1
|
Li Q, Li C, Zhang X. Research Progress on the Effects of Different Exercise Modes on the Secretion of Exerkines After Spinal Cord Injury. Cell Mol Neurobiol 2024; 44:62. [PMID: 39352588 PMCID: PMC11445308 DOI: 10.1007/s10571-024-01497-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024]
Abstract
Exercise training is a conventional treatment strategy throughout the entire treatment process for patients with spinal cord injury (SCI). Currently, exercise modalities for SCI patients primarily include aerobic exercise, endurance training, strength training, high-intensity interval training, and mind-body exercises. These exercises play a positive role in enhancing skeletal muscle function, inducing neuroprotection and regeneration, thereby influencing neural plasticity, reducing limb spasticity, and improving motor function and daily living abilities in SCI patients. However, the mechanism by which exercise training promotes functional recovery after SCI is still unclear, and there is no consensus on a unified and standardized exercise treatment plan. Different exercise methods may bring different benefits. After SCI, patients' physical activity levels decrease significantly due to factors such as motor dysfunction, which may be a key factor affecting changes in exerkines. The changes in exerkines of SCI patients caused by exercise training are an important and highly relevant and visual evaluation index, which may provide a new research direction for revealing the intrinsic mechanism by which exercise promotes functional recovery after SCI. Therefore, this article summarizes the changes in the expression of common exerkines (neurotrophic factors, inflammatory factors, myokines, bioactive peptides) after SCI, and intends to analyze the impact and role of different exercise methods on functional recovery after SCI from the perspective of exerkines mechanism. We hope to provide theoretical basis and data support for scientific exercise treatment programs after SCI.
Collapse
Affiliation(s)
- Qianxi Li
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
| | - Chenyu Li
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
| | - Xin Zhang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China.
| |
Collapse
|
2
|
Vékony RG, Tamás A, Lukács A, Ujfalusi Z, Lőrinczy D, Takács-Kollár V, Bukovics P. Exploring the Role of Neuropeptide PACAP in Cytoskeletal Function Using Spectroscopic Methods. Int J Mol Sci 2024; 25:8063. [PMID: 39125632 PMCID: PMC11311697 DOI: 10.3390/ijms25158063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
The behavior and presence of actin-regulating proteins are characteristic of various clinical diseases. Changes in these proteins significantly impact the cytoskeletal and regenerative processes underlying pathological changes. Pituitary adenylate cyclase-activating polypeptide (PACAP), a cytoprotective neuropeptide abundant in the nervous system and endocrine organs, plays a key role in neuron differentiation and migration by influencing actin. This study aims to elucidate the role of PACAP as an actin-regulating polypeptide, its effect on actin filament formation, and the underlying regulatory mechanisms. We examined PACAP27, PACAP38, and PACAP6-38, measuring their binding to actin monomers via fluorescence spectroscopy and steady-state anisotropy. Functional polymerization tests were used to track changes in fluorescent intensity over time. Unlike PACAP27, PACAP38 and PACAP6-38 significantly reduced the fluorescence emission of Alexa488-labeled actin monomers and increased their anisotropy, showing nearly identical dissociation equilibrium constants. PACAP27 showed weak binding to globular actin (G-actin), while PACAP38 and PACAP6-38 exhibited robust interactions. PACAP27 did not affect actin polymerization, but PACAP38 and PACAP6-38 accelerated actin incorporation kinetics. Fluorescence quenching experiments confirmed structural changes upon PACAP binding; however, all studied PACAP fragments exhibited the same effect. Our findings indicate that PACAP38 and PACAP6-38 strongly bind to G-actin and significantly influence actin polymerization. Further studies are needed to fully understand the biological significance of these interactions.
Collapse
Affiliation(s)
- Roland Gábor Vékony
- Department of Biophysics, Medical School, University of Pécs, 7624 Pécs, Hungary; (R.G.V.); (A.L.); (Z.U.); (D.L.); (V.T.-K.)
| | - Andrea Tamás
- Department of Anatomy, Medical School, University of Pécs, 7624 Pécs, Hungary;
| | - András Lukács
- Department of Biophysics, Medical School, University of Pécs, 7624 Pécs, Hungary; (R.G.V.); (A.L.); (Z.U.); (D.L.); (V.T.-K.)
| | - Zoltán Ujfalusi
- Department of Biophysics, Medical School, University of Pécs, 7624 Pécs, Hungary; (R.G.V.); (A.L.); (Z.U.); (D.L.); (V.T.-K.)
| | - Dénes Lőrinczy
- Department of Biophysics, Medical School, University of Pécs, 7624 Pécs, Hungary; (R.G.V.); (A.L.); (Z.U.); (D.L.); (V.T.-K.)
| | - Veronika Takács-Kollár
- Department of Biophysics, Medical School, University of Pécs, 7624 Pécs, Hungary; (R.G.V.); (A.L.); (Z.U.); (D.L.); (V.T.-K.)
| | - Péter Bukovics
- Department of Biophysics, Medical School, University of Pécs, 7624 Pécs, Hungary; (R.G.V.); (A.L.); (Z.U.); (D.L.); (V.T.-K.)
| |
Collapse
|
3
|
Maugeri G, D'Agata V. Role of pituitary adenylate cyclase-activating polypeptide in peripheral nerve regeneration: a cellular and molecular perspective. Neural Regen Res 2024; 19:1429-1430. [PMID: 38051881 PMCID: PMC10883520 DOI: 10.4103/1673-5374.387992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/02/2023] [Indexed: 12/07/2023] Open
Affiliation(s)
- Grazia Maugeri
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | |
Collapse
|
4
|
Hu R, Dun X, Singh L, Banton MC. Runx2 regulates peripheral nerve regeneration to promote Schwann cell migration and re-myelination. Neural Regen Res 2024; 19:1575-1583. [PMID: 38051902 PMCID: PMC10883509 DOI: 10.4103/1673-5374.387977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 09/16/2023] [Indexed: 12/07/2023] Open
Abstract
Abstract
JOURNAL/nrgr/04.03/01300535-202407000-00038/figure1/v/2023-11-20T171125Z/r/image-tiff
Runx2 is a major regulator of osteoblast differentiation and function; however, the role of Runx2 in peripheral nerve repair is unclear. Here, we analyzed Runx2 expression following injury and found that it was specifically up-regulated in Schwann cells. Furthermore, using Schwann cell-specific Runx2 knockout mice, we studied peripheral nerve development and regeneration and found that multiple steps in the regeneration process following sciatic nerve injury were Runx2-dependent. Changes observed in Runx2 knockout mice include increased proliferation of Schwann cells, impaired Schwann cell migration and axonal regrowth, reduced re-myelination of axons, and a block in macrophage clearance in the late stage of regeneration. Taken together, our findings indicate that Runx2 is a key regulator of Schwann cell plasticity, and therefore peripheral nerve repair. Thus, our study shows that Runx2 plays a major role in Schwann cell migration, re-myelination, and peripheral nerve functional recovery following injury.
Collapse
Affiliation(s)
- Rong Hu
- School of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xinpeng Dun
- The Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Lolita Singh
- Faculty of Health, University of Plymouth, Plymouth, UK
| | | |
Collapse
|
5
|
Mata-Pacheco V, Hernandez J, Varma N, Xu J, Sayers S, Le N, Wagner EJ. Dynamic, sex- and diet-specific pleiotropism in the PAC1 receptor-mediated regulation of arcuate proopiomelanocortin and Neuropeptide Y/Agouti related peptide neuronal excitability by anorexigenic ventromedial nucleus PACAP neurons. J Neuroendocrinol 2024; 36:e13357. [PMID: 38056947 DOI: 10.1111/jne.13357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 12/08/2023]
Abstract
This study furthers the investigation of how pituitary adenylate cyclase activating polypeptide (PACAP) and the PAC1 receptor (PAC1R) regulate the homeostatic energy balance circuitry. We hypothesized that apoptotic ablation of PACAP neurones in the hypothalamic ventromedial nucleus (VMN) would affect both energy intake and energy expenditure. We also hypothesized that selective PAC1R knockdown would impair the PACAP-induced excitation in anorexigenic proopiomelanocortin (POMC) neurones and inhibition of orexigenic neuropeptide Y (NPY)/agouti-related peptide (AgRP) neurones in the hypothalamic arcuate nucleus (ARC). The results show CASPASE-3-induced ablation of VMN PACAP neurones leads to increased energy intake and meal frequency as well as decreased energy expenditure in lean animals. The effects were more robust in obese males, whereas we saw the opposite effects in obese females. We then utilized visualized whole-cell patch clamp recordings in hypothalamic slices. PAC1R knockdown in POMC neurones diminishes the PACAP-induced depolarization, increase in firing, decreases in energy intake and meal size, as well as increases in CO2 production and O2 consumption. Similarly, the lack of expression of the PAC1R in NPY/AgRP neurones greatly attenuates the PACAP-induced hyperpolarization, suppression of firing, decreases in energy intake and meal frequency, as well as increases in energy expenditure. The PACAP response in NPY/AgRP neurones switched from predominantly inhibitory to excitatory in fasted animals. Finally, the anorexigenic effect of PACAP was potentiated when oestradiol was injected into the ARC in ovariectomized females. This study demonstrates the critical role of anorexigenic VMN PACAP neurones and the PAC1R in exciting POMC and inhibiting NPY/AgRP neurons to control homeostatic feeding.
Collapse
Affiliation(s)
- Veronica Mata-Pacheco
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California, USA
| | - Jennifer Hernandez
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| | - Nandini Varma
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| | - Jenny Xu
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| | - Sarah Sayers
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| | - Nikki Le
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| | - Edward J Wagner
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California, USA
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| |
Collapse
|
6
|
Chen G, Zheng Z, Sun H, You J, Chu J, Gao J, Qiu L, Liu X. Dedifferentiated Schwann cells promote perineural invasion mediated by the PACAP paracrine signalling in cervical cancer. J Cell Mol Med 2023; 27:3692-3705. [PMID: 37830980 PMCID: PMC10718160 DOI: 10.1111/jcmm.17897] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 10/14/2023] Open
Abstract
Perineural invasion (PNI) has emerged as a key pathological feature and be considered as a poor prognostic factor in cervical cancer. However, the underlying molecular mechanisms are largely unknown. Here, PNI status of 269 cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) samples were quantified by using whole-slide diagnostic images obtained from The Cancer Genome Atlas. Integrated analyses revealed that PNI was an indicative marker of poorer disease-free survival for CESC patients. Among the differentially expressed genes, ADCYAP1 were identified. Clinical specimens supported that high expression of PACAP (encoded by ADCYAP1) contributed to PNI in CESC. Mechanistically, PACAP, secreted from cervical cancer cells, reversed myelin differentiation of Schwann cells (SCs). Then, dedifferentiated SCs promoted PNI by producing chemokine FGF17 and by degrading extracellular matrix through secretion of Cathepsin S and MMP-12. In conclusion, this study identified PACAP was associated with PNI in cervical cancer and suggested that tumour-derived PACAP reversed myelin differentiation of SCs to aid PNI.
Collapse
Affiliation(s)
- Guoqiang Chen
- Department of Obstetrics and GynecologySecond Affiliated Hospital of Naval Medical UniversityShanghaiChina
- Department of Gynecology, The People’s Hospital of Baoan ShenzhenThe Second Affiliated Hospital of Shenzhen UniversityShenzhenChina
| | - Zhen Zheng
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Hao Sun
- Department of Obstetrics and GynecologySecond Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Jiahao You
- Department of Obstetrics and GynecologySecond Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Jing Chu
- Department of Obstetrics and GynecologySecond Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Jinghai Gao
- Department of Obstetrics and GynecologySecond Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Lei Qiu
- School of PharmacyNaval Medical UniversityShanghaiChina
| | - Xiaojun Liu
- Department of Obstetrics and GynecologySecond Affiliated Hospital of Naval Medical UniversityShanghaiChina
| |
Collapse
|
7
|
Broome ST, Mandwie M, Gorrie CA, Musumeci G, Marzagalli R, Castorina A. Early Alterations of PACAP and VIP Expression in the Female Rat Brain Following Spinal Cord Injury. J Mol Neurosci 2023; 73:724-737. [PMID: 37646964 PMCID: PMC10694121 DOI: 10.1007/s12031-023-02151-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
Previous evidence shows that rapid changes occur in the brain following spinal cord injury (SCI). Here, we interrogated the expression of the neuropeptides pituitary adenylyl cyclase-activating peptide (PACAP), vasoactive intestinal peptides (VIP), and their binding receptors in the rat brain 24 h following SCI. Female Sprague-Dawley rats underwent thoracic laminectomy; half of the rats received a mild contusion injury at the level of the T10 vertebrate (SCI group); the other half underwent sham surgery (sham group). Twenty-four hours post-surgery, the hypothalamus, thalamus, amygdala, hippocampus (dorsal and ventral), prefrontal cortex, and periaqueductal gray were collected. PACAP, VIP, PAC1, VPAC1, and VPAC2 mRNA and protein levels were measured by real-time quantitative polymerase chain reaction and Western blot. In SCI rats, PACAP expression was increased in the hypothalamus (104-141% vs sham) and amygdala (138-350%), but downregulated in the thalamus (35-95%) and periaqueductal gray (58-68%). VIP expression was increased only in the thalamus (175-385%), with a reduction in the amygdala (51-68%), hippocampus (40-75%), and periaqueductal gray (74-76%). The expression of the PAC1 receptor was the least disturbed by SCI, with decrease expression in the ventral hippocampus (63-68%) only. The expression levels of VPAC1 and VPAC2 receptors were globally reduced, with more prominent reductions of VPAC1 vs VPAC2 in the amygdala (21-70%) and ventral hippocampus (72-75%). In addition, VPAC1 downregulation also extended to the dorsal hippocampus (69-70%). These findings demonstrate that as early as 24 h post-SCI, there are region-specific disruptions of PACAP, VIP, and related receptor transcript and protein levels in supraspinal regions controlling higher cognitive functions.
Collapse
MESH Headings
- Female
- Rats
- Animals
- Pituitary Adenylate Cyclase-Activating Polypeptide/genetics
- Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism
- Rats, Sprague-Dawley
- Receptors, Pituitary Hormone/genetics
- Receptors, Pituitary Hormone/metabolism
- Vasoactive Intestinal Peptide/genetics
- Vasoactive Intestinal Peptide/metabolism
- Receptors, Vasoactive Intestinal Polypeptide, Type I/genetics
- Receptors, Vasoactive Intestinal Polypeptide, Type I/metabolism
- Receptors, Vasoactive Intestinal Peptide, Type II/genetics
- Receptors, Vasoactive Intestinal Peptide, Type II/metabolism
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I/genetics
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I/metabolism
- Spinal Cord Injuries/metabolism
- Brain/metabolism
Collapse
Affiliation(s)
- Sarah Thomas Broome
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Science, Faculty of Science, University of Technology Sydney, PO Box 123 Broadway, Sydney, NSW, 2007, Australia
| | - Mawj Mandwie
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Science, Faculty of Science, University of Technology Sydney, PO Box 123 Broadway, Sydney, NSW, 2007, Australia
| | - Catherine A Gorrie
- Neural Injury Research Unit, School of Life Science, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, Catania, Italy
| | - Rubina Marzagalli
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Science, Faculty of Science, University of Technology Sydney, PO Box 123 Broadway, Sydney, NSW, 2007, Australia
| | - Alessandro Castorina
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Science, Faculty of Science, University of Technology Sydney, PO Box 123 Broadway, Sydney, NSW, 2007, Australia.
| |
Collapse
|
8
|
Chen SH, Wu CC, Tseng WL, Lu FI, Liu YH, Lin SP, Lin SC, Hsueh YY. Adipose-derived stem cells modulate neuroinflammation and improve functional recovery in chronic constriction injury of the rat sciatic nerve. Front Neurosci 2023; 17:1172740. [PMID: 37457010 PMCID: PMC10339833 DOI: 10.3389/fnins.2023.1172740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Compressive neuropathy, a common chronic traumatic injury of peripheral nerves, leads to variable impairment in sensory and motor function. Clinical symptoms persist in a significant portion of patients despite decompression, with muscle atrophy and persistent neuropathic pain affecting 10%-25% of cases. Excessive inflammation and immune cell infiltration in the injured nerve hinder axon regeneration and functional recovery. Although adipose-derived stem cells (ASCs) have demonstrated neural regeneration and immunomodulatory potential, their specific effects on compressive neuropathy are still unclear. Methods We conducted modified CCI models on adult male Sprague-Dawley rats to induce irreversible neuropathic pain and muscle atrophy in the sciatic nerve. Intraneural ASC injection and nerve decompression were performed. Behavioral analysis, muscle examination, electrophysiological evaluation, and immunofluorescent examination of the injured nerve and associated DRG were conducted to explore axon regeneration, neuroinflammation, and the modulation of inflammatory gene expression. Transplanted ASCs were tracked to investigate potential beneficial mechanisms on the local nerve and DRG. Results Persistent neuropathic pain was induced by chronic constriction of the rat sciatic nerve. Local ASC treatment has demonstrated robust beneficial outcomes, including the alleviation of mechanical allodynia, improvement of gait, regeneration of muscle fibers, and electrophysiological recovery. In addition, locally transplanted ASCs facilitated axon remyelination, alleviated neuroinflammation, and reduced inflammatory cell infiltration of the injured nerve and associated dorsal root ganglion (DRG). Trafficking of the transplanted ASC preserved viability and phenotype less than 7 days but contributed to robust immunomodulatory regulation of inflammatory gene expression in both the injured nerve and DRG. Discussion Locally transplanted ASC on compressed nerve improve sensory and motor recoveries from irreversible chronic constriction injury of rat sciatic nerve via alleviation of both local and remote neuroinflammation, suggesting the promising role of adjuvant ASC therapies for clinical compressive neuropathy.
Collapse
Affiliation(s)
- Szu-Han Chen
- Division of Plastic and Reconstructive Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Cell Therapy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- International Research Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Ching Wu
- International Research Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wan-Ling Tseng
- Division of Plastic and Reconstructive Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Fu-I Lu
- Department of Biotechnology and Bioindustry Science, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
- The integrative Evolutionary Galliform Genomics (iEGG) and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Ya-Hsin Liu
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Shau-Ping Lin
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Sheng-Che Lin
- Division of Plastic Surgery, Department of Surgery, An-Nan Hospital, China Medical University, Tainan, Taiwan
| | - Yuan-Yu Hsueh
- Division of Plastic and Reconstructive Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Cell Therapy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- International Research Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
9
|
Ago Y, Van C, Condro MC, Hrncir H, Diep AL, Rajbhandari AK, Fanselow MS, Hashimoto H, MacKenzie-Graham AJ, Waschek JA. Overexpression of VIPR2 in mice results in microencephaly with paradoxical increased white matter volume. Exp Neurol 2023; 362:114339. [PMID: 36717013 DOI: 10.1016/j.expneurol.2023.114339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 01/10/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023]
Abstract
Large scale studies in populations of European and Han Chinese ancestry found a series of rare gain-of-function microduplications in VIPR2, encoding VPAC2, a receptor that binds vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide with high affinity, that were associated with an up to 13-fold increased risk for schizophrenia. To address how VPAC2 receptor overactivity might affect brain development, we used a well-characterized Nestin-Cre mouse strain and a knock-in approach to overexpress human VPAC2 in the central nervous system. Mice that overexpressed VPAC2 were found to exhibit a significant reduction in brain weight. Magnetic resonance imaging analysis confirmed a decrease in brain size, a specific reduction in the hippocampus grey matter volume and a paradoxical increase in whole-brain white matter volume. Sex-specific changes in behavior such as impaired prepulse inhibition and contextual fear memory were observed in VPAC2 overexpressing mice. The data indicate that the VPAC2 receptor may play a critical role in brain morphogenesis and suggest that overactive VPAC2 signaling during development plays a mechanistic role in some forms of schizophrenia.
Collapse
Affiliation(s)
- Yukio Ago
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan; Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima 734-8553, Japan.
| | - Christina Van
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Interdepartmental Doctoral Program, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Michael C Condro
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Haley Hrncir
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Anna L Diep
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Abha K Rajbhandari
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Psychology, Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA; Staglin Center for Brain and Behavioral Health, University of California Los Angeles, Los Angeles, CA 90095, USA; Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael S Fanselow
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Psychology, Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA; Staglin Center for Brain and Behavioral Health, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan; Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka 565-0871, Japan; Division of Bioscience, Institute for Datability Science, Osaka University, Suita, Osaka 565-0871, Japan; Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan; Department of Molecular Pharmaceutical Science, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Allan J MacKenzie-Graham
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - James A Waschek
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
10
|
Hanč P, Messou MA, Wang Y, von Andrian UH. Control of myeloid cell functions by nociceptors. Front Immunol 2023; 14:1127571. [PMID: 37006298 PMCID: PMC10064072 DOI: 10.3389/fimmu.2023.1127571] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/23/2023] [Indexed: 03/19/2023] Open
Abstract
The immune system has evolved to protect the host from infectious agents, parasites, and tumor growth, and to ensure the maintenance of homeostasis. Similarly, the primary function of the somatosensory branch of the peripheral nervous system is to collect and interpret sensory information about the environment, allowing the organism to react to or avoid situations that could otherwise have deleterious effects. Consequently, a teleological argument can be made that it is of advantage for the two systems to cooperate and form an “integrated defense system” that benefits from the unique strengths of both subsystems. Indeed, nociceptors, sensory neurons that detect noxious stimuli and elicit the sensation of pain or itch, exhibit potent immunomodulatory capabilities. Depending on the context and the cellular identity of their communication partners, nociceptors can play both pro- or anti-inflammatory roles, promote tissue repair or aggravate inflammatory damage, improve resistance to pathogens or impair their clearance. In light of such variability, it is not surprising that the full extent of interactions between nociceptors and the immune system remains to be established. Nonetheless, the field of peripheral neuroimmunology is advancing at a rapid pace, and general rules that appear to govern the outcomes of such neuroimmune interactions are beginning to emerge. Thus, in this review, we summarize our current understanding of the interaction between nociceptors and, specifically, the myeloid cells of the innate immune system, while pointing out some of the outstanding questions and unresolved controversies in the field. We focus on such interactions within the densely innervated barrier tissues, which can serve as points of entry for infectious agents and, where known, highlight the molecular mechanisms underlying these interactions.
Collapse
Affiliation(s)
- Pavel Hanč
- Department of Immunology, Harvard Medical School, Boston, MA, United States
- The Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
- *Correspondence: Pavel Hanč, ; Ulrich H. von Andrian,
| | - Marie-Angèle Messou
- Department of Immunology, Harvard Medical School, Boston, MA, United States
- The Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Yidi Wang
- Department of Immunology, Harvard Medical School, Boston, MA, United States
- The Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Ulrich H. von Andrian
- Department of Immunology, Harvard Medical School, Boston, MA, United States
- The Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
- *Correspondence: Pavel Hanč, ; Ulrich H. von Andrian,
| |
Collapse
|
11
|
Zhang Y, Xu L, Li X, Chen Z, Chen J, Zhang T, Gu X, Yang J. Deciphering the dynamic niches and regeneration-associated transcriptional program of motoneurons following peripheral nerve injury. iScience 2022; 25:104917. [PMID: 36051182 PMCID: PMC9424597 DOI: 10.1016/j.isci.2022.104917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/10/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
Robust axon regeneration of motoneurons (MNs) occurs in rodent models upon peripheral nerve injury (PNI). However, genome-wide dynamic molecules and permissive microenvironment following insult in MNs remain largely unknown. Here, we firstly tackled by high-coverage and massive sequencing of laser-dissected individual ChAT+ cells to uncover molecules and pro-regenerative programs of MNs from injury to the regenerating phase after PNI. "Injured" populations at 1d∼7d were well distinguished and three response phases were well defined by elucidating with several clues (Gap43, etc). We found remarkable changes of genes expressed by injured motoneurons to activate and enhance intrinsic axon regrowth or crosstalk with other cellular or non-cellular counterpart in the activated regenerative microenvironment, specifically microglia/macrophage. We also identified an injury and regeneration-associated module and critical regulators including core transcription factors (Atf3, Arid5a, Klf6, Klf7, Jun, Stat3, and Myc). This study provides a vital resource and critical molecules for studying neural repair of axotomized motoneurons.
Collapse
Affiliation(s)
- Yu Zhang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Lian Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, China
| | - Xiaodi Li
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Zhifeng Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, China
| | - Jing Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, China
| | - Tao Zhang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Xiaosong Gu
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210000, China.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, China
| | - Jian Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, China
| |
Collapse
|
12
|
Perner C, Krüger E. Endoplasmic Reticulum Stress and Its Role in Homeostasis and Immunity of Central and Peripheral Neurons. Front Immunol 2022; 13:859703. [PMID: 35572517 PMCID: PMC9092946 DOI: 10.3389/fimmu.2022.859703] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
Neuronal cells are specialists for rapid transfer and translation of information. Their electrical properties relay on a precise regulation of ion levels while their communication via neurotransmitters and neuropeptides depends on a high protein and lipid turnover. The endoplasmic Reticulum (ER) is fundamental to provide these necessary requirements for optimal neuronal function. Accumulation of misfolded proteins in the ER lumen, reactive oxygen species and exogenous stimulants like infections, chemical irritants and mechanical harm can induce ER stress, often followed by an ER stress response to reinstate cellular homeostasis. Imbedded between glial-, endothelial-, stromal-, and immune cells neurons are constantly in communication and influenced by their local environment. In this review, we discuss concepts of tissue homeostasis and innate immunity in the central and peripheral nervous system with a focus on its influence on ER stress, the unfolded protein response, and implications for health and disease.
Collapse
Affiliation(s)
- Caroline Perner
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Elke Krüger
- Institute of Medical Biochemistry and Molecular Biology, Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
13
|
Jansen MI, Thomas Broome S, Castorina A. Exploring the Pro-Phagocytic and Anti-Inflammatory Functions of PACAP and VIP in Microglia: Implications for Multiple Sclerosis. Int J Mol Sci 2022; 23:ijms23094788. [PMID: 35563181 PMCID: PMC9104531 DOI: 10.3390/ijms23094788] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic neuroinflammatory and demyelinating disease of the central nervous system (CNS), characterised by the infiltration of peripheral immune cells, multifocal white-matter lesions, and neurodegeneration. In recent years, microglia have emerged as key contributors to MS pathology, acting as scavengers of toxic myelin/cell debris and modulating the inflammatory microenvironment to promote myelin repair. In this review, we explore the role of two neuropeptides, pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP), as important regulators of microglial functioning during demyelination, myelin phagocytosis, and remyelination, emphasising the potential of these neuropeptides as therapeutic targets for the treatment of MS.
Collapse
|
14
|
Le N, Hernandez J, Gastelum C, Perez L, Vahrson I, Sayers S, Wagner EJ. Pituitary Adenylate Cyclase Activating Polypeptide Inhibits A 10 Dopamine Neurons and Suppresses the Binge-like Consumption of Palatable Food. Neuroscience 2021; 478:49-64. [PMID: 34597709 DOI: 10.1016/j.neuroscience.2021.09.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 10/20/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) binds to PACAP-specific (PAC1) receptors in multiple hypothalamic areas, especially those regulating energy balance. PACAP neurons in the ventromedial nucleus (VMN) exert anorexigenic effects within the homeostatic energy balance circuitry. Since PACAP can also reduce the consumption of palatable food, we tested the hypothesis that VMN PACAP neurons project to the ventral tegmental area (VTA) to inhibit A10 dopamine neurons via PAC1 receptors and KATP channels, and thereby suppress binge-like consumption. We performed electrophysiological recordings in mesencephalic slices from male PACAP-Cre and tyrosine hydroxylase (TH)-Cre mice. Initially, we injected PACAP (30 pmol) into the VTA, where it suppressed binge intake in wildtype male but not female mice. Subsequent tract tracing studies uncovered projections of VMN PACAP neurons to the VTA. Optogenetic stimulation of VMN PACAP neurons in voltage clamp induced an outward current and increase in conductance in VTA neurons, and a hyperpolarization and decrease in firing in current clamp. These effects were markedly attenuated by the KATP channel blocker tolbutamide (100 μM) and PAC1 receptor antagonist PACAP6-38 (200 nM). In recordings from A10 dopamine neurons in TH-Cre mice, we replicated the outward current by perfusing PACAP1-38 (100 nM). This response was again completely blocked by tolbutamide and PACAP6-38, and associated with a hyperpolarization and decrease in firing. These findings demonstrate that PACAP activates PAC1 receptors and KATP channels to inhibit A10 dopamine neurons and sex-dependently suppress binge-like consumption. Accordingly, they advance our understanding of how PACAP regulates energy homeostasis via the hedonic energy balance circuitry.
Collapse
Affiliation(s)
- Nikki Le
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Jennifer Hernandez
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Cassandra Gastelum
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Lynnea Perez
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Isabella Vahrson
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Sarah Sayers
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Edward J Wagner
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA; College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, USA.
| |
Collapse
|
15
|
Protective Effects of PACAP in a Rat Model of Diabetic Neuropathy. Int J Mol Sci 2021; 22:ijms221910691. [PMID: 34639032 PMCID: PMC8509403 DOI: 10.3390/ijms221910691] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 02/07/2023] Open
Abstract
Pituitary adenylate cyclase-activating peptide (PACAP) is a neuropeptide with a widespread occurrence and diverse effects. PACAP has well-documented neuro- and cytoprotective effects, proven in numerous studies. Among others, PACAP is protective in models of diabetes-associated diseases, such as diabetic nephropathy and retinopathy. As the neuropeptide has strong neurotrophic and neuroprotective actions, we aimed at investigating the effects of PACAP in a rat model of streptozotocin-induced diabetic neuropathy, another common complication of diabetes. Rats were treated with PACAP1-38 every second day for 8 weeks starting simultaneously with the streptozotocin injection. Nerve fiber morphology was examined with electron microscopy, chronic neuronal activation in pain processing centers was studied with FosB immunohistochemistry, and functionality was assessed by determining the mechanical nociceptive threshold. PACAP treatment did not alter body weight or blood glucose levels during the 8-week observation period. However, PACAP attenuated the mechanical hyperalgesia, compared to vehicle-treated diabetic animals, and it markedly reduced the morphological signs characteristic for neuropathy: axon–myelin separation, mitochondrial fission, unmyelinated fiber atrophy, and basement membrane thickening of endoneurial vessels. Furthermore, PACAP attenuated the increase in FosB immunoreactivity in the dorsal spinal horn and periaqueductal grey matter. Our results show that PACAP is a promising therapeutic agent in diabetes-associated complications, including diabetic neuropathy.
Collapse
|
16
|
Wang T, Li Y, Guo M, Dong X, Liao M, Du M, Wang X, Yin H, Yan H. Exosome-Mediated Delivery of the Neuroprotective Peptide PACAP38 Promotes Retinal Ganglion Cell Survival and Axon Regeneration in Rats With Traumatic Optic Neuropathy. Front Cell Dev Biol 2021; 9:659783. [PMID: 33889576 PMCID: PMC8055942 DOI: 10.3389/fcell.2021.659783] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Traumatic optic neuropathy (TON) refers to optic nerve damage caused by trauma, leading to partial or complete loss of vision. The primary treatment options, such as hormonal therapy and surgery, have limited efficacy. Pituitary adenylate cyclase-activating polypeptide 38 (PACAP38), a functional endogenous neuroprotective peptide, has emerged as a promising therapeutic agent. In this study, we used rat retinal ganglion cell (RGC) exosomes as nanosized vesicles for the delivery of PACAP38 loaded via the exosomal anchor peptide CP05 (EXO PACAP38 ). EXO PACAP38 showed greater uptake efficiency in vitro and in vivo than PACAP38. The results showed that EXO PACAP38 significantly enhanced the RGC survival rate and retinal nerve fiber layer thickness in a rat TON model. Moreover, EXO PACAP38 significantly promoted axon regeneration and optic nerve function after injury. These findings indicate that EXO PACAP38 can be used as a treatment option and may have therapeutic implications for patients with TON.
Collapse
Affiliation(s)
- Tian Wang
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Yiming Li
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Miao Guo
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Xue Dong
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Inflammation Biology, Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Mengyu Liao
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Mei Du
- Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Inflammation Biology, Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaohong Wang
- Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Inflammation Biology, Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Haifang Yin
- Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Cell Biology, Tianjin Medical University, Tianjin, China
| | - Hua Yan
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
17
|
Pituitary Adenylate Cyclase-Activating Polypeptide: A Potent Therapeutic Agent in Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10030354. [PMID: 33653014 PMCID: PMC7996859 DOI: 10.3390/antiox10030354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/13/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Stroke is a life-threatening condition that is characterized by secondary cell death processes that occur after the initial disruption of blood flow to the brain. The inability of endogenous repair mechanisms to sufficiently support functional recovery in stroke patients and the inadequate treatment options available are cause for concern. The pathology behind oxidative stress in stroke is of particular interest due to its detrimental effects on the brain. The oxidative stress caused by ischemic stroke overwhelms the neutralization capacity of the body's endogenous antioxidant system, which leads to an overproduction of reactive oxygen species (ROS) and reactive nitrogen species (RNS) and eventually results in cell death. The overproduction of ROS compromises the functional and structural integrity of brain tissue. Therefore, it is essential to investigate the mechanisms involved in oxidative stress to help obtain adequate treatment options for stroke. Here, we focus on the latest preclinical research that details the mechanisms behind secondary cell death processes that cause many central nervous system (CNS) disorders, as well as research that relates to how the neuroprotective molecular mechanisms of pituitary adenylate cyclase-activating polypeptides (PACAPs) could make these molecules an ideal candidate for the treatment of stroke.
Collapse
|
18
|
Chang R, Hernandez J, Gastelum C, Guadagno K, Perez L, Wagner EJ. Pituitary Adenylate Cyclase-Activating Polypeptide Excites Proopiomelanocortin Neurons: Implications for the Regulation of Energy Homeostasis. Neuroendocrinology 2021; 111:45-69. [PMID: 32028278 DOI: 10.1159/000506367] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/30/2020] [Indexed: 11/19/2022]
Abstract
OBJECTIVE We examined whether pituitary adenylate cyclase-activating polypeptide (PACAP) excites proopiomelanocortin (POMC) neurons via PAC1 receptor mediation and transient receptor potential cation (TRPC) channel activation. METHODS Electrophysiological recordings were done in slices from both intact male and ovariectomized (OVX) female PACAP-Cre mice and eGFP-POMC mice. RESULTS In recordings from POMC neurons in eGFP-POMC mice, PACAP induced a robust inward current and increase in conductance in voltage clamp, and a depolarization and increase in firing in current clamp. These postsynaptic actions were abolished by inhibitors of the PAC1 receptor, TRPC channels, phospholipase C, phosphatidylinositol-3-kinase, and protein kinase C. Estradiol augmented the PACAP-induced inward current, depolarization, and increased firing, which was abrogated by estrogen receptor (ER) antagonists. In optogenetic recordings from POMC neurons in PACAP-Cre mice, high-frequency photostimulation induced inward currents, depolarizations, and increased firing that were significantly enhanced by Gq-coupled membrane ER signaling in an ER antagonist-sensitive manner. Importantly, the PACAP-induced excitation of POMC neurons was notably reduced in obese, high-fat (HFD)-fed males. In vivo experiments revealed that intra-arcuate nucleus (ARC) PACAP as well as chemogenetic and optogenetic stimulation of ventromedial nucleus (VMN) PACAP neurons produced a significant decrease in energy intake accompanied by an increase in energy expenditure, effects blunted by HFD in males and partially potentiated by estradiol in OVX females. CONCLUSIONS These findings reveal that the PACAP-induced activation of PAC1 receptor and TRPC5 channels at VMN PACAP/ARC POMC synapses is potentiated by estradiol and attenuated under conditions of diet-induced obesity/insulin resistance. As such, they advance our understanding of how PACAP regulates the homeostatic energy balance circuitry under normal and pathophysiological circumstances.
Collapse
Affiliation(s)
- Rachel Chang
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California, USA
| | - Jennifer Hernandez
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| | - Cassandra Gastelum
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California, USA
| | - Kaitlyn Guadagno
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| | - Lynnea Perez
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California, USA
| | - Edward J Wagner
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California, USA,
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA,
| |
Collapse
|
19
|
Baskozos G, Sandy-Hindmarch O, Clark AJ, Windsor K, Karlsson P, Weir GA, McDermott LA, Burchall J, Wiberg A, Furniss D, Bennett DLH, Schmid AB. Molecular and cellular correlates of human nerve regeneration: ADCYAP1/PACAP enhance nerve outgrowth. Brain 2020; 143:2009-2026. [PMID: 32651949 PMCID: PMC7462094 DOI: 10.1093/brain/awaa163] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 03/27/2020] [Accepted: 04/02/2020] [Indexed: 12/18/2022] Open
Abstract
We only have a rudimentary understanding of the molecular and cellular determinants of nerve regeneration and neuropathic pain in humans. This cohort study uses the most common entrapment neuropathy (carpal tunnel syndrome) as a human model system to prospectively evaluate the cellular and molecular correlates of neural regeneration and its relationship with clinical recovery. In 60 patients undergoing carpal tunnel surgery [36 female, mean age 62.5 (standard deviation 12.2) years], we used quantitative sensory testing and nerve conduction studies to evaluate the function of large and small fibres before and 6 months after surgery. Clinical recovery was assessed with the global rating of change scale and Boston Carpal Tunnel Questionnaire. Twenty healthy participants provided normative data [14 female, mean age 58.0 (standard deviation 12.9) years]. At 6 months post-surgery, we noted significant recovery of median nerve neurophysiological parameters (P < 0.0001) and improvements in quantitative sensory testing measures of both small and large nerve fibre function (P < 0.002). Serial biopsies revealed a partial recovery of intraepidermal nerve fibre density [fibres/mm epidermis pre: 4.20 (2.83), post: 5.35 (3.34), P = 0.001], whose extent correlated with symptom improvement (r = 0.389, P = 0.001). In myelinated afferents, nodal length increased postoperatively [pre: 2.03 (0.82), post: 3.03 (1.23), P < 0.0001] suggesting that this is an adaptive phenomenon. Transcriptional profiling of the skin revealed 31 differentially expressed genes following decompression, with ADCYAP1 (encoding pituitary adenylate cyclase activating peptide, PACAP) being the most strongly upregulated (log2 fold-change 1.87, P = 0.0001) and its expression was associated with recovery of intraepidermal nerve fibres. We found that human induced pluripotent stem cell-derived sensory neurons expressed the receptor for PACAP and that this peptide could significantly enhance axon outgrowth in a dose-dependent manner in vitro [neurite length PACAP 1065.0 µm (285.5), vehicle 570.9 μm (181.8), P = 0.003]. In conclusion, carpal tunnel release is associated with significant cutaneous reinnervation, which correlates with the degree of functional improvement and is associated with a transcriptional programme relating to morphogenesis and inflammatory processes. The most highly dysregulated gene ADCYAP1 (encoding PACAP) was associated with reinnervation and, given that this peptide signals through G-protein coupled receptors, this signalling pathway provides an interesting therapeutic target for human sensory nerve regeneration.
Collapse
Affiliation(s)
- Georgios Baskozos
- Nuffield Department of Clinical Neurosciences, The University of Oxford, Oxford, UK
| | | | - Alex J Clark
- Nuffield Department of Clinical Neurosciences, The University of Oxford, Oxford, UK
| | - Katherine Windsor
- Nuffield Department of Clinical Neurosciences, The University of Oxford, Oxford, UK
| | - Pall Karlsson
- Department of Clinical Medicine, The Danish Pain Research Center, Aarhus, Denmark
| | - Greg A Weir
- Nuffield Department of Clinical Neurosciences, The University of Oxford, Oxford, UK.,Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Lucy A McDermott
- Nuffield Department of Clinical Neurosciences, The University of Oxford, Oxford, UK
| | - Joanna Burchall
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, The University of Oxford, Oxford, UK
| | - Akira Wiberg
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, The University of Oxford, Oxford, UK
| | - Dominic Furniss
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, The University of Oxford, Oxford, UK
| | - David L H Bennett
- Nuffield Department of Clinical Neurosciences, The University of Oxford, Oxford, UK
| | - Annina B Schmid
- Nuffield Department of Clinical Neurosciences, The University of Oxford, Oxford, UK
| |
Collapse
|
20
|
Effects of Pacap on Schwann Cells: Focus on Nerve Injury. Int J Mol Sci 2020; 21:ijms21218233. [PMID: 33153152 PMCID: PMC7663204 DOI: 10.3390/ijms21218233] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/23/2020] [Accepted: 11/02/2020] [Indexed: 12/27/2022] Open
Abstract
Schwann cells, the most abundant glial cells of the peripheral nervous system, represent the key players able to supply extracellular microenvironment for axonal regrowth and restoration of myelin sheaths on regenerating axons. Following nerve injury, Schwann cells respond adaptively to damage by acquiring a new phenotype. In particular, some of them localize in the distal stump to form the Bungner band, a regeneration track in the distal site of the injured nerve, whereas others produce cytokines involved in recruitment of macrophages infiltrating into the nerve damaged area for axonal and myelin debris clearance. Several neurotrophic factors, including pituitary adenylyl cyclase-activating peptide (PACAP), promote survival and axonal elongation of injured neurons. The present review summarizes the evidence existing in the literature demonstrating the autocrine and/or paracrine action exerted by PACAP to promote remyelination and ameliorate the peripheral nerve inflammatory response following nerve injury.
Collapse
|
21
|
Maugeri G, D'Amico AG, Morello G, Reglodi D, Cavallaro S, D'Agata V. Differential Vulnerability of Oculomotor Versus Hypoglossal Nucleus During ALS: Involvement of PACAP. Front Neurosci 2020; 14:805. [PMID: 32848572 PMCID: PMC7432287 DOI: 10.3389/fnins.2020.00805] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive multifactorial disease characterized by the loss of motor neurons (MNs). Not all MNs undergo degeneration: neurons of the oculomotor nucleus, which regulate eye movements, are less vulnerable compared to hypoglossal nucleus MNs. Several molecular studies have been performed to understand the different vulnerability of these MNs. By analyzing postmortem samples from ALS patients to other unrelated decedents, the differential genomic pattern between the two nuclei has been profiled. Among identified genes, adenylate cyclase activating polypeptide 1 (ADCYAP1) gene, encoding for pituitary adenylate cyclase-activating polypeptide (PACAP), was found significantly up-regulated in the oculomotor versus hypoglossal nucleus suggesting that it could play a trophic effect on MNs in ALS. In the present review, some aspects regarding the different vulnerability of oculomotor and hypoglossal nucleus to degeneration will be summarized. The distribution and potential role of PACAP on these MNs as studied largely in an animal model of ALS compared to controls, will be discussed.
Collapse
Affiliation(s)
- Grazia Maugeri
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Sciences, University of Catania, Catania, Italy
| | | | - Giovanna Morello
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), Catania, Italy
| | - Dora Reglodi
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Sebastiano Cavallaro
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), Catania, Italy
| | - Velia D'Agata
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Sciences, University of Catania, Catania, Italy
| |
Collapse
|
22
|
Rytel L, Gonkowski S. The Influence of Bisphenol a on the Nitrergic Nervous Structures in the Domestic Porcine Uterus. Int J Mol Sci 2020; 21:E4543. [PMID: 32604714 PMCID: PMC7353066 DOI: 10.3390/ijms21124543] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/21/2022] Open
Abstract
Bisphenol A (BPA) is one of the most common environmental pollutants among endocrine disruptors. Due to its similarity to estrogen, BPA may affect estrogen receptors and show adverse effects on many internal organs. The reproductive system is particularly vulnerable to the impact of BPA, but knowledge about BPA-induced changes in the innervation of the uterus is relatively scarce. Therefore, this study aimed to investigate the influence of various doses of BPA on nitrergic nerves supplying the uterus with the double immunofluorescence method. It has been shown that even low doses of BPA caused an increase in the number of nitrergic nerves in the uterine wall and changed their neurochemical characterization. During the present study, changes in the number of nitrergic nerves simultaneously immunoreactive to substance P, vasoactive intestinal polypeptide, pituitary adenylate cyclase-activating peptide, and/or cocaine- and amphetamine-regulated transcript were found under the influence of BPA. The obtained results strongly suggest that nitrergic nerves in the uterine wall participate in adaptive and/or protective processes aimed at homeostasis maintenance in the uterine activity under the impact of BPA.
Collapse
Affiliation(s)
- Liliana Rytel
- Department of Internal Disease with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury, Street Oczapowskiego 14, 10-719 Olsztyn, Poland
| | - Slawomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Street Oczapowskiego 14, 10-719 Olsztyn, Poland;
| |
Collapse
|