuels J, Issa E, Payumo A, Rahman N, Loureiro N, Leung TCM, Nave KM, von Handorf KM, Hoddinott JD, Coffey EBJ, Grahn J, Zatorre RJ. Auditory working memory mechanisms mediating the relationship between musicianship and auditory stream segregation. Front Psychol 2025; 16:1538511. [PMID: 40226491 PMCID: PMC11989347 DOI: 10.3389/fpsyg.2025.1538511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/25/2025] [Indexed: 04/15/2025] Open
Abstract
This study investigates the interactions between musicianship and two auditory cognitive processes: auditory working memory (AWM) and stream segregation. The primary hypothesis is that AWM could mediate a relationship between musical training and enhanced stream segregation capabilities. Two groups of listeners were tested: the first aimed to establish the relationship between the three variables, and the second aimed to replicate the effect in an independent sample. Music experience history and behavioral data were collected from a total of 145 healthy young adults with normal binaural hearing. The AWM task involved the manipulation of tonal patterns in working memory, while the Music-in-Noise Task (MINT) measured stream segregation abilities in a tonal context. The MINT expands measurements beyond traditional Speech-in-Noise assessments by capturing auditory subskills (rhythm, visual, spatial attention, prediction) relevant to stream segregation. Our results showed that musical training is associated with enhanced AWM and MINT performance and that this effect is replicable across independent samples. Moreover, we found in both samples that the enhancement of stream segregation was largely mediated by AWM capacity. The results suggest that musical training and/or aptitude enhances stream segregation by way of improved AWM capacity.
Collapse
Affiliation(s)
- Martha Liu
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Isabelle Arseneau-Bruneau
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Centre for Research in Brain, Language and Music, Montreal, QC, Canada
| | - Marcel Farrés Franch
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Centre for Research in Brain, Language and Music, Montreal, QC, Canada
| | | | - Joshua Samuels
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Emily Issa
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Alexandre Payumo
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Nayemur Rahman
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Naíma Loureiro
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Tsz Chun Matthew Leung
- Department of Psychology and Centre for Brain and Mind, Western University, London, ON, Canada
| | - Karli M. Nave
- Department of Psychology and Centre for Brain and Mind, Western University, London, ON, Canada
| | - Kristi M. von Handorf
- Department of Psychology and Centre for Brain and Mind, Western University, London, ON, Canada
| | - Joshua D. Hoddinott
- Department of Psychology and Centre for Brain and Mind, Western University, London, ON, Canada
| | | | - Jessica Grahn
- Department of Psychology and Centre for Brain and Mind, Western University, London, ON, Canada
| | - Robert J. Zatorre
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Centre for Research in Brain, Language and Music, Montreal, QC, Canada
| |
Collapse
|
4
|
Lo CY, Dubinsky E, Wright-Whyte K, Zara M, Singh G, Russo FA. On-beat rhythm and working memory are associated with better speech-in-noise perception for older adults with hearing loss. Q J Exp Psychol (Hove) 2025:17470218241311204. [PMID: 39707838 DOI: 10.1177/17470218241311204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
Even with the use of hearing aids (HAs), speech in noise perception remains challenging for older adults, impacting communication and quality of life outcomes. The association between music perception and speech-in-noise (SIN) outcomes is of interest, as there is evidence that professionally trained musicians are adept listeners in noisy environments. Thus, this study explored the association between music processing, cognitive factors, and the outcome variable of SIN perception, in older adults with hearing loss. Forty-two HA users aged between 57 and 90 years with a symmetrical, moderate-to-moderately severe hearing loss participated in this study. Our findings suggest that on-beat rhythm accuracy, pitch perception, and working memory all positively contribute to SIN perception for older adults with hearing loss. These findings provide key insights into the relationship between music, cognitive factors, and SIN perception, which may inform future interventions, rehabilitation, and the mechanisms that support better SIN perception.
Collapse
Affiliation(s)
- Chi Yhun Lo
- Department of Psychology, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Ella Dubinsky
- Department of Psychology, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Kay Wright-Whyte
- Department of Psychology, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Michael Zara
- Department of Psychology, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Gurjit Singh
- Department of Psychology, Toronto Metropolitan University, Toronto, Ontario, Canada
- Sonova Canada, Victoria, British Columbia, Canada
- Speech Language Pathology, University of Toronto, Toronto, Ontario, Canada
| | - Frank A Russo
- Department of Psychology, Toronto Metropolitan University, Toronto, Ontario, Canada
- Speech Language Pathology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Jin X, Zhang L, Wu G, Wang X, Du Y. Compensation or Preservation? Different Roles of Functional Lateralization in Speech Perception of Older Non-musicians and Musicians. Neurosci Bull 2024; 40:1843-1857. [PMID: 38839688 PMCID: PMC11625043 DOI: 10.1007/s12264-024-01234-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/15/2024] [Indexed: 06/07/2024] Open
Abstract
Musical training can counteract age-related decline in speech perception in noisy environments. However, it remains unclear whether older non-musicians and musicians rely on functional compensation or functional preservation to counteract the adverse effects of aging. This study utilized resting-state functional connectivity (FC) to investigate functional lateralization, a fundamental organization feature, in older musicians (OM), older non-musicians (ONM), and young non-musicians (YNM). Results showed that OM outperformed ONM and achieved comparable performance to YNM in speech-in-noise and speech-in-speech tasks. ONM exhibited reduced lateralization than YNM in lateralization index (LI) of intrahemispheric FC (LI_intra) in the cingulo-opercular network (CON) and LI of interhemispheric heterotopic FC (LI_he) in the language network (LAN). Conversely, OM showed higher neural alignment to YNM (i.e., a more similar lateralization pattern) compared to ONM in CON, LAN, frontoparietal network (FPN), dorsal attention network (DAN), and default mode network (DMN), indicating preservation of youth-like lateralization patterns due to musical experience. Furthermore, in ONM, stronger left-lateralized and lower alignment-to-young of LI_intra in the somatomotor network (SMN) and DAN and LI_he in DMN correlated with better speech performance, indicating a functional compensation mechanism. In contrast, stronger right-lateralized LI_intra in FPN and DAN and higher alignment-to-young of LI_he in LAN correlated with better performance in OM, suggesting a functional preservation mechanism. These findings highlight the differential roles of functional preservation and compensation of lateralization in speech perception in noise among elderly individuals with and without musical expertise, offering insights into successful aging theories from the lens of functional lateralization and speech perception.
Collapse
Affiliation(s)
- Xinhu Jin
- Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lei Zhang
- Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guowei Wu
- Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiuyi Wang
- Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi Du
- Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China.
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, 200031, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| |
Collapse
|
6
|
Joyal M, Sicard A, Penhune V, Jackson PL, Tremblay P. Attention, working memory, and inhibitory control in aging: Comparing amateur singers, instrumentalists, and active controls. Ann N Y Acad Sci 2024; 1541:163-180. [PMID: 39367878 PMCID: PMC11580768 DOI: 10.1111/nyas.15230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
Despite the ubiquity of musical activities, little is known about the specificity of their association with executive functions. In this cross-sectional study, we examined this relationship as a function of age. Our main hypotheses were that executive functions would decline in older age, that this relationship would be reduced in singers and instrumentalists compared to nonmusician active controls, and that the amount of musical experience would be more strongly associated with executive functions compared to the specific type of activity. A sample of 122 cognitively healthy adults aged 20-88 years was recruited, consisting of 39 amateur singers, 43 amateur instrumentalists, and 40 nonmusician controls. Tests of auditory processing speed, auditory selective attention, auditory and visual inhibitory control, and auditory working memory were administered. The results confirm a negative relationship between age and executive functions. While musicians' advantages were found in selective attention, inhibitory control, and auditory working memory, these advantages were specific rather than global. Furthermore, most of these advantages were independent of age and experience. Finally, there were only limited differences between instrumentalists and singers, suggesting that the relationship between music-making activities and executive functions may be, at least in part, general as opposed to activity-specific.
Collapse
Affiliation(s)
| | - Alexandre Sicard
- CERVO Brain Research CenterQuebec CityQuebecCanada
- Faculté de Médecine, École des sciences de la réadaptationUniversité LavalQuebec CityQuebecCanada
| | - Virginia Penhune
- Department of PsychologyConcordia UniversityMontrealQuebecCanada
| | - Philip L. Jackson
- CERVO Brain Research CenterQuebec CityQuebecCanada
- Faculté des sciences sociales, École de psychologieUniversité LavalQuebec CityQuebecCanada
| | - Pascale Tremblay
- CERVO Brain Research CenterQuebec CityQuebecCanada
- Faculté de Médecine, École des sciences de la réadaptationUniversité LavalQuebec CityQuebecCanada
| |
Collapse
|
7
|
Whiteford KL, Baltzell LS, Chiu M, Cooper JK, Faucher S, Goh PY, Hagedorn A, Irsik VC, Irvine A, Lim SJ, Mesik J, Mesquita B, Oakes B, Rajappa N, Roverud E, Schrlau AE, Van Hedger SC, Bharadwaj HM, Johnsrude IS, Kidd G, Luebke AE, Maddox RK, Marvin EW, Perrachione TK, Shinn-Cunningham BG, Oxenham AJ. Musical training does not enhance neural sound encoding at early stages of the auditory system: A large-scale multisite investigation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.02.610856. [PMID: 39282463 PMCID: PMC11398345 DOI: 10.1101/2024.09.02.610856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Musical training has been associated with enhanced neural processing of sounds, as measured via the frequency following response (FFR), implying the potential for human subcortical neural plasticity. We conducted a large-scale multi-site preregistered study (n > 260) to replicate and extend the findings underpinning this important relationship. We failed to replicate any of the major findings published previously in smaller studies. Musical training was related neither to enhanced spectral encoding strength of a speech stimulus (/da/) in babble nor to a stronger neural-stimulus correlation. Similarly, the strength of neural tracking of a speech sound with a time-varying pitch was not related to either years of musical training or age of onset of musical training. Our findings provide no evidence for plasticity of early auditory responses based on musical training and exposure.
Collapse
Affiliation(s)
| | - Lucas S. Baltzell
- Department of Speech, Language, and Hearing Sciences, Boston University
| | - Matt Chiu
- Eastman School of Music, University of Rochester
| | - John K. Cooper
- Department of Biomedical Engineering, University of Rochester
| | | | - Pui Yii Goh
- Department of Psychology, University of Minnesota
| | - Anna Hagedorn
- Department of Speech, Language, and Hearing Sciences, Purdue University
| | - Vanessa C. Irsik
- Centre for Brain and Mind, University of Western Ontario
- Department of Psychology, University of Western Ontario
| | - Audra Irvine
- Department of Biomedical Engineering, Carnegie Mellon University
| | - Sung-Joo Lim
- Department of Speech, Language, and Hearing Sciences, Boston University
| | - Juraj Mesik
- Department of Psychology, University of Minnesota
| | - Bruno Mesquita
- Centre for Brain and Mind, University of Western Ontario
| | - Breanna Oakes
- Department of Speech, Language, and Hearing Sciences, Purdue University
| | - Neha Rajappa
- Department of Psychology, University of Minnesota
| | - Elin Roverud
- Department of Speech, Language, and Hearing Sciences, Boston University
| | - Amy E. Schrlau
- Department of Biomedical Engineering, University of Rochester
| | - Stephen C. Van Hedger
- Centre for Brain and Mind, University of Western Ontario
- Department of Psychology, University of Western Ontario
| | - Hari M. Bharadwaj
- Department of Speech, Language, and Hearing Sciences, Purdue University
- Weldon School of Biomedical Engineering, Purdue University
| | - Ingrid S. Johnsrude
- Centre for Brain and Mind, University of Western Ontario
- Department of Psychology, University of Western Ontario
- School of Communication Sciences and Disorders, University of Western Ontario
| | - Gerald Kidd
- Department of Speech, Language, and Hearing Sciences, Boston University
| | - Anne E. Luebke
- Department of Biomedical Engineering, University of Rochester
- Department of Neuroscience, University of Rochester
| | - Ross K. Maddox
- Department of Biomedical Engineering, University of Rochester
- Department of Neuroscience, University of Rochester
| | | | | | - Barbara G. Shinn-Cunningham
- Department of Biomedical Engineering, Carnegie Mellon University
- Neuroscience Institute, Carnegie Mellon University
| | | |
Collapse
|
8
|
Xu S, Zhang H, Fan J, Jiang X, Zhang M, Guan J, Ding H, Zhang Y. Auditory Challenges and Listening Effort in School-Age Children With Autism: Insights From Pupillary Dynamics During Speech-in-Noise Perception. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2024; 67:2410-2453. [PMID: 38861391 DOI: 10.1044/2024_jslhr-23-00553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
PURPOSE This study aimed to investigate challenges in speech-in-noise (SiN) processing faced by school-age children with autism spectrum conditions (ASCs) and their impact on listening effort. METHOD Participants, including 23 Mandarin-speaking children with ASCs and 19 age-matched neurotypical (NT) peers, underwent sentence recognition tests in both quiet and noisy conditions, with a speech-shaped steady-state noise masker presented at 0-dB signal-to-noise ratio in the noisy condition. Recognition accuracy rates and task-evoked pupil responses were compared to assess behavioral performance and listening effort during auditory tasks. RESULTS No main effect of group was found on accuracy rates. Instead, significant effects emerged for autistic trait scores, listening conditions, and their interaction, indicating that higher trait scores were associated with poorer performance in noise. Pupillometric data revealed significantly larger and earlier peak dilations, along with more varied pupillary dynamics in the ASC group relative to the NT group, especially under noisy conditions. Importantly, the ASC group's peak dilation in quiet mirrored that of the NT group in noise. However, the ASC group consistently exhibited reduced mean dilations than the NT group. CONCLUSIONS Pupillary responses suggest a different resource allocation pattern in ASCs: An initial sharper and larger dilation may signal an intense, narrowed resource allocation, likely linked to heightened arousal, engagement, and cognitive load, whereas a subsequent faster tail-off may indicate a greater decrease in resource availability and engagement, or a quicker release of arousal and cognitive load. The presence of noise further accentuates this pattern. This highlights the unique SiN processing challenges children with ASCs may face, underscoring the importance of a nuanced, individual-centric approach for interventions and support.
Collapse
Affiliation(s)
- Suyun Xu
- Speech-Language-Hearing Center, School of Foreign Languages, Shanghai Jiao Tong University, China
- National Research Centre for Language and Well-Being, Shanghai, China
| | - Hua Zhang
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, China
| | - Juan Fan
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, China
| | - Xiaoming Jiang
- Institute of Linguistics, Shanghai International Studies University, China
| | - Minyue Zhang
- Speech-Language-Hearing Center, School of Foreign Languages, Shanghai Jiao Tong University, China
- National Research Centre for Language and Well-Being, Shanghai, China
| | | | - Hongwei Ding
- Speech-Language-Hearing Center, School of Foreign Languages, Shanghai Jiao Tong University, China
- National Research Centre for Language and Well-Being, Shanghai, China
| | - Yang Zhang
- Department of Speech-Language-Hearing Sciences and Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis
| |
Collapse
|
9
|
Perron M, Liu Q, Tremblay P, Alain C. Enhancing speech perception in noise through articulation. Ann N Y Acad Sci 2024; 1537:140-154. [PMID: 38924165 DOI: 10.1111/nyas.15179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Considerable debate exists about the interplay between auditory and motor speech systems. Some argue for common neural mechanisms, whereas others assert that there are few shared resources. In four experiments, we tested the hypothesis that priming the speech motor system by repeating syllable pairs aloud improves subsequent syllable discrimination in noise compared with a priming discrimination task involving same-different judgments via button presses. Our results consistently showed that participants who engaged in syllable repetition performed better in syllable discrimination in noise than those who engaged in the priming discrimination task. This gain in accuracy was observed for primed and new syllable pairs, highlighting increased sensitivity to phonological details. The benefits were comparable whether the priming tasks involved auditory or visual presentation. Inserting a 1-h delay between the priming tasks and the syllable-in-noise task, the benefits persisted but were confined to primed syllable pairs. Finally, we demonstrated the effectiveness of this approach in older adults. Our findings substantiate the existence of a speech production-perception relationship. They also have clinical relevance as they raise the possibility of production-based interventions to improve speech perception ability. This would be particularly relevant for older adults who often encounter difficulties in perceiving speech in noise.
Collapse
Affiliation(s)
- Maxime Perron
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
- Baycrest Academy for Research and Education, Rotman Research Institute, North York, Ontario, Canada
| | - Qiying Liu
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
- Baycrest Academy for Research and Education, Rotman Research Institute, North York, Ontario, Canada
| | - Pascale Tremblay
- CERVO Brain Research Center, Quebec City, Quebec, Canada
- École de Réadaptation, Faculté de Médecine, Université Laval, Quebec City, Quebec, Canada
| | - Claude Alain
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
- Baycrest Academy for Research and Education, Rotman Research Institute, North York, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Music and Health Science Research Collaboratory, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Shorey AE, King CJ, Whiteford KL, Stilp CE. Musical training is not associated with spectral context effects in instrument sound categorization. Atten Percept Psychophys 2024; 86:991-1007. [PMID: 38216848 DOI: 10.3758/s13414-023-02839-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2023] [Indexed: 01/14/2024]
Abstract
Musicians display a variety of auditory perceptual benefits relative to people with little or no musical training; these benefits are collectively referred to as the "musician advantage." Importantly, musicians consistently outperform nonmusicians for tasks relating to pitch, but there are mixed reports as to musicians outperforming nonmusicians for timbre-related tasks. Due to their experience manipulating the timbre of their instrument or voice in performance, we hypothesized that musicians would be more sensitive to acoustic context effects stemming from the spectral changes in timbre across a musical context passage (played by a string quintet then filtered) and a target instrument sound (French horn or tenor saxophone; Experiment 1). Additionally, we investigated the role of a musician's primary instrument of instruction by recruiting French horn and tenor saxophone players to also complete this task (Experiment 2). Consistent with the musician advantage literature, musicians exhibited superior pitch discrimination to nonmusicians. Contrary to our main hypothesis, there was no difference between musicians and nonmusicians in how spectral context effects shaped instrument sound categorization. Thus, musicians may only outperform nonmusicians for some auditory skills relevant to music (e.g., pitch perception) but not others (e.g., timbre perception via spectral differences).
Collapse
Affiliation(s)
- Anya E Shorey
- Department of Psychological and Brain Sciences, University of Louisville, Louisville, KY, 40292, USA.
| | - Caleb J King
- Department of Psychological and Brain Sciences, University of Louisville, Louisville, KY, 40292, USA.
| | - Kelly L Whiteford
- Department of Psychology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Christian E Stilp
- Department of Psychological and Brain Sciences, University of Louisville, Louisville, KY, 40292, USA
| |
Collapse
|
11
|
Lee HH, Groves K, Ripollés P, Carrasco M. Audiovisual integration in the McGurk effect is impervious to music training. Sci Rep 2024; 14:3262. [PMID: 38332159 PMCID: PMC10853564 DOI: 10.1038/s41598-024-53593-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/01/2024] [Indexed: 02/10/2024] Open
Abstract
The McGurk effect refers to an audiovisual speech illusion where the discrepant auditory and visual syllables produce a fused percept between the visual and auditory component. However, little is known about how individual differences contribute to the McGurk effect. Here, we examined whether music training experience-which involves audiovisual integration-can modulate the McGurk effect. Seventy-three participants completed the Goldsmiths Musical Sophistication Index (Gold-MSI) questionnaire to evaluate their music expertise on a continuous scale. Gold-MSI considers participants' daily-life exposure to music learning experiences (formal and informal), instead of merely classifying people into different groups according to how many years they have been trained in music. Participants were instructed to report, via a 3-alternative forced choice task, "what a person said": /Ba/, /Ga/ or /Da/. The experiment consisted of 96 audiovisual congruent trials and 96 audiovisual incongruent (McGurk) trials. We observed no significant correlations between the susceptibility of the McGurk effect and the different subscales of the Gold-MSI (active engagement, perceptual abilities, music training, singing abilities, emotion) or the general musical sophistication composite score. Together, these findings suggest that music training experience does not modulate audiovisual integration in speech as reflected by the McGurk effect.
Collapse
Affiliation(s)
- Hsing-Hao Lee
- Department of Psychology, New York University, New York, USA.
| | - Karleigh Groves
- Department of Psychology, New York University, New York, USA
- Center for Language, Music, and Emotion (CLaME), New York University, New York, USA
- Music and Audio Research Lab (MARL), New York University, New York, USA
| | - Pablo Ripollés
- Department of Psychology, New York University, New York, USA
- Center for Language, Music, and Emotion (CLaME), New York University, New York, USA
- Music and Audio Research Lab (MARL), New York University, New York, USA
| | - Marisa Carrasco
- Department of Psychology, New York University, New York, USA
- Center for Neural Science, New York University, New York, USA
| |
Collapse
|
12
|
MacLean J, Stirn J, Sisson A, Bidelman GM. Short- and long-term neuroplasticity interact during the perceptual learning of concurrent speech. Cereb Cortex 2024; 34:bhad543. [PMID: 38212291 PMCID: PMC10839853 DOI: 10.1093/cercor/bhad543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/13/2024] Open
Abstract
Plasticity from auditory experience shapes the brain's encoding and perception of sound. However, whether such long-term plasticity alters the trajectory of short-term plasticity during speech processing has yet to be investigated. Here, we explored the neural mechanisms and interplay between short- and long-term neuroplasticity for rapid auditory perceptual learning of concurrent speech sounds in young, normal-hearing musicians and nonmusicians. Participants learned to identify double-vowel mixtures during ~ 45 min training sessions recorded simultaneously with high-density electroencephalography (EEG). We analyzed frequency-following responses (FFRs) and event-related potentials (ERPs) to investigate neural correlates of learning at subcortical and cortical levels, respectively. Although both groups showed rapid perceptual learning, musicians showed faster behavioral decisions than nonmusicians overall. Learning-related changes were not apparent in brainstem FFRs. However, plasticity was highly evident in cortex, where ERPs revealed unique hemispheric asymmetries between groups suggestive of different neural strategies (musicians: right hemisphere bias; nonmusicians: left hemisphere). Source reconstruction and the early (150-200 ms) time course of these effects localized learning-induced cortical plasticity to auditory-sensory brain areas. Our findings reinforce the domain-general benefits of musicianship but reveal that successful speech sound learning is driven by a critical interplay between long- and short-term mechanisms of auditory plasticity, which first emerge at a cortical level.
Collapse
Affiliation(s)
- Jessica MacLean
- Department of Speech, Language and Hearing Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
| | - Jack Stirn
- Department of Speech, Language and Hearing Sciences, Indiana University, Bloomington, IN, USA
| | - Alexandria Sisson
- Department of Speech, Language and Hearing Sciences, Indiana University, Bloomington, IN, USA
| | - Gavin M Bidelman
- Department of Speech, Language and Hearing Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
- Cognitive Science Program, Indiana University, Bloomington, IN, USA
| |
Collapse
|
13
|
Zhang X, Tremblay P. Aging of Amateur Singers and Non-singers: From Behavior to Resting-state Connectivity. J Cogn Neurosci 2023; 35:2049-2066. [PMID: 37788320 DOI: 10.1162/jocn_a_02065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Healthy aging is associated with extensive changes in brain structure and physiology, with impacts on cognition and communication. The "mental exercise hypothesis" proposes that certain lifestyle factors such as singing-perhaps the most universal and accessible music-making activity-can affect cognitive functioning and reduce cognitive decline in aging, but the neuroplastic mechanisms involved remain unclear. To address this question, we examined the association between age and resting-state functional connectivity (RSFC) in 84 healthy singers and nonsingers in five networks (auditory, speech, language, default mode, and dorsal attention) and its relationship to auditory cognitive aging. Participants underwent cognitive testing and fMRI. Our results show that RSFC is not systematically lower with aging and that connectivity patterns vary between singers and nonsingers. Furthermore, our results show that RSFC of the precuneus in the default mode network was associated with auditory cognition. In these regions, lower RSFC was associated with better auditory cognitive performance for both singers and nonsingers. Our results show, for the first time, that basic brain physiology differs in singers and nonsingers and that some of these differences are associated with cognitive performance.
Collapse
Affiliation(s)
- Xiyue Zhang
- Université Laval, Québec City, Canada
- CERVO Brain Research Center, Quebec City, Canada
| | - Pascale Tremblay
- Université Laval, Québec City, Canada
- CERVO Brain Research Center, Quebec City, Canada
| |
Collapse
|
14
|
MacLean J, Stirn J, Sisson A, Bidelman GM. Short- and long-term experience-dependent neuroplasticity interact during the perceptual learning of concurrent speech. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.559640. [PMID: 37808665 PMCID: PMC10557636 DOI: 10.1101/2023.09.26.559640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Plasticity from auditory experiences shapes brain encoding and perception of sound. However, whether such long-term plasticity alters the trajectory of short-term plasticity during speech processing has yet to be investigated. Here, we explored the neural mechanisms and interplay between short- and long-term neuroplasticity for rapid auditory perceptual learning of concurrent speech sounds in young, normal-hearing musicians and nonmusicians. Participants learned to identify double-vowel mixtures during ∼45 minute training sessions recorded simultaneously with high-density EEG. We analyzed frequency-following responses (FFRs) and event-related potentials (ERPs) to investigate neural correlates of learning at subcortical and cortical levels, respectively. While both groups showed rapid perceptual learning, musicians showed faster behavioral decisions than nonmusicians overall. Learning-related changes were not apparent in brainstem FFRs. However, plasticity was highly evident in cortex, where ERPs revealed unique hemispheric asymmetries between groups suggestive of different neural strategies (musicians: right hemisphere bias; nonmusicians: left hemisphere). Source reconstruction and the early (150-200 ms) time course of these effects localized learning-induced cortical plasticity to auditory-sensory brain areas. Our findings confirm domain-general benefits for musicianship but reveal successful speech sound learning is driven by a critical interplay between long- and short-term mechanisms of auditory plasticity that first emerge at a cortical level.
Collapse
|
15
|
Pentikäinen E, Kimppa L, Pitkäniemi A, Lahti O, Särkämö T. Longitudinal effects of choir singing on aging cognition and wellbeing: a two-year follow-up study. Front Hum Neurosci 2023; 17:1174574. [PMID: 37545597 PMCID: PMC10398963 DOI: 10.3389/fnhum.2023.1174574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 06/26/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction While increasing evidence points toward the benefits of musical activities in promoting cognitive and emotional well-being in older adults, more longitudinal studies are needed to establish their long-term effects and uncover the mechanisms through which musical activities affect well-being. Most previous research has focused on instrumental musical activities, but little is currently known about the long-term effects of singing, even though neuroimaging evidence suggests that it is a versatile activity for the brain, involving a multitude of neural processes that are potentially beneficial for well-being. Methods We conducted a 2-year follow-up study to assess aging-related changes in cognitive functioning and emotional and social well-being with self-report questionnaires and standardized tests in 107 older adult choir singers and 62 demographically matched non-singers. Data were collected at baseline (T1), and at 1-year (T2) and 2-year (T3) follow-ups using questionnaires on subjective cognitive functioning, depression, social engagement, and quality of life (QOL) in all participants and neuropsychological tests in a subgroup of participants (45 choir singers and 41 non-singers). Results The results of linear mixed model analysis showed that in verbal flexibility (phonemic fluency task), the choir singers had higher scores already at T1 and showed no change over time, whereas the non-singers showed enhancement from T1 to T3. Furthermore, active retrieval of word knowledge (WAIS-IV Vocabulary task) showed significantly different changes from T1 to T2 between the groups (enhancement in choir singers and decline in non-singers), however lacking significant change within groups. Similar opposite trajectories of QOL related to social inclusion and safety of the environment (WHOQOL-Bref Environmental subscale) were significant from T1 to T3, but these changes were not significant within groups or at each timepoint. Within the choir singers, shorter experience in choir singing was associated with greater improvement in the vocabulary task over the follow-up period, suggesting that initiation of choir singing at older age induces some verbal benefits. There were no group differences in any other questionnaire or neuropsychological measure over time. Discussion In conclusion, our results suggest that choir singing at older age is associated with a sustained enhancement of phonemic fluency, while the effects on other verbal skills and quality of life are less clear.
Collapse
Affiliation(s)
- Emmi Pentikäinen
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Centre of Excellence in Music, Mind, Body, and Brain, University of Helsinki, Helsinki, Finland
| | - Lilli Kimppa
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anni Pitkäniemi
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Centre of Excellence in Music, Mind, Body, and Brain, University of Helsinki, Helsinki, Finland
| | - Outi Lahti
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Seinäjoki Central Hospital, Geriatric Outpatient Clinic, Rehabilitation Analysis Clinic, Seinäjoki, Finland
| | - Teppo Särkämö
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Centre of Excellence in Music, Mind, Body, and Brain, University of Helsinki, Helsinki, Finland
| |
Collapse
|
16
|
Zhang L, Wang X, Alain C, Du Y. Successful aging of musicians: Preservation of sensorimotor regions aids audiovisual speech-in-noise perception. SCIENCE ADVANCES 2023; 9:eadg7056. [PMID: 37126550 PMCID: PMC10132752 DOI: 10.1126/sciadv.adg7056] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Musicianship can mitigate age-related declines in audiovisual speech-in-noise perception. We tested whether this benefit originates from functional preservation or functional compensation by comparing fMRI responses of older musicians, older nonmusicians, and young nonmusicians identifying noise-masked audiovisual syllables. Older musicians outperformed older nonmusicians and showed comparable performance to young nonmusicians. Notably, older musicians retained similar neural specificity of speech representations in sensorimotor areas to young nonmusicians, while older nonmusicians showed degraded neural representations. In the same region, older musicians showed higher neural alignment to young nonmusicians than older nonmusicians, which was associated with their training intensity. In older nonmusicians, the degree of neural alignment predicted better performance. In addition, older musicians showed greater activation in frontal-parietal, speech motor, and visual motion regions and greater deactivation in the angular gyrus than older nonmusicians, which predicted higher neural alignment in sensorimotor areas. Together, these findings suggest that musicianship-related benefit in audiovisual speech-in-noise processing is rooted in preserving youth-like representations in sensorimotor regions.
Collapse
Affiliation(s)
- Lei Zhang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiuyi Wang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | - Claude Alain
- Rotman Research Institute, Baycrest Centre for Geriatric Care, Toronto, ON M6A 2E1, Canada
- Department of Psychology, University of Toronto, ON M8V 2S4, Canada
| | - Yi Du
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai 200031, China
- Chinese Institute for Brain Research, Beijing 102206, China
| |
Collapse
|
17
|
Haumann NT, Petersen B, Vuust P, Brattico E. Age differences in central auditory system responses to naturalistic music. Biol Psychol 2023; 179:108566. [PMID: 37086903 DOI: 10.1016/j.biopsycho.2023.108566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 04/24/2023]
Abstract
Aging influences the central auditory system leading to difficulties in the decoding and understanding of overlapping sound signals, such as speech in noise or polyphonic music. Studies on central auditory system evoked responses (ERs) have found in older compared to young listeners increased amplitudes (less inhibition) of the P1 and N1 and decreased amplitudes of the P2, mismatch negativity (MMN), and P3a responses. While preceding research has focused on simplified auditory stimuli, we here tested whether the previously observed age-related differences could be replicated with sounds embedded in medium and highly naturalistic musical contexts. Older (age 55-77 years) and younger adults (age 21-31 years) listened to medium naturalistic (synthesized melody) and highly naturalistic (studio recording of a music piece) stimuli. For the medium naturalistic music, the age group differences on the P1, N1, P2, MMN, and P3a amplitudes were all replicated. The age group differences, however, appeared reduced with the highly compared to the medium naturalistic music. The finding of lower P2 amplitude in older than young was replicated for slow event rates (0.3-2.9Hz) in the highly naturalistic music. Moreover, the ER latencies suggested a gradual slowing of the auditory processing time course for highly compared to medium naturalistic stimuli irrespective of age. These results support that age-related differences on ERs can partly be observed with naturalistic stimuli. This opens new avenues for including naturalistic stimuli in the investigation of age-related central auditory system disorders.
Collapse
Affiliation(s)
- Niels Trusbak Haumann
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University and The Royal Academy of Music, Aarhus/Aalborg, Universitetsbyen 3, 8000 Aarhus C, Denmark.
| | - Bjørn Petersen
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University and The Royal Academy of Music, Aarhus/Aalborg, Universitetsbyen 3, 8000 Aarhus C, Denmark
| | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University and The Royal Academy of Music, Aarhus/Aalborg, Universitetsbyen 3, 8000 Aarhus C, Denmark
| | - Elvira Brattico
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University and The Royal Academy of Music, Aarhus/Aalborg, Universitetsbyen 3, 8000 Aarhus C, Denmark
| |
Collapse
|
18
|
Maillard E, Joyal M, Murray MM, Tremblay P. Are musical activities associated with enhanced speech perception in noise in adults? A systematic review and meta-analysis. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 4:100083. [PMID: 37397808 PMCID: PMC10313871 DOI: 10.1016/j.crneur.2023.100083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/19/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
The ability to process speech in noise (SPiN) declines with age, with a detrimental impact on life quality. Music-making activities such as singing and playing a musical instrument have raised interest as potential prevention strategies for SPiN perception decline because of their positive impact on several brain system, especially the auditory system, which is critical for SPiN. However, the literature on the effect of musicianship on SPiN performance has yielded mixed results. By critically assessing the existing literature with a systematic review and a meta-analysis, we aim to provide a comprehensive portrait of the relationship between music-making activities and SPiN in different experimental conditions. 38/49 articles, most focusing on young adults, were included in the quantitative analysis. The results show a positive relationship between music-making activities and SPiN, with the strongest effects found in the most challenging listening conditions, and little to no effect in less challenging situations. This pattern of results supports the notion of a relative advantage for musicians on SPiN performance and clarify the scope of this effect. However, further studies, especially with older adults, using adequate randomization methods, are needed to extend the present conclusions and assess the potential for musical activities to be used to mitigate SPiN decline in seniors.
Collapse
Affiliation(s)
- Elisabeth Maillard
- CERVO Brain Research Center, Quebec City, G1J 2G3, Canada
- Université Laval, Faculté de Médecine, Département de Réadaptation, Quebec City, G1V 0A6, Canada
- The Laboratory for Investigative Neurophysiology (The LINE), Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Marilyne Joyal
- CERVO Brain Research Center, Quebec City, G1J 2G3, Canada
- Université Laval, Faculté de Médecine, Département de Réadaptation, Quebec City, G1V 0A6, Canada
| | - Micah M. Murray
- The Laboratory for Investigative Neurophysiology (The LINE), Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- The Sense Innovation and Research Center, Lausanne, Sion, Switzerland
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN, USA
| | - Pascale Tremblay
- CERVO Brain Research Center, Quebec City, G1J 2G3, Canada
- Université Laval, Faculté de Médecine, Département de Réadaptation, Quebec City, G1V 0A6, Canada
| |
Collapse
|
19
|
Lister JJ, Hudak EM, Andel R, Edwards JD. The Effects of Piano Training on Auditory Processing, Cognition, and Everyday Function. JOURNAL OF COGNITIVE ENHANCEMENT 2023. [DOI: 10.1007/s41465-023-00256-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
20
|
Tremblay P, Perron M. Auditory cognitive aging in amateur singers and non-singers. Cognition 2023; 230:105311. [PMID: 36332309 DOI: 10.1016/j.cognition.2022.105311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/02/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
The notion that lifestyle factors, such as music-making activities, can affect cognitive functioning and reduce cognitive decline in aging is often referred to as the mental exercise hypothesis. One ubiquitous musical activity is choir singing. Like other musical activities, singing is hypothesized to impact cognitive and especially executive functions. Despite the commonness of choir singing, little is known about the extent to which singing can affect cognition in adulthood. In this cross-sectional group study, we examined the relationship between age and four auditory executive functions to test hypotheses about the relationship between the level of mental activity and cognitive functioning. We also examined pitch discrimination capabilities. A non-probabilistic sample of 147 cognitively healthy adults was recruited, which included 75 non-singers (mean age 52.5 ± 20.3; 20-98 years) and 72 singers (mean age 55.5 ± 19.2; 21-87 years). Tests of selective attention, processing speed, inhibitory control, and working memory were administered to all participants. Our main hypothesis was that executive functions and age would be negatively correlated, and that this relationship would be stronger in non-singers than singers, consistent with the differential preservation hypothesis. The alternative hypothesis - preserved differentiation - predicts that the difference between singers and non-singers in executive functions is unaffected by age. Our results reveal a detrimental effect of age on processing speed, selective attention, inhibitory control and working memory. The effect of singing was comparatively more limited, being positively associated only with frequency discrimination, processing speed, and, to some extent, inhibitory control. Evidence of differential preservation was limited to processing speed. We also found a circumscribed positive impact of age of onset and a negative impact of singing experience on cognitive functioning in singers. Together, these findings were interpreted as reflecting an age-related decline in executive function in cognitively healthy adults, with specific and limited positive impacts of singing, consistent with the preserved differentiation hypothesis, but not with the differential preservation hypothesis.
Collapse
Affiliation(s)
- Pascale Tremblay
- CERVO Brain Research Center, Quebec City G1J 2G3, Canada; Université Laval, Faculté de Médecine, Département de Réadaptation, Quebec City G1V 0A6, Canada.
| | - Maxime Perron
- Rotman Research Institute, Baycrest, North York, Ontario M6A 2E1, Canada; University of Toronto, Faculty of Arts and Science, Department of Psychology, Toronto, Ontario M5S 3G3, Canada
| |
Collapse
|
21
|
Weiss MW, Peretz I. Improvisation is a novel tool to study musicality. Sci Rep 2022; 12:12595. [PMID: 35869086 PMCID: PMC9307610 DOI: 10.1038/s41598-022-15312-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 06/22/2022] [Indexed: 11/10/2022] Open
Abstract
Humans spontaneously invent songs from an early age. Here, we exploit this natural inclination to probe implicit musical knowledge in 33 untrained and poor singers (amusia). Each sang 28 long improvisations as a response to a verbal prompt or a continuation of a melodic stem. To assess the extent to which each improvisation reflects tonality, which has been proposed to be a core organizational principle of musicality and which is present within most music traditions, we developed a new algorithm that compares a sung excerpt to a probability density function representing the tonal hierarchy of Western music. The results show signatures of tonality in both nonmusicians and individuals with congenital amusia, who have notorious difficulty performing musical tasks that require explicit responses and memory. The findings are a proof of concept that improvisation can serve as a novel, even enjoyable method for systematically measuring hidden aspects of musicality across the spectrum of musical ability.
Collapse
|
22
|
Habibi A, Kreutz G, Russo F, Tervaniemi M. Music-based interventions in community settings: Navigating the tension between rigor and ecological validity. Ann N Y Acad Sci 2022; 1518:47-57. [PMID: 36200590 PMCID: PMC10092011 DOI: 10.1111/nyas.14908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Empirical research of community-based music interventions has advanced to investigate the individual, social, and educational implications of arts-for-wellbeing practices. Here, we present the motivations, aims, hypotheses, and implications of this complex field of inquiry. We describe examples of recent large-scale investigations to reflect on the major methodological challenges. Community-based music interventions strike a balance between the empirical rigor of clinical trials and the demands of ecological validity. We argue that this balance should be viewed as an asset rather than a mere pragmatic compromise. We also offer some perspectives on best-practice models for effectively engaging in this type of work.
Collapse
Affiliation(s)
- Assal Habibi
- Brain and Creativity Institute, University of Southern California, Los Angeles, California, USA
| | - Gunter Kreutz
- Department of Music, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Frank Russo
- Department of Psychology, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Mari Tervaniemi
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Centre of Excellence in Music, Mind, Body and Brain (MMBB), Faculty of Educational Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
23
|
Lu J, Moussard A, Guo S, Lee Y, Bidelman GM, Moreno S, Skrotzki C, Bugos J, Shen D, Yao D, Alain C. Music training modulates theta brain oscillations associated with response suppression. Ann N Y Acad Sci 2022; 1516:212-221. [PMID: 35854670 PMCID: PMC9588523 DOI: 10.1111/nyas.14861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
There is growing interest in developing training programs to mitigate cognitive decline associated with normal aging. Here, we assessed the effect of 3-month music and visual art training programs on the oscillatory brain activity of older adults using a partially randomized intervention design. High-density electroencephalography (EEG) was measured during the pre- and post-training sessions while participants completed a visual GoNoGo task. Time-frequency representations were calculated in regions of interest encompassing the visual, parietal, and prefrontal cortices. Before training, NoGo trials generated greater theta power than Go trials from 300 to 500 ms post-stimulus in mid-central and frontal brain areas. Theta power indexing response suppression was significantly reduced after music training. There was no significant difference between pre- and post-test for the visual art or the control group. The effect of music training on theta power indexing response suppression was associated with reduced functional connectivity between prefrontal, visual, and auditory regions. These results suggest that theta power indexes executive control mechanisms in older adults. Music training affects theta power and functional connectivity associated with response suppression. These findings contribute to a better understanding of inhibitory control ability in older adults and the neuroplastic effects of music interventions.
Collapse
Affiliation(s)
- Jing Lu
- MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China
- Rotman Research Institute, Baycrest Centre for Geriatric Care, 3560 Bathurst Street, Toronto, ON, M6A 2E1, Canada
| | - Aline Moussard
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, Université de Montréal, 4565 Chemin Queen-Mary, Montréal, Québec, H3W 1W5, Canada
| | - Sijia Guo
- MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China
| | - Yunjo Lee
- Rotman Research Institute, Baycrest Centre for Geriatric Care, 3560 Bathurst Street, Toronto, ON, M6A 2E1, Canada
| | - Gavin M. Bidelman
- Institute for Intelligent Systems and School of Communication Sciences & Disorders, University of Memphis, 4055 North Park Loop, Memphis, TN 38152, USA
| | - Sylvain Moreno
- Digital Health Hub, School of Engineering, Simon Fraser University, 102 Avenue, Surrey, BC, V3T0A3, Canada
| | - Cassandra Skrotzki
- Department of Psychology, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Jennifer Bugos
- University of South Florida, School of Music, Center for Music Education Research, 4202 E. Fowler Ave, MUS 101, Tampa, FL 33620, USA
| | - Dawei Shen
- Rotman Research Institute, Baycrest Centre for Geriatric Care, 3560 Bathurst Street, Toronto, ON, M6A 2E1, Canada
| | - Dezhong Yao
- MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China
| | - Claude Alain
- Rotman Research Institute, Baycrest Centre for Geriatric Care, 3560 Bathurst Street, Toronto, ON, M6A 2E1, Canada
| |
Collapse
|
24
|
Neves L, Correia AI, Castro SL, Martins D, Lima CF. Does music training enhance auditory and linguistic processing? A systematic review and meta-analysis of behavioral and brain evidence. Neurosci Biobehav Rev 2022; 140:104777. [PMID: 35843347 DOI: 10.1016/j.neubiorev.2022.104777] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 02/02/2023]
Abstract
It is often claimed that music training improves auditory and linguistic skills. Results of individual studies are mixed, however, and most evidence is correlational, precluding inferences of causation. Here, we evaluated data from 62 longitudinal studies that examined whether music training programs affect behavioral and brain measures of auditory and linguistic processing (N = 3928). For the behavioral data, a multivariate meta-analysis revealed a small positive effect of music training on both auditory and linguistic measures, regardless of the type of assignment (random vs. non-random), training (instrumental vs. non-instrumental), and control group (active vs. passive). The trim-and-fill method provided suggestive evidence of publication bias, but meta-regression methods (PET-PEESE) did not. For the brain data, a narrative synthesis also documented benefits of music training, namely for measures of auditory processing and for measures of speech and prosody processing. Thus, the available literature provides evidence that music training produces small neurobehavioral enhancements in auditory and linguistic processing, although future studies are needed to confirm that such enhancements are not due to publication bias.
Collapse
Affiliation(s)
- Leonor Neves
- Centro de Investigação e Intervenção Social (CIS-IUL), Instituto Universitário de Lisboa (ISCTE-IUL), Lisboa, Portugal
| | - Ana Isabel Correia
- Centro de Investigação e Intervenção Social (CIS-IUL), Instituto Universitário de Lisboa (ISCTE-IUL), Lisboa, Portugal
| | - São Luís Castro
- Centro de Psicologia da Universidade do Porto (CPUP), Faculdade de Psicologia e de Ciências da Educação da Universidade do Porto (FPCEUP), Porto, Portugal
| | - Daniel Martins
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK; NIHR Maudsley Biomedical Research Centre (BRC), South London and Maudsley NHS Foundation Trust, London, UK
| | - César F Lima
- Centro de Investigação e Intervenção Social (CIS-IUL), Instituto Universitário de Lisboa (ISCTE-IUL), Lisboa, Portugal.
| |
Collapse
|
25
|
Zendel BR. The importance of the motor system in the development of music-based forms of auditory rehabilitation. Ann N Y Acad Sci 2022; 1515:10-19. [PMID: 35648040 DOI: 10.1111/nyas.14810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hearing abilities decline with age, and one of the most commonly reported hearing issues in older adults is a difficulty understanding speech when there is loud background noise. Understanding speech in noise relies on numerous cognitive processes, including working memory, and is supported by numerous brain regions, including the motor and motor planning systems. Indeed, many working memory processes are supported by motor and premotor cortical regions. Interestingly, lifelong musicians and nonmusicians given music training over the course of weeks or months show an improved ability to understand speech when there is loud background noise. These benefits are associated with enhanced working memory abilities, and enhanced activity in motor and premotor cortical regions. Accordingly, it is likely that music training improves the coupling between the auditory and motor systems and promotes plasticity in these regions and regions that feed into auditory/motor areas. This leads to an enhanced ability to dynamically process incoming acoustic information, and is likely the reason that musicians and those who receive laboratory-based music training are better able to understand speech when there is background noise. Critically, these findings suggest that music-based forms of auditory rehabilitation are possible and should focus on tasks that promote auditory-motor interactions.
Collapse
Affiliation(s)
- Benjamin Rich Zendel
- Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada.,Aging Research Centre - Newfoundland and Labrador, Grenfell Campus, Memorial University, Corner Brook, Newfoundland and Labrador, Canada
| |
Collapse
|
26
|
Pentikäinen E, Kimppa L, Makkonen T, Putkonen M, Pitkäniemi A, Salakka I, Paavilainen P, Tervaniemi M, Särkämö T. Benefits of choir singing on complex auditory encoding in the aging brain: An ERP study. Ann N Y Acad Sci 2022; 1514:82-92. [PMID: 35596717 DOI: 10.1111/nyas.14789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aging is accompanied by difficulties in auditory information processing, especially in more complex sound environments. Choir singing requires efficient processing of multiple sound features and could, therefore, mitigate the detrimental effects of aging on complex auditory encoding. We recorded auditory event-related potentials during passive listening of sounds in healthy older adult (≥ 60 years) choir singers and nonsinger controls. We conducted a complex oddball condition involving encoding of abstract regularities in combinations of pitch and location features, as well as in two simple oddball conditions, in which only either the pitch or spatial location of the sounds was varied. We analyzed change-related mismatch negativity (MMN) and obligatory P1 and N1 responses in each condition. In the complex condition, the choir singers showed a larger MMN than the controls, which also correlated with better performance in a verbal fluency test. In the simple pitch and location conditions, the choir singers had smaller N1 responses compared to the control subjects, whereas the MMN responses did not differ between groups. These results suggest that regular choir singing is associated both with more enhanced encoding of complex auditory regularities and more effective adaptation to simple sound features.
Collapse
Affiliation(s)
- Emmi Pentikäinen
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Lilli Kimppa
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tommi Makkonen
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mikko Putkonen
- Department of Psychology and Speech-Language Pathology, Faculty of Social Sciences, University of Turku, Turku, Finland
| | - Anni Pitkäniemi
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ilja Salakka
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Petri Paavilainen
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mari Tervaniemi
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Education, Faculty of Educational Sciences, University of Helsinki, Helsinki, Finland
| | - Teppo Särkämö
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
27
|
Smith AM, Kleinerman K, Cohen AJ. Singing lessons as a path to well-being in later life. PSYCHOLOGY OF MUSIC 2022; 50:911-932. [PMID: 35449604 PMCID: PMC9014673 DOI: 10.1177/03057356211030992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Seventy-two persons, who had begun voice lessons after 40 years of age, were invited to complete an online survey that focused on the singers' experience, motivation, goals, health and well-being, repertoire, practice, and demographic information; 48 respondents (33 females, mean age 60.81 years, range 48.83-82.08, SD = 6.99) completed the questionnaire. Most participants indicated that enjoyment and personal growth motivated their taking lessons. Over 90% commented on benefits of singing to their physical health (e.g., breathing) and mental health (e.g., mood, less depressive episodes). Despite the solitary aspect of singing lessons, 67% reported positive changes in social relations since taking lessons. Benefits to professional relations were also reported (e.g., confidence, listening to others). Repertoire level was generally high, consistent with a high average university educational level. Cost of lessons and time demands may account for the generally high socioeconomic status of respondents. Given that the singing voice is a musical instrument available to almost everyone, results might motivate older adults to consider taking voice lessons, encourage health care professionals to consider voice lessons as interventions to benefit clients, and persuade governments to subsidize voice lessons for older adults in their jurisdictions. The study provides a foundation for future research on the relative impacts on well-being of vocal lessons versus choral singing in the context of relative investments in the two activities.
Collapse
Affiliation(s)
- Alexandra M Smith
- Department of Psychology, University of
Prince Edward Island, Charlottetown, PE, Canada
| | | | - Annabel J Cohen
- Department of Psychology, University of
Prince Edward Island, Charlottetown, PE, Canada
| |
Collapse
|
28
|
Hennessy S, Mack WJ, Habibi A. Speech-in-noise perception in musicians and non-musicians: A multi-level meta-analysis. Hear Res 2022; 416:108442. [PMID: 35078132 DOI: 10.1016/j.heares.2022.108442] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 01/25/2023]
Abstract
Speech-in-noise perception, the ability to hear a relevant voice within a noisy background, is important for successful communication. Musicians have been reported to perform better than non-musicians on speech-in-noise tasks. This meta-analysis uses a multi-level design to assess the claim that musicians have superior speech-in-noise abilities compared to non-musicians. Across 31 studies and 62 effect sizes, the overall effect of musician status on speech-in-noise ability is significant, with a moderate effect size (g = 0.58), 95% CI [0.42, 0.74]. The overall effect of musician status was not moderated by within-study IQ equivalence, target stimulus, target contextual information, type of background noise, or age. We conclude that musicians show superior speech-in-noise abilities compared to non-musicians, not modified by age, IQ, or speech task parameters. These effects may reflect changes due to music training or predisposed auditory advantages that encourage musicianship.
Collapse
Affiliation(s)
- Sarah Hennessy
- Brain and Creativity Institute, University of Southern California, Los Angeles, CA, United States
| | - Wendy J Mack
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, United States
| | - Assal Habibi
- Brain and Creativity Institute, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
29
|
Worschech F, Altenmüller E, Jünemann K, Sinke C, Krüger THC, Scholz DS, Müller CAH, Kliegel M, James CE, Marie D. Evidence of cortical thickness increases in bilateral auditory brain structures following piano learning in older adults. Ann N Y Acad Sci 2022; 1513:21-30. [PMID: 35292982 DOI: 10.1111/nyas.14762] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/03/2022] [Indexed: 12/25/2022]
Abstract
Morphological differences in the auditory brain of musicians compared to nonmusicians are often associated with life-long musical activity. Cross-sectional studies, however, do not allow for any causal inferences, and most experimental studies testing music-driven adaptations investigated children. Although the importance of the age at which musical training begins is widely recognized to impact neuroplasticity, there have been few longitudinal studies examining music-related changes in the brains of older adults. Using magnetic resonance imaging, we measured cortical thickness (CT) of 12 auditory-related regions of interest before and after 6 months of musical instruction in 134 healthy, right-handed, normal-hearing, musically-naive older adults (64-76 years old). Prior to the study, all participants were randomly assigned to either piano training or to a musical culture/music listening group. In five regions-left Heschl's gyrus, left planum polare, bilateral superior temporal sulcus, and right Heschl's sulcus-we found an increase in CT in the piano training group compared with the musical culture group. Furthermore, CT of the right Heschl's gyrus could be identified as a morphological substrate supporting speech in noise perception. The results support the conclusion that playing an instrument is an effective stimulator for cortical plasticity, even in older adults.
Collapse
Affiliation(s)
- Florian Worschech
- Institute for Music Physiology and Musicians' Medicine, Hanover University of Music, Drama and Media, Hanover, Germany.,Center for Systems Neuroscience, Hanover, Germany
| | - Eckart Altenmüller
- Institute for Music Physiology and Musicians' Medicine, Hanover University of Music, Drama and Media, Hanover, Germany.,Center for Systems Neuroscience, Hanover, Germany
| | - Kristin Jünemann
- Center for Systems Neuroscience, Hanover, Germany.,Division of Clinical Psychology & Sexual Medicine, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hanover Medical School, Hanover, Germany
| | - Christopher Sinke
- Division of Clinical Psychology & Sexual Medicine, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hanover Medical School, Hanover, Germany
| | - Tillmann H C Krüger
- Center for Systems Neuroscience, Hanover, Germany.,Division of Clinical Psychology & Sexual Medicine, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hanover Medical School, Hanover, Germany
| | - Daniel S Scholz
- Institute for Music Physiology and Musicians' Medicine, Hanover University of Music, Drama and Media, Hanover, Germany.,Center for Systems Neuroscience, Hanover, Germany
| | - Cécile A H Müller
- Geneva Musical Minds Lab, Geneva School of Health Sciences, University of Applied Sciences and Arts Western Switzerland HES-SO, Geneva, Switzerland
| | - Matthias Kliegel
- Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland.,Center for the Interdisciplinary Study of Gerontology and Vulnerability, University of Geneva, Geneva, Switzerland
| | - Clara E James
- Geneva Musical Minds Lab, Geneva School of Health Sciences, University of Applied Sciences and Arts Western Switzerland HES-SO, Geneva, Switzerland.,Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| | - Damien Marie
- Geneva Musical Minds Lab, Geneva School of Health Sciences, University of Applied Sciences and Arts Western Switzerland HES-SO, Geneva, Switzerland.,Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| |
Collapse
|
30
|
Bugos JA, Wang Y. Piano Training Enhances Executive Functions and Psychosocial Outcomes in Aging: Results of a Randomized Controlled Trial. J Gerontol B Psychol Sci Soc Sci 2022; 77:1625-1636. [DOI: 10.1093/geronb/gbac021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Indexed: 11/14/2022] Open
Abstract
Abstract
Objectives
Preliminary evidence suggests piano training may enhance areas of executive functions and psychosocial outcomes in aging adults. However, little is known regarding specific cognitive outcomes affected and whether or not enhancements are sustainable. We conducted a randomized controlled trial to evaluate the effects of piano training on cognitive performance, psychosocial well-being, and physiological stress and immune-function, in older adults.
Methods
Older adults (N=155, 60-80 years) completed an initial three-hour assessment of standardized cognitive and psychosocial measures. Participants were randomly assigned to one of three groups: piano training, computer-assisted cognitive training, or a no treatment control group. Training groups completed a 16-week program with two group training sessions per week for 90 minutes each session. All participants completed a standard battery of executive functions (working memory, processing speed, verbal fluency), psychosocial measures (musical and general self-efficacy, mood), and physiological measures (cortisol and immune-function) at pretesting, posttesting, and at a three-month follow-up time point.
Results
Results showed that piano training and computer-assisted cognitive training enhanced working memory and processing speed as compared to controls. Piano training significantly increased verbal fluency skills in category switching, as compared to computer-assisted cognitive training and no treatment controls. Participants in piano training demonstrated enhanced general and musical self-efficacy post-training; however, no significant differences were found for physiological measures.
Discussion
Piano training resulted in a unique advantage in category switching as compared to computer-assisted cognitive training and no treatment controls. Music training programs may mitigate or prevent cognitive deficits in verbal skills.
Collapse
Affiliation(s)
| | - Yan Wang
- University of Massachusetts Lowell
| |
Collapse
|
31
|
Amateur singing benefits speech perception in aging under certain conditions of practice: behavioural and neurobiological mechanisms. Brain Struct Funct 2022; 227:943-962. [PMID: 35013775 DOI: 10.1007/s00429-021-02433-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 11/19/2021] [Indexed: 12/21/2022]
Abstract
Limited evidence has shown that practising musical activities in aging, such as choral singing, could lessen age-related speech perception in noise (SPiN) difficulties. However, the robustness and underlying mechanism of action of this phenomenon remain unclear. In this study, we used surface-based morphometry combined with a moderated mediation analytic approach to examine whether singing-related plasticity in auditory and dorsal speech stream regions is associated with better SPiN capabilities. 36 choral singers and 36 non-singers aged 20-87 years underwent cognitive, auditory, and SPiN assessments. Our results provide important new insights into experience-dependent plasticity by revealing that, under certain conditions of practice, amateur choral singing is associated with age-dependent structural plasticity within auditory and dorsal speech regions, which is associated with better SPiN performance in aging. Specifically, the conditions of practice that were associated with benefits on SPiN included frequent weekly practice at home, several hours of weekly group singing practice, singing in multiple languages, and having received formal singing training. These results suggest that amateur choral singing is associated with improved SPiN through a dual mechanism involving auditory processing and auditory-motor integration and may be dose dependent, with more intense singing associated with greater benefit. Our results, thus, reveal that the relationship between singing practice and SPiN is complex, and underscore the importance of considering singing practice behaviours in understanding the effects of musical activities on the brain-behaviour relationship.
Collapse
|
32
|
Mussoi BS. The Impact of Music Training and Working Memory on Speech Recognition in Older Age. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2021; 64:4524-4534. [PMID: 34586881 DOI: 10.1044/2021_jslhr-20-00426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Purpose Music training has been proposed as a possible tool for auditory training in older adults, as it may improve both auditory and cognitive skills. However, the evidence to support such benefits is mixed. The goal of this study was to determine the differential effects of lifelong musical training and working memory on speech recognition in noise, in older adults. Method A total of 31 musicians and nonmusicians aged 65-78 years took part in this cross-sectional study. Participants had a normal pure-tone average, with most having high-frequency hearing loss. Working memory (memory capacity) was assessed with the backward Digit Span test, and speech recognition in noise was assessed with three clinical tests (Quick Speech in Noise, Hearing in Noise Test, and Revised Speech Perception in Noise). Results Findings from this sample of older adults indicate that neither music training nor working memory was associated with differences on the speech recognition in noise measures used in this study. Similarly, duration of music training was not associated with speech-in-noise recognition. Conclusions Results from this study do not support the hypothesis that lifelong music training benefits speech recognition in noise. Similarly, an effect of working memory (memory capacity) was not apparent. While these findings may be related to the relatively small sample size, results across previous studies that investigated these effects have also been mixed. Prospective randomized music training studies may be able to better control for variability in outcomes associated with pre-existing and music training factors, as well as to examine the differential impact of music training and working memory for speech-in-noise recognition in older adults.
Collapse
Affiliation(s)
- Bruna S Mussoi
- Speech Pathology and Audiology, Kent State University, OH
| |
Collapse
|
33
|
Grenier AS, Lafontaine L, Sharp A. Use of Music Therapy as an Audiological Rehabilitation Tool in the Elderly Population: A Mini-Review. Front Neurosci 2021; 15:662087. [PMID: 34602963 PMCID: PMC8481584 DOI: 10.3389/fnins.2021.662087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 08/13/2021] [Indexed: 01/14/2023] Open
Abstract
It is well known and documented that sensory perception decreases with age. In the elderly population, hearing loss and reduced vestibular function are among the most prevalently affected senses. Two important side effects of sensory deprivation are cognitive decline and decrease in social participation. Hearing loss, vestibular function impairment, and cognitive decline all lead to a decrease in social participation. Altogether, these problems have a great impact on the quality of life of the elderly. This is why a rehabilitation program covering all of these aspects would therefore be useful for clinicians. It is well known that long-term music training can lead to cortical plasticity. Behavioral improvements have been measured for cognitive abilities and sensory modalities (auditory, motor, tactile, and visual) in healthy young adults. Based on these findings, it is possible to wonder if this kind of multisensory training would be an interesting therapy to not only improve communication but also help with posture and balance, cognitive abilities, and social participation. The aim of this review is to assess and validate the impact of music therapy in the context of hearing rehabilitation in older adults. Musical therapy seems to have a positive impact on auditory perception, posture and balance, social integration, and cognition. While the benefits seem obvious, the evidence in the literature is scarce. However, there is no reason not to recommend the use of music therapy as an adjunct to audiological rehabilitation in the elderly when possible. Further investigations are needed to conclude on the extent of the benefits that music therapy could bring to older adults. More data are needed to confirm which hearing abilities can be improved based on the many characteristics of hearing loss. There is also a need to provide a clear protocol for clinicians on how this therapy should be administered to offer the greatest possible benefits.
Collapse
Affiliation(s)
| | - Louise Lafontaine
- École d'Orthophonie et d'Audiologie, Université de Montréal, Montreal, QC, Canada
| | - Andréanne Sharp
- CERVO Research Center, Université Laval, Québec City, QC, Canada
| |
Collapse
|
34
|
Nyashanu M, Pfende F, Osborne J. Evaluating the benefits of inclusive community singing towards well-being: narratives of diverse community members attending an inclusive singing group. JOURNAL OF PUBLIC MENTAL HEALTH 2021. [DOI: 10.1108/jpmh-05-2021-0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Purpose
The purpose of this paper is to evaluate the benefits of an inclusive community singing group towards well-being.
Design/methodology/approach
This study used an exploratory qualitative study (EQS) approach. Semi-structured questions were devised and used to elicit participants’ experiences on the impact of an inclusive community singing group towards well-being. A thematic approach underpinned by the four phases of The Silences Framework was used to analyse the data.
Findings
This study found the following benefits of an inclusive community singing group towards well-being Connecting with others, Physical improvement, Learning new skills, Giving to others and Mindfulness.
Originality/value
This study concluded that inclusive community singing plays a pivotal role in enhancing the health and well-being of communities.
Collapse
|
35
|
Merten N, Fischer ME, Dillard LK, Klein BEK, Tweed TS, Cruickshanks KJ. Benefit of Musical Training for Speech Perception and Cognition Later in Life. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2021; 64:2885-2896. [PMID: 34185592 PMCID: PMC8632477 DOI: 10.1044/2021_jslhr-20-00588] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/29/2020] [Accepted: 03/18/2021] [Indexed: 06/13/2023]
Abstract
Purpose The aim of this study was to determine the long-term associations of musical training with speech perception in adverse conditions and cognition in a longitudinal cohort study of middle-age to older adults. Method This study is based on Epidemiology of Hearing Loss Study participants. We asked participants at baseline (1993-1995) about their musical training. Speech perception (word recognition in competing message; Northwestern University Auditory Test Number 6), cognitive function (cognitive test battery), and impairment (self-report or surrogate report of Alzheimer's disease or dementia, and/or a Mini-Mental State Examination score ≤ 24) were assessed up to 5 times over the 20-year follow-up. We included 2,938 Epidemiology of Hearing Loss Study participants who had musical training data and at least one follow-up of speech perception and/or cognitive assessment. We used linear mixed-effects models to determine associations between musicianship and decline in speech perception and cognitive function over time and Cox regression models to evaluate associations of musical training with 20-year cumulative incidence of speech perception and cognitive impairment. Models were adjusted for age, sex, and occupation and repeated with additional adjustment for health-related confounders and education. Results Musicians showed less speech perception decline over time with stronger effects in women (0.16% difference, 95% confidence interval [CI] [0.05, 0.26]). Among men, musicians had, on average, better speech perception than nonmusicians (3.41% difference, 95% CI [0.62, 6.20]) and were less likely to develop a cognitive impairment than nonmusicians (hazard ratio = 0.58, 95% CI [0.37, 0.91]). Conclusions Musicians showed an advantage in speech perception abilities and cognition later in life and less decline over time with different magnitudes of effect sizes in men and women. Associations remained with further adjustment, indicating that some degree of the advantage of musical training is independent of socioeconomic or health differences. If confirmed, these findings could have implications for developing speech perception intervention and prevention strategies. Supplemental Material https://doi.org/10.23641/asha.14825454.
Collapse
Affiliation(s)
- Natascha Merten
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin–Madison
| | - Mary E. Fischer
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin–Madison
| | - Lauren K. Dillard
- Department of Communication Sciences and Disorders, College of Letters and Science, University of Wisconsin–Madison
| | - Barbara E. K. Klein
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin–Madison
| | - Ted S. Tweed
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin–Madison
| | - Karen J. Cruickshanks
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin–Madison
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin–Madison
- Department of Communication Sciences and Disorders, College of Letters and Science, University of Wisconsin–Madison
| |
Collapse
|
36
|
Worschech F, Marie D, Jünemann K, Sinke C, Krüger THC, Großbach M, Scholz DS, Abdili L, Kliegel M, James CE, Altenmüller E. Improved Speech in Noise Perception in the Elderly After 6 Months of Musical Instruction. Front Neurosci 2021; 15:696240. [PMID: 34305522 PMCID: PMC8299120 DOI: 10.3389/fnins.2021.696240] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/14/2021] [Indexed: 01/19/2023] Open
Abstract
Understanding speech in background noise poses a challenge in daily communication, which is a particular problem among the elderly. Although musical expertise has often been suggested to be a contributor to speech intelligibility, the associations are mostly correlative. In the present multisite study conducted in Germany and Switzerland, 156 healthy, normal-hearing elderly were randomly assigned to either piano playing or music listening/musical culture groups. The speech reception threshold was assessed using the International Matrix Test before and after a 6 month intervention. Bayesian multilevel modeling revealed an improvement of both groups over time under binaural conditions. Additionally, the speech reception threshold of the piano group decreased during stimuli presentation to the left ear. A right ear improvement only occurred in the German piano group. Furthermore, improvements were predominantly found in women. These findings are discussed in the light of current neuroscientific theories on hemispheric lateralization and biological sex differences. The study indicates a positive transfer from musical training to speech processing, probably supported by the enhancement of auditory processing and improvement of general cognitive functions.
Collapse
Affiliation(s)
- Florian Worschech
- Institute for Music Physiology and Musicians’ Medicine, Hanover University of Music, Drama and Media, Hanover, Germany
- Center for Systems Neuroscience, Hanover, Germany
| | - Damien Marie
- Geneva Musical Minds Lab, Geneva School of Health Sciences, University of Applied Sciences and Arts Western Switzerland (HES-SO), Geneva, Switzerland
- Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| | - Kristin Jünemann
- Center for Systems Neuroscience, Hanover, Germany
- Division of Clinical Psychology and Sexual Medicine, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hanover Medical School, Hanover, Germany
| | - Christopher Sinke
- Division of Clinical Psychology and Sexual Medicine, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hanover Medical School, Hanover, Germany
| | - Tillmann H. C. Krüger
- Center for Systems Neuroscience, Hanover, Germany
- Division of Clinical Psychology and Sexual Medicine, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hanover Medical School, Hanover, Germany
| | - Michael Großbach
- Institute for Music Physiology and Musicians’ Medicine, Hanover University of Music, Drama and Media, Hanover, Germany
| | - Daniel S. Scholz
- Institute for Music Physiology and Musicians’ Medicine, Hanover University of Music, Drama and Media, Hanover, Germany
- Center for Systems Neuroscience, Hanover, Germany
| | - Laura Abdili
- Geneva Musical Minds Lab, Geneva School of Health Sciences, University of Applied Sciences and Arts Western Switzerland (HES-SO), Geneva, Switzerland
- Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| | - Matthias Kliegel
- Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
- Center for the Interdisciplinary Study of Gerontology and Vulnerability, University of Geneva, Geneva, Switzerland
| | - Clara E. James
- Geneva Musical Minds Lab, Geneva School of Health Sciences, University of Applied Sciences and Arts Western Switzerland (HES-SO), Geneva, Switzerland
- Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| | - Eckart Altenmüller
- Institute for Music Physiology and Musicians’ Medicine, Hanover University of Music, Drama and Media, Hanover, Germany
- Center for Systems Neuroscience, Hanover, Germany
| |
Collapse
|
37
|
Perron M, Theaud G, Descoteaux M, Tremblay P. The frontotemporal organization of the arcuate fasciculus and its relationship with speech perception in young and older amateur singers and non-singers. Hum Brain Mapp 2021; 42:3058-3076. [PMID: 33835629 PMCID: PMC8193549 DOI: 10.1002/hbm.25416] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 02/26/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
The ability to perceive speech in noise (SPiN) declines with age. Although the etiology of SPiN decline is not well understood, accumulating evidence suggests a role for the dorsal speech stream. While age-related decline within the dorsal speech stream would negatively affect SPiN performance, experience-induced neuroplastic changes within the dorsal speech stream could positively affect SPiN performance. Here, we investigated the relationship between SPiN performance and the structure of the arcuate fasciculus (AF), which forms the white matter scaffolding of the dorsal speech stream, in aging singers and non-singers. Forty-three non-singers and 41 singers aged 20 to 87 years old completed a hearing evaluation and a magnetic resonance imaging session that included High Angular Resolution Diffusion Imaging. The groups were matched for sex, age, education, handedness, cognitive level, and musical instrument experience. A subgroup of participants completed syllable discrimination in the noise task. The AF was divided into 10 segments to explore potential local specializations for SPiN. The results show that, in carefully matched groups of singers and non-singers (a) myelin and/or axonal membrane deterioration within the bilateral frontotemporal AF segments are associated with SPiN difficulties in aging singers and non-singers; (b) the structure of the AF is different in singers and non-singers; (c) these differences are not associated with a benefit on SPiN performance for singers. This study clarifies the etiology of SPiN difficulties by supporting the hypothesis for the role of aging of the dorsal speech stream.
Collapse
Affiliation(s)
- Maxime Perron
- CERVO Brain Research CenterQuebec CityQuebecCanada
- Département de RéadaptationUniversité Laval, Faculté de MédecineQuebec CityQuebecCanada
| | - Guillaume Theaud
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science DepartmentUniversité de SherbrookeSherbrookeQuebecCanada
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science DepartmentUniversité de SherbrookeSherbrookeQuebecCanada
| | - Pascale Tremblay
- CERVO Brain Research CenterQuebec CityQuebecCanada
- Département de RéadaptationUniversité Laval, Faculté de MédecineQuebec CityQuebecCanada
| |
Collapse
|
38
|
Hanenberg C, Schlüter MC, Getzmann S, Lewald J. Short-Term Audiovisual Spatial Training Enhances Electrophysiological Correlates of Auditory Selective Spatial Attention. Front Neurosci 2021; 15:645702. [PMID: 34276281 PMCID: PMC8280319 DOI: 10.3389/fnins.2021.645702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 06/09/2021] [Indexed: 11/13/2022] Open
Abstract
Audiovisual cross-modal training has been proposed as a tool to improve human spatial hearing. Here, we investigated training-induced modulations of event-related potential (ERP) components that have been associated with processes of auditory selective spatial attention when a speaker of interest has to be localized in a multiple speaker ("cocktail-party") scenario. Forty-five healthy participants were tested, including younger (19-29 years; n = 21) and older (66-76 years; n = 24) age groups. Three conditions of short-term training (duration 15 min) were compared, requiring localization of non-speech targets under "cocktail-party" conditions with either (1) synchronous presentation of co-localized auditory-target and visual stimuli (audiovisual-congruency training) or (2) immediate visual feedback on correct or incorrect localization responses (visual-feedback training), or (3) presentation of spatially incongruent auditory-target and visual stimuli presented at random positions with synchronous onset (control condition). Prior to and after training, participants were tested in an auditory spatial attention task (15 min), requiring localization of a predefined spoken word out of three distractor words, which were presented with synchronous stimulus onset from different positions. Peaks of ERP components were analyzed with a specific focus on the N2, which is known to be a correlate of auditory selective spatial attention. N2 amplitudes were significantly larger after audiovisual-congruency training compared with the remaining training conditions for younger, but not older, participants. Also, at the time of the N2, distributed source analysis revealed an enhancement of neural activity induced by audiovisual-congruency training in dorsolateral prefrontal cortex (Brodmann area 9) for the younger group. These findings suggest that cross-modal processes induced by audiovisual-congruency training under "cocktail-party" conditions at a short time scale resulted in an enhancement of correlates of auditory selective spatial attention.
Collapse
Affiliation(s)
| | | | - Stephan Getzmann
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Jörg Lewald
- Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
39
|
McKay CM. No Evidence That Music Training Benefits Speech Perception in Hearing-Impaired Listeners: A Systematic Review. Trends Hear 2021; 25:2331216520985678. [PMID: 33634750 PMCID: PMC7934028 DOI: 10.1177/2331216520985678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
As musicians have been shown to have a range of superior auditory skills to non-musicians (e.g., pitch discrimination ability), it has been hypothesized by many researchers that music training can have a beneficial effect on speech perception in populations with hearing impairment. This hypothesis relies on an assumption that the benefits seen in musicians are due to their training and not due to innate skills that may support successful musicianship. This systematic review examined the evidence from 13 longitudinal training studies that tested the hypothesis that music training has a causal effect on speech perception ability in hearing-impaired listeners. The papers were evaluated for quality of research design and appropriate analysis techniques. Only 4 of the 13 papers used a research design that allowed a causal relation between music training and outcome benefits to be validly tested, and none of those 4 papers with a better quality study design demonstrated a benefit of music training for speech perception. In spite of the lack of valid evidence in support of the hypothesis, 10 of the 13 papers made claims of benefits of music training, showing a propensity for confirmation bias in this area of research. It is recommended that future studies that aim to evaluate the association of speech perception ability and music training use a study design that differentiates the effects of training from those of innate perceptual and cognitive skills in the participants.
Collapse
Affiliation(s)
- Colette M McKay
- Bionics Institute, Melbourne, Australia.,Department of Medical Bionics, The University of Melbourne, Melbourne, Australia.,Department of Audiology and Speech Pathology, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
40
|
Hennessy S, Wood A, Wilcox R, Habibi A. Neurophysiological improvements in speech-in-noise task after short-term choir training in older adults. Aging (Albany NY) 2021; 13:9468-9495. [PMID: 33824226 PMCID: PMC8064162 DOI: 10.18632/aging.202931] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/26/2021] [Indexed: 01/24/2023]
Abstract
Perceiving speech in noise (SIN) is important for health and well-being and decreases with age. Musicians show improved speech-in-noise abilities and reduced age-related auditory decline, yet it is unclear whether short term music engagement has similar effects. In this randomized control trial we used a pre-post design to investigate whether a 12-week music intervention in adults aged 50-65 without prior music training and with subjective hearing loss improves well-being, speech-in-noise abilities, and auditory encoding and voluntary attention as indexed by auditory evoked potentials (AEPs) in a syllable-in-noise task, and later AEPs in an oddball task. Age and gender-matched adults were randomized to a choir or control group. Choir participants sang in a 2-hr ensemble with 1-hr home vocal training weekly; controls listened to a 3-hr playlist weekly, attended concerts, and socialized online with fellow participants. From pre- to post-intervention, no differences between groups were observed on quantitative measures of well-being or behavioral speech-in-noise abilities. In the choir group, but not the control group, changes in the N1 component were observed for the syllable-in-noise task, with increased N1 amplitude in the passive condition and decreased N1 latency in the active condition. During the oddball task, larger N1 amplitudes to the frequent standard stimuli were also observed in the choir but not control group from pre to post intervention. Findings have implications for the potential role of music training to improve sound encoding in individuals who are in the vulnerable age range and at risk of auditory decline.
Collapse
Affiliation(s)
- Sarah Hennessy
- Brain and Creativity Institute, University of Southern California, Los Angeles, CA 90089, USA
| | - Alison Wood
- Brain and Creativity Institute, University of Southern California, Los Angeles, CA 90089, USA
| | - Rand Wilcox
- Department of Psychology, University of Southern California, Los Angeles, CA 90089, USA
| | - Assal Habibi
- Brain and Creativity Institute, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
41
|
Siedenburg K, Röttges S, Wagener KC, Hohmann V. Can You Hear Out the Melody? Testing Musical Scene Perception in Young Normal-Hearing and Older Hearing-Impaired Listeners. Trends Hear 2020; 24:2331216520945826. [PMID: 32895034 PMCID: PMC7502688 DOI: 10.1177/2331216520945826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
It is well known that hearing loss compromises auditory scene analysis abilities,
as is usually manifested in difficulties of understanding speech in noise.
Remarkably little is known about auditory scene analysis of hearing-impaired
(HI) listeners when it comes to musical sounds. Specifically, it is unclear to
which extent HI listeners are able to hear out a melody or an instrument from a
musical mixture. Here, we tested a group of younger normal-hearing (yNH) and
older HI (oHI) listeners with moderate hearing loss in their ability to match
short melodies and instruments presented as part of mixtures. Four-tone
sequences were used in conjunction with a simple musical accompaniment that
acted as a masker (cello/piano dyads or spectrally matched noise). In each
trial, a signal-masker mixture was presented, followed by two different versions
of the signal alone. Listeners indicated which signal version was part of the
mixture. Signal versions differed either in terms of the sequential order of the
pitch sequence or in terms of timbre (flute vs. trumpet). Signal-to-masker
thresholds were measured by varying the signal presentation level in an adaptive
two-down/one-up procedure. We observed that thresholds of oHI listeners were
elevated by on average 10 dB compared with that of yNH listeners. In contrast to
yNH listeners, oHI listeners did not show evidence of listening in dips of the
masker. Musical training of participants was associated with a lowering of
thresholds. These results may indicate detrimental effects of hearing loss on
central aspects of musical scene perception.
Collapse
Affiliation(s)
- Kai Siedenburg
- Department of Medical Physics and Acoustics and Cluster of Excellence Hearing4all, Carl von Ossietzky University of Oldenburg
| | - Saskia Röttges
- Department of Medical Physics and Acoustics and Cluster of Excellence Hearing4all, Carl von Ossietzky University of Oldenburg
| | | | - Volker Hohmann
- Department of Medical Physics and Acoustics and Cluster of Excellence Hearing4all, Carl von Ossietzky University of Oldenburg.,Hörzentrum Oldenburg GmbH & Hörtech gGmbH, Oldenburg, Germany
| |
Collapse
|
42
|
Musical Experience Offsets Age-Related Decline in Understanding Speech-in-Noise: Type of Training Does Not Matter, Working Memory Is the Key. Ear Hear 2020; 42:258-270. [PMID: 32826504 DOI: 10.1097/aud.0000000000000921] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Speech comprehension under "cocktail party" scenarios deteriorates with age even in the absence of measurable hearing loss. Musical training is suggested to counteract the age-related decline in speech-in-noise (SIN) perception, yet which aspect of musical plasticity contributes to this compensation remains unclear. This study aimed to investigate the effects of musical experience and aging on SIN perception ability. We hypothesized a key mediation role of auditory working memory in ameliorating deficient SIN perception in older adults by musical training. DESIGN Forty-eight older musicians, 29 older nonmusicians, 48 young musicians, and 24 young nonmusicians all with (near) normal peripheral hearing were recruited. The SIN task was recognizing nonsense speech sentences either perceptually colocated or separated with a noise masker (energetic masking) or a two-talker speech masker (informational masking). Auditory working memory was measured by auditory digit span. Path analysis was used to examine the direct and indirect effects of musical expertise and age on SIN perception performance. RESULTS Older musicians outperformed older nonmusicians in auditory working memory and all SIN conditions (noise separation, noise colocation, speech separation, speech colocation), but such musician advantages were absent in young adults. Path analysis showed that age and musical training had opposite effects on auditory working memory, which played a significant mediation role in SIN perception. In addition, the type of musical training did not differentiate SIN perception regardless of age. CONCLUSIONS These results provide evidence that musical training offsets age-related speech perception deficit at adverse listening conditions by preserving auditory working memory. Our findings highlight auditory working memory in supporting speech perception amid competing noise in older adults, and underline musical training as a means of "cognitive reserve" against declines in speech comprehension and cognition in aging populations.
Collapse
|
43
|
Zendel BR, Alexander EJ. Autodidacticism and Music: Do Self-Taught Musicians Exhibit the Same Auditory Processing Advantages as Formally Trained Musicians? Front Neurosci 2020; 14:752. [PMID: 32792899 PMCID: PMC7385409 DOI: 10.3389/fnins.2020.00752] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/26/2020] [Indexed: 01/09/2023] Open
Abstract
Multiple studies have demonstrated that musicians have enhanced auditory processing abilities compared to non-musicians. In these studies, musicians are usually defined as having received some sort of formal music training. One issue with this definition is that there are many musicians who are self-taught. The goal of the current study was to determine if self-taught musicians exhibit different auditory enhancements as their formally trained counterparts. Three groups of participants were recruited: formally trained musicians, who received formal music training through the conservatory or private lessons; self-taught musicians, who learned to play music through informal methods, such as with books, videos, or by ear; non-musicians, who had little or no music experience. Auditory processing abilities were assessed using a speech-in-noise task, a passive pitch oddball task done while recording electrical brain activity, and a melodic tonal violation task, done both actively and passively while recording electrical brain activity. For the melodic tonal violation task, formally trained musicians were better at detecting a tonal violation compared to self-taught musicians, who were in turn better than non-musicians. The P600 evoked by a tonal violation was enhanced in formally trained musicians compared to non-musicians. The P600 evoked by an out-of-key note did not differ between formally trained and self-taught musicians, while the P600 evoked by an out-of-tune note was smaller in self-taught musicians compared to formally trained musicians. No differences were observed between the groups for the other tasks. This pattern of results suggests that music training format impacts auditory processing abilities in musical tasks; however, it is possible that these differences arose due to pre-existing factors and not due to the training itself.
Collapse
Affiliation(s)
- Benjamin Rich Zendel
- Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada.,Aging Research Centre - Newfoundland and Labrador, Grenfell Campus, Memorial University, Corner Brook, NL, Canada
| | - Emily J Alexander
- Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada.,Program in Psychology, Grenfell Campus, Memorial University, Corner Brook, NL, Canada
| |
Collapse
|
44
|
Moon S, Park J, Yang S. The Effects of Therapeutic Singing on Vocal Functions of the Elderly: A Study on Korean Elderly. J Voice 2020; 36:437.e1-437.e9. [PMID: 32680803 DOI: 10.1016/j.jvoice.2020.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/25/2020] [Accepted: 06/04/2020] [Indexed: 11/28/2022]
Abstract
This study investigated the effects of therapeutic singing as an intervention for improving the vocal functions of the elderly. Data collection for this study took place at five senior community centers in Seoul, South Korea, from August 2018 to March 2019. A total of 54 elderly with healthy voices were assigned to a therapeutic singing group, a general singing group, or a control group, using convenience sampling. The therapeutic singing intervention involved using the Alexander technique, performing oral motor and respiratory exercises, and singing participant-written songs, across 12 sessions. The general singing group sang popular and folk songs of their choice. The control group received no treatment. Using peak expiratory flow rate (PEF) and Praat analysis, the participants' vocal functions were measured before and immediately after the intervention. Vocal function was compared among the groups pre- and post-test; the therapeutic singing group showed statistically significant improvement in all vocal parameters: PEF, maximum phonation time, voice intensity (intensity), fundamental frequency (F0), jitter, shimmer, and noise-to harmonics ratio. The general singing group showed improvement only in F0, jitter, and noise-to harmonics ratio. The control group showed an overall reduction in all vocal functions, with a significant decrease in PEF and intensity, and a decrease in jitter and shimmer. Although singing is considered helpful for the voice health of the elderly, therapeutic singing, which involves posture correction and breathing exercises, is even more effective, thus proving to be a viable intervention for preventive voice care of the elderly.
Collapse
Affiliation(s)
- Soyoung Moon
- Department of Music Therapy, Graduate School of Interdisciplinary Therapy, Myongji University, Seoul, South Korea.
| | - Jiwon Park
- Department of Interdisciplinary Program Psychology Rehabilitation, Myongji University, Seoul, South Korea
| | - Sua Yang
- Department of Interdisciplinary Program Psychology Rehabilitation, Myongji University, Seoul, South Korea
| |
Collapse
|
45
|
Greenlaw KM, Puschmann S, Coffey EBJ. Decoding of Envelope vs. Fundamental Frequency During Complex Auditory Stream Segregation. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2020; 1:268-287. [PMID: 37215227 PMCID: PMC10158587 DOI: 10.1162/nol_a_00013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/25/2020] [Indexed: 05/24/2023]
Abstract
Hearing-in-noise perception is a challenging task that is critical to human function, but how the brain accomplishes it is not well understood. A candidate mechanism proposes that the neural representation of an attended auditory stream is enhanced relative to background sound via a combination of bottom-up and top-down mechanisms. To date, few studies have compared neural representation and its task-related enhancement across frequency bands that carry different auditory information, such as a sound's amplitude envelope (i.e., syllabic rate or rhythm; 1-9 Hz), and the fundamental frequency of periodic stimuli (i.e., pitch; >40 Hz). Furthermore, hearing-in-noise in the real world is frequently both messier and richer than the majority of tasks used in its study. In the present study, we use continuous sound excerpts that simultaneously offer predictive, visual, and spatial cues to help listeners separate the target from four acoustically similar simultaneously presented sound streams. We show that while both lower and higher frequency information about the entire sound stream is represented in the brain's response, the to-be-attended sound stream is strongly enhanced only in the slower, lower frequency sound representations. These results are consistent with the hypothesis that attended sound representations are strengthened progressively at higher level, later processing stages, and that the interaction of multiple brain systems can aid in this process. Our findings contribute to our understanding of auditory stream separation in difficult, naturalistic listening conditions and demonstrate that pitch and envelope information can be decoded from single-channel EEG data.
Collapse
Affiliation(s)
- Keelin M. Greenlaw
- Department of Psychology, Concordia University, Montreal, QC, Canada
- International Laboratory for Brain, Music and Sound Research (BRAMS)
- The Centre for Research on Brain, Language and Music (CRBLM)
| | | | | |
Collapse
|