1
|
Li B, Qu Z, Wu W, Wang W. Genotypic and clinical phenotypic analysis of DEPDC5 gene mutations. Neurogenetics 2025; 26:36. [PMID: 40100487 DOI: 10.1007/s10048-025-00818-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 03/10/2025] [Indexed: 03/20/2025]
Abstract
Mutations in the DEPDC5 gene are inherited in an autosomal dominant manner and can lead to various clinical phenotypes, including focal seizures. While numerous case reports on DEPDC5 mutations exist, functional validation studies remain scarce. We analyzed seven cases of epilepsy or developmental disorders caused by DEPDC5 mutations, summarizing their clinical manifestations and conducting genetic analysis of the mutation sites. The age of onset in the seven patients ranged from 2 months to 4 years. Six mutation sites were identified, including three nonsense mutations: c.1443del (p.C481X), c.2512 C > T (p.R838X), and c.2620 C > T (p.R874X); one missense mutation: c.1140 C > A (p.F380L); and two splice-site mutations: c.2802-13 C > G (splicing) and c.4034-2 A > G (splicing). Among these, c.2512 C > T (p.R838X) and c.2620 C > T (p.R874X) had been previously reported, while the remaining mutations were novel. Minigene experiments confirmed that the c.4034-2 A > G mutation resulted in a slightly truncated protein.Focal seizures were the predominant symptom in six cases. Among the four patients with nonsense mutations, three (Cases 2, 4, and 5) exhibited drug-resistant epilepsy. Four out of seven patients responded effectively to lacosamide treatment. DEPDC5 mutations can cause focal seizures, with truncating mutations associated with more severe symptoms. Lacosamide may offer better therapeutic outcomes. The intronic mutation c.463 + 4 A > G (splicing) led to protein truncation and was determined to be pathogenic.
Collapse
Affiliation(s)
- Baoguang Li
- Graduate School of Hebei Medical University, Shijiangzhuang, China
- Department of Neurology, Hebei Children's Hospital Affiliated to Hebei Medical University, Shijiangzhuang, China
| | - Zhenzhen Qu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiangzhuang, China
| | - Wenjuan Wu
- Department of Neurology, Hebei Children's Hospital Affiliated to Hebei Medical University, Shijiangzhuang, China
- Hebei Provincial Key Laboratory of pediatric Epilepsy and Neurological Diseases, Shijiangzhuang, China
| | - Weiping Wang
- Graduate School of Hebei Medical University, Shijiangzhuang, China.
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiangzhuang, China.
| |
Collapse
|
2
|
He YL, Ye YC, Wang PY, Liang XY, Gu YJ, Zhang SQ, Han DQ, Chi Q, Liu WH, Zhou P, Zhai QX, Li BM, Yi YH, Luo S, Meng H. CCDC22 variants caused X-linked focal epilepsy and focal cortical dysplasia. Seizure 2024; 123:1-8. [PMID: 39426154 DOI: 10.1016/j.seizure.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/09/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND The CCDC22 gene plays vital roles in regulating the NF-κB pathway, an essential pathway for neuroinflammation, neurodevelopment, and epileptogenesis. Previously, variants in CCDC22 were reported to be associated with intellectual disability. This study aimed to explore the association between CCDC22 and epilepsy. METHODS Trios-based whole-exome sequencing (WES) was performed in a cohort of patients with epilepsy of unknown cause recruited from the China Epilepsy Gene 1.0 Project. Damaging effects of variants were analysed using protein modelling. RESULTS Hemizygous missense CCDC22 variants were identified in three unrelated cases. These variants had no hemizygous frequencies in controls. All missense variants identified in this study were predicted to be "damaging" by multiple in silico tools and to alter the hydrogen bonds with surrounding residues and/or protein stability. The three patients presented with focal epilepsy of varying severity, including one with refractory seizures and focal cortical dysplasia (FCD) and two with seizures responding to antiseizure medicine. Notably, the variant associated with the severe phenotype was located in the coiled-coil domain and predicted to alter hydrogen bonding and protein stability, whereas the two variants associated with mild epilepsy were located outside functional domains and had moderate molecular alterations. Analysis of spatiotemporal expression indicated that CCDC22 was expressed in brain subregions with three peaks in the fetal stage, infancy, and early adulthood, especially in the fetal stage, explaining the occurrence of developmental abnormities. SIGNIFICANCE CCDC22 variants are potentially associated with X-linked focal epilepsy and FCD. The molecular subregional effects supported the occurrence of FCD.
Collapse
Affiliation(s)
- Yu-Lei He
- Department of Neurology, The First Affiliated Hospital & Clinical Neuroscience Institute of Jinan University, Guangzhou, PR China; Department of Neurology, The First People's Hospital of Chenzhou affiliated to the University of South China, The First Affiliated Hospital of Xiangnan University, Chenzhou, PR China; Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, PR China
| | - Yi-Chen Ye
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, PR China
| | - Peng-Yu Wang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, PR China
| | - Xiao-Yu Liang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, PR China
| | - Yu-Jie Gu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, PR China
| | - Si-Qi Zhang
- Department of Neurology, The First Affiliated Hospital & Clinical Neuroscience Institute of Jinan University, Guangzhou, PR China
| | - Dong-Qian Han
- Department of Neurology, The First Affiliated Hospital & Clinical Neuroscience Institute of Jinan University, Guangzhou, PR China
| | - Qi Chi
- Department of Neurology, The First Affiliated Hospital & Clinical Neuroscience Institute of Jinan University, Guangzhou, PR China
| | - Wen-Hui Liu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, PR China
| | - Peng Zhou
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, PR China
| | - Qiong-Xiang Zhai
- Department of Pediatrics, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, PR China
| | - Bing-Mei Li
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, PR China
| | - Yong-Hong Yi
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, PR China
| | - Sheng Luo
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, PR China.
| | - Heng Meng
- Department of Neurology, The First Affiliated Hospital & Clinical Neuroscience Institute of Jinan University, Guangzhou, PR China.
| |
Collapse
|
3
|
Wang Y, Niu W, Shi H, Bao X, Liu Y, Lu M, Sun Y. A novel variation in DEPDC5 causing familial focal epilepsy with variable foci. Front Genet 2024; 15:1414259. [PMID: 38974383 PMCID: PMC11227254 DOI: 10.3389/fgene.2024.1414259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/27/2024] [Indexed: 07/09/2024] Open
Abstract
Background Disheveled, EGL-10, and pleckstrin (DEP) domain-containing protein 5 (DEPDC5) is a component of GTPase-activating protein (GAP) activity toward the RAG complex 1 (GATOR1) protein, which is an inhibitor of the amino acid-sensing branch of the mammalian target of rapamycin complex 1 (mTORC1) pathway. GATOR1 complex variations were reported to correlate with familial focal epilepsy with variable foci (FFEVF). With the wide application of whole exome sequencing (WES), more and more variations in DEPDC5 were uncovered in FFEVF families. Methods A family with a proband diagnosed with familial focal epilepsy with variable foci (FFEVF) was involved in this study. Whole exome sequencing (WES) was performed in the proband, and Sanger sequencing was used to confirm the variation carrying status of the family members. Mini-gene splicing assay was performed to validate the effect on the alternative splicing of the variation. Results A novel variant, c.1217 + 2T>A, in DEPDC5 was identified by WES in the proband. This splicing variant that occurred at the 5' end of intron 17 was confirmed by mini-gene splicing assays, which impacted alternative splicing and led to the inclusion of an intron fragment. The analysis of the transcribed mRNA sequence indicates that the translation of the protein is terminated prematurely, which is very likely to result in the loss of function of the protein and lead to the occurrence of FFEVF. Conclusion The results suggest that c.1217 + 2T>A variations in DEPDC5 might be the genetic etiology for FFEVF in this pedigree. This finding expands the genotype spectrum of FFEVF and provides new etiological information for FFEVF.
Collapse
Affiliation(s)
- Yanchi Wang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenbin Niu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hao Shi
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao Bao
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yidong Liu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Manman Lu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingpu Sun
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
He MF, Liu LH, Luo S, Wang J, Guo JJ, Wang PY, Zhai QX, He SL, Zou DF, Liu XR, Li BM, Ma HY, Qiao JD, Zhou P, He N, Yi YH, Liao WP. ZFHX3 variants cause childhood partial epilepsy and infantile spasms with favourable outcomes. J Med Genet 2024; 61:652-660. [PMID: 38508705 PMCID: PMC11228202 DOI: 10.1136/jmg-2023-109725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/18/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND The ZFHX3 gene plays vital roles in embryonic development, cell proliferation, neuronal differentiation and neuronal death. This study aims to explore the relationship between ZFHX3 variants and epilepsy. METHODS Whole-exome sequencing was performed in a cohort of 378 patients with partial (focal) epilepsy. A Drosophila Zfh2 knockdown model was used to validate the association between ZFHX3 and epilepsy. RESULTS Compound heterozygous ZFHX3 variants were identified in eight unrelated cases. The burden of ZFHX3 variants was significantly higher in the case cohort, shown by multiple/specific statistical analyses. In Zfh2 knockdown flies, the incidence and duration of seizure-like behaviour were significantly greater than those in the controls. The Zfh2 knockdown flies exhibited more firing in excitatory neurons. All patients presented partial seizures. The five patients with variants in the C-terminus/N-terminus presented mild partial epilepsy. The other three patients included one who experienced frequent non-convulsive status epilepticus and two who had early spasms. These three patients had also neurodevelopmental abnormalities and were diagnosed as developmental epileptic encephalopathy (DEE), but achieved seizure-free after antiepileptic-drug treatment without adrenocorticotropic-hormone/steroids. The analyses of temporal expression (genetic dependent stages) indicated that ZFHX3 orthologous were highly expressed in the embryonic stage and decreased dramatically after birth. CONCLUSION ZFHX3 is a novel causative gene of childhood partial epilepsy and DEE. The patients of infantile spasms achieved seizure-free after treatment without adrenocorticotropic-hormone/steroids implies a significance of genetic diagnosis in precise treatment. The genetic dependent stage provided an insight into the underlying mechanism of the evolutional course of illness.
Collapse
Affiliation(s)
- Ming-Feng He
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Li-Hong Liu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
- Department of Neurology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Sheng Luo
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Juan Wang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Jia-Jun Guo
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Peng-Yu Wang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Qiong-Xiang Zhai
- Department of Pediatrics, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510120, China
| | - Su-Li He
- Department of Pediatrics, Shantou Chaonan Minsheng Hospital, Shantou 515000, China
| | - Dong-Fang Zou
- Epilepsy Center and Department of Neurology, Shenzhen Children's Hospital, Shenzhen 518029, China
| | - Xiao-Rong Liu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Bing-Mei Li
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Hai-Yan Ma
- Department of Functional Neurosurgery, Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jing-Da Qiao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Peng Zhou
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Na He
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Yong-Hong Yi
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Wei-Ping Liao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| |
Collapse
|
5
|
Gu C, Wei X, Yan D, Cai Y, Li D, Shu J, Cai C. DEPDC5 plays a vital role in epilepsy: Genotypic and phenotypic features in cohort and literature. Epileptic Disord 2024; 26:341-349. [PMID: 38752894 DOI: 10.1002/epd2.20223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/18/2024] [Accepted: 03/24/2024] [Indexed: 06/12/2024]
Abstract
OBJECTIVE DEPDC5 emerges to play a vital role in focal epilepsy. However, genotype-phenotype correlation in DEPDC5-related focal epilepsies is challenging and controversial. In this study, we aim to investigate the genotypic and phenotypic features in DEPDC5-affected patients. METHODS Genetic testing combined with criteria published by the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP), was used to identify pathogenic/likely pathogenic variants in DEPDC5 among the cohort of 479 patients with focal epilepsy. Besides, the literature review was performed to explore the genotype-phenotype correlation and the penetrance in DEPDC5-related focal epilepsies. RESULTS Eight unrelated probands were revealed to carry different pathogenic/likely pathogenic variants in DEPDC5 and the total prevalence of DEPDC5-related focal epilepsy was 1.67% in the cohort. Sixty-five variants from 28 studies were included in our review. Combined with the cases reported, null variants accounted for a larger proportion than missense variants and were related to unfavorable prognosis (drug resistance or even sudden unexpected death in epilepsy; χ2 = 5.429, p = .020). And, the prognosis of probands with developmental delay/intellectual disability or focal cortical dysplasia was worse than that of probands with simple epilepsy (χ2 = -, p = .006). Besides, the overall penetrance of variants in DEPDC5 was 68.96% (231/335). SIGNIFICANCE The study expands the variant spectrum of DEPDC5 and proves that the DEPDC5 variant plays a significant role in focal epilepsy. Due to the characteristics of phenotypic heterogeneity and incomplete penetrance, genetic testing is necessary despite no specific family history. And we propose to adopt the ACMG/AMP criteria refined by ClinGen Sequence Variant Interpretation Working Group, for consistency in usage and transparency in classification rationale. Moreover, we reveal an important message to clinicians that the prognosis of DEPDC5-affected patients is related to the variant type and complications.
Collapse
Affiliation(s)
- Chunyu Gu
- Tianjin Pediatric Research Institute, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin, China
| | - Xinping Wei
- The Medical Department of Neurology, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin, China
| | - Dandan Yan
- Tianjin Pediatric Research Institute, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin, China
| | - Yingzi Cai
- Tianjin Pediatric Research Institute, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin, China
| | - Dong Li
- The Medical Department of Neurology, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin, China
| | - Jianbo Shu
- Tianjin Pediatric Research Institute, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin, China
| | - Chunquan Cai
- Tianjin Pediatric Research Institute, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin, China
| |
Collapse
|
6
|
Winczewska-Wiktor A, Braszka M, Harada-Laszlo M, Badura-Stronka M, Kaczmarek I, Starczewska M, Wencel-Warot A, Steinborn B, Jamsheer A. Evaluating the efficacy of a ketogenic diet in managing drug resistant paediatric DEDPC5-related epilepsy. Epilepsy Behav 2024; 150:109535. [PMID: 38118233 DOI: 10.1016/j.yebeh.2023.109535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 12/22/2023]
Abstract
AIM To evaluate the effectiveness of the ketogenic diet treatment in a cohort of patients with drug-resistant epilepsy with a mutation in the DEPDC5 gene. MATERIALS AND METHODS We followed four paediatric patients with drug resistant DEPDC5-related epilepsy through a ketogenic diet (KD) treatment course. We analyzed the following parameters of their clinical profiles: past medical history, clinical characteristics of seizure morphology, EEG records pre- and post-KD treatment, the results of MRI head and neurological and psychological examinations (pre-treatment and throughout treatment course). We evaluated the effectiveness of previous therapeutic approaches and the current treatment with ketogenic diet alongside results of neuroimaging studies. Effect of KD on co-morbid behavioural and psychiatric symptoms, as well as adverse effects from KD were also assessed. RESULTS In three patients, the introduction of the ketogenic diet resulted in the cessation of seizures, while in 1 patient with co-morbid cortical dysplasia, epileptic seizures of lesser severity returned after an initial seizure-free period of several weeks. Further, 1 patient was able to transition to a KD-only treatment regimen. The remaining patients were able to reduce the number of antiseizure medicine (ASM) to a monotherapy. In all cases we observed improvements in EEG results. Our cohort included one patient whose MRI head showed cortical dysplasia. However, no patients demonstrated any neurological signs in neurological examination. Psychological examination showed normal intellectual development in all patients, although behavioral disorders and difficulties at school were observed. The introduction of KD treatment correlated with improvement in school performance and improved behavioral regulation. No clinically significant adverse events were observed. CONCLUSIONS KD seems to be both effective and well tolerated in young patients with DEPDC5-related epilepsy, both as a monotherapy and as an adjunct to ASM. We recommend an early adoption of this therapeutic approach in this patient demographic. Our results demonstrate that the positive effects of KD treatment encompass improvements in general functioning, particularly in the context of school performance and behavior, in addition to the achievement of good seizure control.
Collapse
Affiliation(s)
| | - Małgorzata Braszka
- University College London Medical School, 74 Huntly School WC1E6DE, London, United Kingdom
| | - Mia Harada-Laszlo
- University College London Medical School, 74 Huntly School WC1E6DE, London, United Kingdom
| | | | - Izabela Kaczmarek
- Department of Developmental Neurology, Poznan University of Medical Sciences, Poland
| | - Monika Starczewska
- Department of Developmental Neurology, Poznan University of Medical Sciences, Poland
| | | | - Barbara Steinborn
- Department of Developmental Neurology, Poznan University of Medical Sciences, Poland
| | - Aleksander Jamsheer
- Department of Medical Genetics, Poznan University of Medical Sciences, Poland.
| |
Collapse
|
7
|
Wang H, Liu W, Zhang Y, Liu Q, Cai L, Jiang Y. Seizure features and outcomes in 50 children with GATOR1 variants: A retrospective study, more favorable for epilepsy surgery. Epilepsia Open 2023; 8:969-979. [PMID: 37259768 PMCID: PMC10472406 DOI: 10.1002/epi4.12770] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/26/2023] [Indexed: 06/02/2023] Open
Abstract
OBJECTIVES To summarize the clinical features of epilepsy related to DEPDC5, NPRL2, and NPRL3 genes encoding the GATOR1 complex in children and to evaluate the factors affecting the prognosis of these epilepsies. METHODS In this retrospective study, we reviewed the clinical and genetic characteristics of children with epilepsy related to GATOR1 variants who were admitted to the Peking University First Hospital between January 2016 and December 2021. Potential prognostic factors were assessed by comparing children with and without ongoing seizures. RESULTS Fifty probands, including 31 boys and 19 girls were recruited. The median age at onset of epilepsy was 4 months, and 64% of patients had early-onset epilepsy (≤1 year). The most frequent epileptic seizure type was focal seizure (86%). Among the 50 patients, only six were with de novo variants. According to the novel classification framework for GATOR1 variants, 36 patients were with pathogenic variants and 14 with likely pathogenic variants. DEPDC5 variants were found in 37 patients, NPRL3 in 9, and NPRL2 in 4. The phenotype was similar among the probands, with variants in DEPDC5, NRPL2, or NPRL3. 76% (38/50) of epilepsy related to GATOR1 variants was neuroimaging positive, including brain MRI positive in 31 patients, and MRI combined F-18-fluorodeoxyglucose positron emission tomography positive in the other seven patients. Twenty-seven patients underwent epilepsy surgery. In total, after initial antiseizure medications alone, 92% (46/50) of patients were drug-resistant epilepsies, only 8% (4/50) of the probands became seizure-free but seizure-free (≥6 m) occurred in 92.6% (25/27) of patients with drug-resistant epilepsy after epilepsy surgery at the last follow-up. Patients undergoing epilepsy surgery had better epilepsy prognosis. SIGNIFICANCE Epilepsy related to GATOR1 variants had high possibility to be drug-resistant epilepsy and to have positive neuroimaging finding. Epilepsy surgery is the only favorable factor for better seizure prognosis in this kind epilepsy.
Collapse
Affiliation(s)
- Hao Wang
- Department of PediatricsPeking University First HospitalBeijingChina
| | - Wenwei Liu
- Department of PediatricsPeking University First HospitalBeijingChina
| | - Yuehua Zhang
- Department of PediatricsPeking University First HospitalBeijingChina
- Pediatric Epilepsy CenterPeking University First HospitalBeijingChina
| | - Qingzhu Liu
- Department of PediatricsPeking University First HospitalBeijingChina
- Pediatric Epilepsy CenterPeking University First HospitalBeijingChina
| | - Lixin Cai
- Department of PediatricsPeking University First HospitalBeijingChina
- Pediatric Epilepsy CenterPeking University First HospitalBeijingChina
| | - Yuwu Jiang
- Department of PediatricsPeking University First HospitalBeijingChina
- Pediatric Epilepsy CenterPeking University First HospitalBeijingChina
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic DiseasesBeijingChina
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning CommissionPeking UniversityBeijingChina
- Center of Epilepsy, Beijing Institute for Brain DisordersBeijingChina
| |
Collapse
|
8
|
Du S, Zeng S, Song L, Ma H, Chen R, Luo J, Wang X, Ma T, Xu X, Sun H, Yi P, Guo J, Huang Y, Liu M, Wang T, Liao WP, Zhang L, Liu JY, Tang B. Functional characterization of novel NPRL3 mutations identified in three families with focal epilepsy. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2152-2166. [PMID: 37071290 DOI: 10.1007/s11427-022-2313-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/01/2023] [Indexed: 04/19/2023]
Abstract
Focal epilepsy accounts for 60% of all forms of epilepsy, but the pathogenic mechanism is not well understood. In this study, three novel mutations in NPRL3 (nitrogen permease regulator-like 3), c.937_945del, c.1514dupC and 6,706-bp genomic DNA (gDNA) deletion, were identified in three families with focal epilepsy by linkage analysis, whole exome sequencing (WES) and Sanger sequencing. NPRL3 protein is a component of the GATOR1 complex, a major inhibitor of mTOR signaling. These mutations led to truncation of the NPRL3 protein and hampered the binding between NPRL3 and DEPDC5, which is another component of the GATOR1 complex. Consequently, the mutant proteins enhanced mTOR signaling in cultured cells, possibly due to impaired inhibition of mTORC1 by GATOR1. Knockdown of nprl3 in Drosophila resulted in epilepsy-like behavior and abnormal synaptic development. Taken together, these findings expand the genotypic spectrum of NPRL3-associated focal epilepsy and provide further insight into how NPRL3 mutations lead to epilepsy.
Collapse
Affiliation(s)
- Shiyue Du
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Sheng Zeng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Li Song
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Hongying Ma
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Rui Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Junyu Luo
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tingbin Ma
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xuan Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Hao Sun
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ping Yi
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yaling Huang
- Department of Neurology, Union Hospital of HUST, Wuhan, 430022, China
| | - Mugen Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Tao Wang
- Department of Neurology, Union Hospital of HUST, Wuhan, 430022, China
| | - Wei-Ping Liao
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510260, China
| | - Luoying Zhang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| | - Jing Yu Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China.
| |
Collapse
|
9
|
Luo S, Ye XG, Jin L, Li H, He YY, Guan BZ, Gao LD, Liang XY, Wang PY, Lu XG, Yan HJ, Li BM, Chen YJ, Liu ZG. SZT2 variants associated with partial epilepsy or epileptic encephalopathy and the genotype-phenotype correlation. Front Mol Neurosci 2023; 16:1162408. [PMID: 37213690 PMCID: PMC10198435 DOI: 10.3389/fnmol.2023.1162408] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/10/2023] [Indexed: 05/23/2023] Open
Abstract
Background Recessive SZT2 variants are reported to be associated with developmental and epileptic encephalopathy 18 (DEE-18) and occasionally neurodevelopment abnormalities (NDD) without seizures. This study aims to explore the phenotypic spectrum of SZT2 and the genotype-phenotype correlation. Methods Trios-based whole-exome sequencing was performed in patients with epilepsy. Previously reported SZT2 mutations were systematically reviewed to analyze the genotype-phenotype correlations. Results SZT2 variants were identified in six unrelated cases with heterogeneous epilepsy, including one de novo null variant and five pairs of biallelic variants. These variants had no or low frequencies in controls. All missense variants were predicted to alter the hydrogen bonds with surrounding residues and/or protein stability. The three patients with null variants exhibited DEE. The patients with biallelic null mutations presented severe DEE featured by frequent spasms/tonic seizures and diffuse cortical dysplasia/periventricular nodular heterotopia. The three patients with biallelic missense variants presented mild partial epilepsy with favorable outcomes. Analysis of previously reported cases revealed that patients with biallelic null mutations presented significantly higher frequency of refractory seizures and earlier onset age of seizure than those with biallelic non-null mutations or with biallelic mutations containing one null variant. Significance This study suggested that SZT2 variants were potentially associated with partial epilepsy with favorable outcomes without NDD, expanding the phenotypic spectrum of SZT2. The genotype-phenotype correlation helps in understanding the underlying mechanism of phenotypic variation.
Collapse
Affiliation(s)
- Sheng Luo
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xing-Guang Ye
- Department of Pediatrics, Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Liang Jin
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Huan Li
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yun-Yan He
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Bao-Zhu Guan
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Liang-Di Gao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiao-Yu Liang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Peng-Yu Wang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xin-Guo Lu
- Epilepsy Center and Department of Neurology, Shenzhen Children's Hospital, Shenzhen, China
| | - Hong-Jun Yan
- Epilepsy Center, Guangdong 999 Brain Hospital, Guangzhou, China
| | - Bing-Mei Li
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yong-Jun Chen
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
- *Correspondence: Yong-Jun Chen
| | - Zhi-Gang Liu
- Department of Pediatrics, Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Zhi-Gang Liu
| |
Collapse
|
10
|
Ververi A, Zagaglia S, Menzies L, Baptista J, Caswell R, Baulac S, Ellard S, Lynch S, Jacques TS, Chawla MS, Heier M, Kulseth MA, Mero IL, Våtevik AK, Kraoua I, Ben Rhouma H, Ben Younes T, Miladi Z, Ben Youssef Turki I, Jones WD, Clement E, Eltze C, Mankad K, Merve A, Parker J, Hoskins B, Pressler R, Sudhakar S, DeVile C, Homfray T, Kaliakatsos M, Robinson R, Keim SMB, Habibi I, Reymond A, Sisodiya SM, Hurst JA. Germline homozygous missense DEPDC5 variants cause severe refractory early-onset epilepsy, macrocephaly and bilateral polymicrogyria. Hum Mol Genet 2022; 32:580-594. [PMID: 36067010 PMCID: PMC9896472 DOI: 10.1093/hmg/ddac225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/16/2022] [Accepted: 08/31/2022] [Indexed: 02/07/2023] Open
Abstract
DEPDC5 (DEP Domain-Containing Protein 5) encodes an inhibitory component of the mammalian target of rapamycin (mTOR) pathway and is commonly implicated in sporadic and familial focal epilepsies, both non-lesional and in association with focal cortical dysplasia. Germline pathogenic variants are typically heterozygous and inactivating. We describe a novel phenotype caused by germline biallelic missense variants in DEPDC5. Cases were identified clinically. Available records, including magnetic resonance imaging and electroencephalography, were reviewed. Genetic testing was performed by whole exome and whole-genome sequencing and cascade screening. In addition, immunohistochemistry was performed on skin biopsy. The phenotype was identified in nine children, eight of which are described in detail herein. Six of the children were of Irish Traveller, two of Tunisian and one of Lebanese origin. The Irish Traveller children shared the same DEPDC5 germline homozygous missense variant (p.Thr337Arg), whereas the Lebanese and Tunisian children shared a different germline homozygous variant (p.Arg806Cys). Consistent phenotypic features included extensive bilateral polymicrogyria, congenital macrocephaly and early-onset refractory epilepsy, in keeping with other mTOR-opathies. Eye and cardiac involvement and severe neutropenia were also observed in one or more patients. Five of the children died in infancy or childhood; the other four are currently aged between 5 months and 6 years. Skin biopsy immunohistochemistry was supportive of hyperactivation of the mTOR pathway. The clinical, histopathological and genetic evidence supports a causal role for the homozygous DEPDC5 variants, expanding our understanding of the biology of this gene.
Collapse
Affiliation(s)
| | | | | | | | - Richard Caswell
- Exeter Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
| | - Stephanie Baulac
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, F-75013 Paris, France
| | - Sian Ellard
- Exeter Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
| | - Sally Lynch
- Academic Centre on Rare Diseases, University College Dublin School of Medicine and Medical Science, Dublin, Ireland,Department of Clinical Genetics, Children's Health Ireland (CHI) at Crumlin, Dublin, Ireland
| | | | - Thomas S Jacques
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK,Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | | | - Martin Heier
- Department of Clinical Neuroscience for Children, Oslo University Hospital, Oslo, Norway
| | - Mari Ann Kulseth
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Inger-Lise Mero
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | | | - Ichraf Kraoua
- Research Laboratory LR18SP04, Department of Child and Adolescent Neurology, National Institute Mongi Ben Hmida of Neurology, Tunis, Tunisia. Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Hanene Ben Rhouma
- Research Laboratory LR18SP04, Department of Child and Adolescent Neurology, National Institute Mongi Ben Hmida of Neurology, Tunis, Tunisia. Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Thouraya Ben Younes
- Research Laboratory LR18SP04, Department of Child and Adolescent Neurology, National Institute Mongi Ben Hmida of Neurology, Tunis, Tunisia. Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Zouhour Miladi
- Research Laboratory LR18SP04, Department of Child and Adolescent Neurology, National Institute Mongi Ben Hmida of Neurology, Tunis, Tunisia. Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Ilhem Ben Youssef Turki
- Research Laboratory LR18SP04, Department of Child and Adolescent Neurology, National Institute Mongi Ben Hmida of Neurology, Tunis, Tunisia. Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Wendy D Jones
- Department of Clinical Genetics & Genomic Medicine, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Emma Clement
- Department of Clinical Genetics & Genomic Medicine, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Christin Eltze
- Department of Paediatric Neurology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Kshitij Mankad
- Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Ashirwad Merve
- Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Jennifer Parker
- North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Bethan Hoskins
- North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Ronit Pressler
- Department of Clinical Neurophysiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Sniya Sudhakar
- Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Catherine DeVile
- Department of Paediatric Neurology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Tessa Homfray
- SW Thames Regional Genetics Service, St George's Hospital, St George's University of London, London, UK
| | - Marios Kaliakatsos
- Department of Paediatric Neurology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Ponnudas (Prab) Prabhakar
- Department of Paediatric Neurology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Robert Robinson
- Department of Paediatric Neurology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | | | - Imen Habibi
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Sanjay M Sisodiya
- To whom correspondence should be addressed at: Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK.
| | | |
Collapse
|
11
|
Lai D, Gade M, Yang E, Koh HY, Lu J, Walley NM, Buckley AF, Sands TT, Akman CI, Mikati MA, McKhann GM, Goldman JE, Canoll P, Alexander AL, Park KL, Von Allmen GK, Rodziyevska O, Bhattacharjee MB, Lidov HGW, Vogel H, Grant GA, Porter BE, Poduri AH, Crino PB, Heinzen EL. Somatic variants in diverse genes leads to a spectrum of focal cortical malformations. Brain 2022; 145:2704-2720. [PMID: 35441233 PMCID: PMC9612793 DOI: 10.1093/brain/awac117] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/19/2022] [Accepted: 03/13/2022] [Indexed: 11/14/2022] Open
Abstract
Post-zygotically acquired genetic variants, or somatic variants, that arise during cortical development have emerged as important causes of focal epilepsies, particularly those due to malformations of cortical development. Pathogenic somatic variants have been identified in many genes within the PI3K-AKT-mTOR-signalling pathway in individuals with hemimegalencephaly and focal cortical dysplasia (type II), and more recently in SLC35A2 in individuals with focal cortical dysplasia (type I) or non-dysplastic epileptic cortex. Given the expanding role of somatic variants across different brain malformations, we sought to delineate the landscape of somatic variants in a large cohort of patients who underwent epilepsy surgery with hemimegalencephaly or focal cortical dysplasia. We evaluated samples from 123 children with hemimegalencephaly (n = 16), focal cortical dysplasia type I and related phenotypes (n = 48), focal cortical dysplasia type II (n = 44), or focal cortical dysplasia type III (n = 15). We performed high-depth exome sequencing in brain tissue-derived DNA from each case and identified somatic single nucleotide, indel and large copy number variants. In 75% of individuals with hemimegalencephaly and 29% with focal cortical dysplasia type II, we identified pathogenic variants in PI3K-AKT-mTOR pathway genes. Four of 48 cases with focal cortical dysplasia type I (8%) had a likely pathogenic variant in SLC35A2. While no other gene had multiple disease-causing somatic variants across the focal cortical dysplasia type I cohort, four individuals in this group had a single pathogenic or likely pathogenic somatic variant in CASK, KRAS, NF1 and NIPBL, genes previously associated with neurodevelopmental disorders. No rare pathogenic or likely pathogenic somatic variants in any neurological disease genes like those identified in the focal cortical dysplasia type I cohort were found in 63 neurologically normal controls (P = 0.017), suggesting a role for these novel variants. We also identified a somatic loss-of-function variant in the known epilepsy gene, PCDH19, present in a small number of alleles in the dysplastic tissue from a female patient with focal cortical dysplasia IIIa with hippocampal sclerosis. In contrast to focal cortical dysplasia type II, neither focal cortical dysplasia type I nor III had somatic variants in genes that converge on a unifying biological pathway, suggesting greater genetic heterogeneity compared to type II. Importantly, we demonstrate that focal cortical dysplasia types I, II and III are associated with somatic gene variants across a broad range of genes, many associated with epilepsy in clinical syndromes caused by germline variants, as well as including some not previously associated with radiographically evident cortical brain malformations.
Collapse
Affiliation(s)
- Dulcie Lai
- Division of Pharmacology and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Meethila Gade
- Division of Pharmacology and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Edward Yang
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hyun Yong Koh
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA.,Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jinfeng Lu
- Division of Pharmacology and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nicole M Walley
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Anne F Buckley
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Tristan T Sands
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY 10032, USA.,Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
| | - Cigdem I Akman
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
| | - Mohamad A Mikati
- Department of Neurobiology, Duke University, Durham, NC 27708, USA.,Division of Pediatric Neurology, Duke University Medical Center, Durham, NC 27710, USA
| | - Guy M McKhann
- Department of Neurosurgery, Columbia University, New York Presbyterian Hospital, New York, NY 10032, USA
| | - James E Goldman
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Allyson L Alexander
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kristen L Park
- Department of Pediatrics and Neurology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Gretchen K Von Allmen
- Department of Neurology, McGovern Medical School, Houston, TX 77030, USA.,Division of Child Neurology, Department of Pediatrics, McGovern Medical School, Houston, TX 77030, USA
| | - Olga Rodziyevska
- Division of Child Neurology, Department of Pediatrics, McGovern Medical School, Houston, TX 77030, USA
| | | | - Hart G W Lidov
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hannes Vogel
- Department of Pathology, Stanford University, School of Medicine, Stanford, CA 94305, USA
| | - Gerald A Grant
- Department of Neurosurgery, Lucile Packard Children's Hospital at Stanford, School of Medicine, Stanford, CA 94305, USA
| | - Brenda E Porter
- Department of Neurology and Neurological Sciences, Stanford University, School of Medicine, Stanford, CA 94305, USA
| | - Annapurna H Poduri
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA.,Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Peter B Crino
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Erin L Heinzen
- Division of Pharmacology and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
12
|
Gu C, Lu X, Ma J, Pu L, Zhi X, Shu J, Li D, Cai C. What is the impact of a novel DEPDC5 variant on an infant with focal epilepsy: a case report. BMC Pediatr 2022; 22:459. [PMID: 35907814 PMCID: PMC9338555 DOI: 10.1186/s12887-022-03515-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/23/2022] [Indexed: 11/21/2022] Open
Abstract
Background Variants in the DEPDC5 have been proved to be main cause of not only various dominant familial focal epilepsies, but also sporadic focal epilepsies. In the present study, a novel variant in DEPDC5 was detected in the patient with focal epilepsy and his healthy father. We aimed to analyze the pathogenic DEPDC5 variant in the small family of three. Case presentation A 5-month-old male infant presented with focal epilepsy. Whole exome sequencing identified a novel heterozygous variant c.1696delC (p.Gln566fs) in DEPDC5, confirmed by Sanger sequencing. The variant was inherited from healthy father. Conclusions Our study expands the spectrum of DEPDC5 variants. Moreover, We discuss the relation between the low penetrance of DEPDC5 and the relatively high morbidity rate of DEPDC5-related sporadic focal epilepsy. Besides, due to interfamilial phenotypic and genetic heterogeneity, we speculate the prevalence of familial focal epilepsy with variable foci might be underestimated in such small families. We emphasize the importance of gene detection in patients with sporadic epilepsy of unknown etiology, as well as their family members. It can identify causative mutations, thus providing help to clinicians in making a definitive diagnosis.
Collapse
Affiliation(s)
- Chunyu Gu
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin, 300134, China.,Graduate College of Tianjin Medical University, Tianjin, 300070, China
| | - Xiaowei Lu
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin, 300134, China.,The Medical Department of Neurology, Tianjin Children's Hospital, No. 238 Longyan Road, Beichen District, 300134, Tianjin, China
| | - Jinhui Ma
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin, 300134, China.,Electroencephalogram Laboratory, Tianjin Children's Hospital, Tianjin, 300134, China
| | - Linjie Pu
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin, 300134, China.,Graduate College of Tianjin Medical University, Tianjin, 300070, China
| | - Xiufang Zhi
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin, 300134, China.,Graduate College of Tianjin Medical University, Tianjin, 300070, China
| | - Jianbo Shu
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin, 300134, China.,Tianjin Pediatric Research Institute, Tianjin, 300134, China.,Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, 300134, China
| | - Dong Li
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin, 300134, China. .,The Medical Department of Neurology, Tianjin Children's Hospital, No. 238 Longyan Road, Beichen District, 300134, Tianjin, China.
| | - Chunquan Cai
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin, 300134, China. .,Tianjin Pediatric Research Institute, Tianjin, 300134, China. .,Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, 300134, China. .,Department of Neurosurgery, Tianjin Children's Hospital, No. 238 Longyan Road, Beichen District, 300134, Tianjin, China.
| |
Collapse
|
13
|
Liao WP, Chen Q, Jiang YW, Luo S, Liu XR. Editorial: Sub-molecular mechanism of genetic epilepsy. Front Mol Neurosci 2022; 15:958747. [PMID: 35959103 PMCID: PMC9360914 DOI: 10.3389/fnmol.2022.958747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Wei-Ping Liao
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Guangzhou, China
- *Correspondence: Wei-Ping Liao
| | - Qian Chen
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Yu-Wu Jiang
- Department of Pediatrics, Peking University First Hospital, Peking, China
| | - Sheng Luo
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Guangzhou, China
| | - Xiao-Rong Liu
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Guangzhou, China
| |
Collapse
|
14
|
Bian WJ, Li ZJ, Wang J, Luo S, Li BM, Gao LD, He N, Yi YH. SHROOM4 Variants Are Associated With X-Linked Epilepsy With Features of Generalized Seizures or Generalized Discharges. Front Mol Neurosci 2022; 15:862480. [PMID: 35663265 PMCID: PMC9157246 DOI: 10.3389/fnmol.2022.862480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveSHROOM4 gene encodes an actin-binding proteins, which plays an important role in cytoskeletal architecture, synaptogenesis, and maintaining gamma-aminobutyric acid receptors-mediated inhibition. SHROOM4 mutations were reported in patients with the Stocco dos Santos type of X-linked syndromic intellectual developmental disorder (SDSX; OMIM# 300434). In this study, we investigated the association between SHROOM4 and epilepsy.MethodsTrios-based whole-exome sequencing was performed in a cohort of 320 cases with idiopathic generalized epilepsy or idiopathic partial epilepsy. Protein modeling was used to assess the damaging effects of variations.ResultsSix hemizygous missense SHROOM4 variants, including c.13C > A/p. Pro5Thr, c.3236C > T/p.Glu1079Ala, c.3581C > T/p.Ser1194Leu, c.4288C > T/p.Arg1430Cys, c.4303G > A/p.Val1435Met, c.4331C > T/p.Pro1444Leu, were identified in six cases with idiopathic epilepsy without intellectual disability. All patients presented with features of generalized seizures or generalized discharges. These hemizygous variants had no or extremely low allele frequencies in controls and showed statistically higher frequency in the case cohort than controls. All variants were predicted to alter hydrogen bond with surrounding amino acids or decreased protein stability. The SHROOM4 variants reported in patients with SDSX were mostly destructive or duplicative variants; in contrast, the SHROOM4 variants were all missense variants, suggesting a potential genotype-phenotype correlation. The two missense variants associated with SDSX were located in the middle of SHROOM4 protein, whereas variants associated with idiopathic epilepsy were located around the N-terminal PDZ domain and the C-terminal ASD2 domain.SignificanceSHROOM4 was potentially a candidate pathogenic gene of idiopathic epilepsy without intellectual disability. The genotype-phenotype correlation and sub-regional effect helps understanding the mechanism underlying phenotypic variation.
Collapse
|
15
|
Tian Y, Zhai QX, Li XJ, Shi Z, Cheng CF, Fan CX, Tang B, Zhang Y, He YY, Li WB, Luo S, Hou C, Chen WX, Liao WP, Wang J. ATP6V0C Is Associated With Febrile Seizures and Epilepsy With Febrile Seizures Plus. Front Mol Neurosci 2022; 15:889534. [PMID: 35600075 PMCID: PMC9120599 DOI: 10.3389/fnmol.2022.889534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose To identify novel genetic causes of febrile seizures (FS) and epilepsy with febrile seizures plus (EFS+). Methods We performed whole-exome sequencing in a cohort of 32 families, in which at least two individuals were affected by FS or EFS+. The probands, their parents, and available family members were recruited to ascertain whether the genetic variants were co-segregation. Genes with repetitively identified variants with segregations were selected for further studies to define the gene-disease association. Results We identified two heterozygous ATP6V0C mutations (c.64G > A/p.Ala22Thr and c.361_373del/p.Thr121Profs*7) in two unrelated families with six individuals affected by FS or EFS+. The missense mutation was located in the proteolipid c-ring that cooperated with a-subunit forming the hemichannel for proton transferring. It also affected the hydrogen bonds with surround residues and the protein stability, implying a damaging effect. The frameshift mutation resulted in a loss of function by yielding a premature termination of 28 residues at the C-terminus of the protein. The frequencies of ATP6V0C mutations identified in this cohort were significantly higher than that in the control populations. All the six affected individuals suffered from their first FS at the age of 7-8 months. The two probands later manifested afebrile seizures including myoclonic seizures that responded well to lamotrigine. They all displayed favorable outcomes without intellectual or developmental abnormalities, although afebrile seizures or frequent seizures occurred. Conclusion This study suggests that ATP6V0C is potentially a candidate pathogenic gene of FS and EFS+. Screening for ATP6V0C mutations would help differentiating patients with Dravet syndrome caused by SCN1A mutations, which presented similar clinical manifestation but different responses to antiepileptic treatment.
Collapse
Affiliation(s)
- Yang Tian
- Department of Neurology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Qiong-Xiang Zhai
- Department of Pediatrics, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiao-Jing Li
- Department of Neurology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Zhen Shi
- Department of Neurology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Chuan-Fang Cheng
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Guangzhou, China
| | - Cui-Xia Fan
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Guangzhou, China
| | - Bin Tang
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Guangzhou, China
| | - Ying Zhang
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yun-Yan He
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Guangzhou, China
| | - Wen-Bin Li
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Guangzhou, China
| | - Sheng Luo
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Guangzhou, China
| | - Chi Hou
- Department of Neurology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wen-Xiong Chen
- Department of Neurology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wei-Ping Liao
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Guangzhou, China
| | - Jie Wang
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Guangzhou, China
| |
Collapse
|
16
|
Samanta D. DEPDC5-related epilepsy: A comprehensive review. Epilepsy Behav 2022; 130:108678. [PMID: 35429726 DOI: 10.1016/j.yebeh.2022.108678] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/07/2022] [Accepted: 03/21/2022] [Indexed: 11/03/2022]
Abstract
DEPDC5-related epilepsy, caused by pathogenic germline variants(with or without additional somatic variants in the brain) of DEPDC5 (Dishevelled, Egl-10 and Pleckstrin domain-containing protein 5) gene, is a newly discovered predominantly focal epilepsy linked to enhanced mTORC1 pathway. DEPDC5-related epilepsy includes several familial epilepsy syndromes, including familial focal epilepsy with variable foci (FFEVF) and rare sporadic nonlesional focal epilepsy. DEPDC5 has been identified as one of the more common epilepsy genes linked to infantile spasms and sudden unexpected death (SUDEP). Although intelligence usually is unaffected in DEPDC5-related epilepsy, some people have been diagnosed with intellectual disabilities, autism spectrum disorder, and other psychiatric problems. DEPDC5 variants have also been found in 20% of individuals with various brain abnormalities, challenging the traditional distinction between lesional and nonlesional epilepsies. The most exciting development of DEPDC5 variants is the possibility of precision therapeutics using mTOR inhibitors, as evidenced with phenotypic rescue in many animal models. However, more research is needed to better understand the functional impact of diverse (particularly missense or splice-region) variants, the specific involvement of DEPDC5 in epileptogenesis, and the creation and utilization of precision therapies in humans. Precision treatments for DEPDC5-related epilepsy will benefit not only a small number of people with the condition, but they will also pave the way for new therapeutic approaches in epilepsy (including acquired epilepsies in which mTORC1 activation occurs, for example, post-traumatic epilepsy) and other neurological disorders involving a dysfunctional mTOR pathway.
Collapse
Affiliation(s)
- Debopam Samanta
- Child Neurology Section, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States.
| |
Collapse
|
17
|
Qiao JD, Li X, Li J, Guo QH, Tang XQ, Chen LZ, Su T, Yi YH, Wang J, Liao WP. Reply: UNC13B and focal epilepsy. Brain 2022; 145:e13-e16. [PMID: 35380625 DOI: 10.1093/brain/awab486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 12/10/2021] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jing-Da Qiao
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Xin Li
- Department of Pediatrics, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jia Li
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Qing-Hui Guo
- Department of Pediatrics, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xue-Qing Tang
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Li-Zhi Chen
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Tao Su
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Yong-Hong Yi
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Jie Wang
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Wei-Ping Liao
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| |
Collapse
|
18
|
Hoffmann L, Blümcke I. Neuropathology and epilepsy surgery. Curr Opin Neurol 2022; 35:202-207. [PMID: 35067500 DOI: 10.1097/wco.0000000000001030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Neurosurgical treatment of patients suffering from drug-resistant focal epilepsy is recognized as a successful, yet underutilized medical treatment option. By searching PubMed for articles published between January 2020 and September 2021 with the broad search terms 'neuropathology' AND 'epilepsy surgery', this review highlights the active field of etiology-based epilepsy research in human tissue. RECENT FINDINGS All papers addressing the most common epileptogenic human brain disease entities, i.e. focal cortical dysplasia (FCD), brain tumors or hippocampal sclerosis, and written in English language were eligible for our review. We can conclude from this review that etiology-based studies are of foremost interest for (1) the development of prediction models for postsurgical seizure outcome; (2) decipher genetic and molecular alterations to better define disease entities and underlying molecular pathomechanisms, and (3) the translation of human tissue-derived biomarker into clinically useful diagnostics or novel therapeutic targets in the near future. SUMMARY Highlighting FCD brain somatic gain-of-function variants in mammalian target of Rapamycin are a leading pathway to better classify FCD. An integrated genotype-phenotype analysis enables to classify the broad spectrum of low-grade and epilepsy-associated brain tumors. Further DNA-methylation-based disease classification will increase the mechanistic understanding and diagnostic precision of difficult to classify pathologies in the future.
Collapse
Affiliation(s)
- Lucas Hoffmann
- Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | | |
Collapse
|
19
|
Zou D, Qin B, Wang J, Shi Y, Zhou P, Yi Y, Liao J, Lu X. AFF2 Is Associated With X-Linked Partial (Focal) Epilepsy With Antecedent Febrile Seizures. Front Mol Neurosci 2022; 15:795840. [PMID: 35431806 PMCID: PMC9006616 DOI: 10.3389/fnmol.2022.795840] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/08/2022] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE AFF2 mutations were associated with X-linked intellectual developmental disorder-109 and in males with autism spectrum disorder (ASD). The relationship between AFF2 and epilepsy has not been defined. METHOD Trios-based whole-exome sequencing was performed in a cohort of 372 unrelated cases (families) with partial (focal) epilepsy without acquired causes. RESULTS Five hemizygous missense AFF2 mutations were identified in five males with partial epilepsy and antecedent febrile seizures without intellectual disability or other developmental abnormalities. The mutations did not present in the controls of general populations with an aggregate frequency significantly higher than that in the control populations. Previously, intellectual disability-associated AFF2 mutations were genomic rearrangements and CCG repeat expansion mutations mostly, whereas the mutations associated with partial epilepsy were all missense. Missense AFF2 mutations associated with epilepsy fell into the regions from N-terminal to the nuclear localization signal 1 (NLS1), while ASD-associated missense mutations fell in the regions from NLS1 to C-terminal. CONCLUSION AFF2 is potentially a candidate causative gene of X-link partial epilepsy with antecedent febrile seizures. The genotype-phenotype correlation and molecular sub-regional effect of AFF2 help in explaining the mechanisms underlying phenotypic variations.
Collapse
Affiliation(s)
- Dongfang Zou
- Epilepsy Center and Department of Neurology, Shenzhen Children’s Hospital, Shenzhen, China
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Bing Qin
- Epilepsy Center and Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jie Wang
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Yiwu Shi
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Peng Zhou
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Yonghong Yi
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Jianxiang Liao
- Epilepsy Center and Department of Neurology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Xinguo Lu
- Epilepsy Center and Department of Neurology, Shenzhen Children’s Hospital, Shenzhen, China
| |
Collapse
|
20
|
Li XL, Li ZJ, Liang XY, Liu DT, Jiang M, Gao LD, Li H, Tang XQ, Shi YW, Li BM, He N, Li B, Bian WJ, Yi YH, Cheng CF, Wang J. CACNA1A Mutations Associated With Epilepsies and Their Molecular Sub-Regional Implications. Front Mol Neurosci 2022; 15:860662. [PMID: 35600082 PMCID: PMC9116572 DOI: 10.3389/fnmol.2022.860662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/05/2022] [Indexed: 02/05/2023] Open
Abstract
PURPOSE Previously, mutations in the voltage-gated calcium channel subunit alpha1 A (CACNA1A) gene have been reported to be associated with paroxysmal disorders, typically as episodic ataxia type 2. To determine the relationship between CACNA1A and epilepsies and the role of molecular sub-regional on the phenotypic heterogeneity. METHODS Trio-based whole-exome sequencing was performed in 318 cases with partial epilepsy and 150 cases with generalized epilepsy. We then reviewed all previously reported CACNA1A mutations and analyzed the genotype-phenotype correlations with molecular sub-regional implications. RESULTS We identified 12 CACNA1A mutations in ten unrelated cases of epilepsy, including four de novo null mutations (c.2963_2964insG/p.Gly989Argfs*78, c.3089 + 1G > A, c.4755 + 1G > T, and c.6340-1G > A), four de novo missense mutations (c.203G > T/p.Arg68Leu, c.3965G > A/p.Gly1322Glu, c.5032C > T/p.Arg1678Cys, and c.5393C > T/p.Ser1798Leu), and two pairs of compound heterozygous missense mutations (c.4891A > G/p.Ile1631Val& c.5978C > T/p.Pro1993Leu and c.3233C > T/p.Ser1078Leu&c.6061G > A/p.Glu2021Lys). The eight de novo mutations were evaluated as pathogenic or likely pathogenic mutations according to the criteria of American College of Medical Genetics and Genomics (ACMG). The frequencies of the compound heterozygous CACNA1A mutations identified in this cohort were significantly higher than that in the controls of East Asian and all populations (P = 7.30 × 10-4, P = 2.53 × 10-4). All of the ten cases were ultimately seizure-free after antiepileptic treatment, although frequent epileptic seizures were observed in four cases. Further analysis revealed that episodic ataxia type 2 (EA2) had a tendency of higher frequency of null mutations than epilepsies. The missense mutations in severe epileptic phenotypes were more frequently located in the pore region than those in milder epileptic phenotypes (P = 1.67 × 10-4); de novo mutations in the epilepsy with intellectual disability (ID) had a higher percentage than those in the epilepsy without ID (P = 1.92 × 10-3). CONCLUSION This study suggested that CACNA1A mutations were potentially associated with pure epilepsy and the spectrum of epileptic phenotypes potentially ranged from the mild form of epilepsies such as absence epilepsy or partial epilepsy, to the severe form of developmental epileptic encephalopathy. The clinical phenotypes variability is potentially associated with the molecular sub-regional of the mutations.
Collapse
Affiliation(s)
- Xue-Lian Li
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Neurology, The Affiliated Yuebei People’s Hospital of Shantou University Medical College, Shaoguan, China
| | - Zong-Jun Li
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiao-Yu Liang
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - De-Tian Liu
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mi Jiang
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Liang-Di Gao
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huan Li
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xue-Qing Tang
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yi-Wu Shi
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bing-Mei Li
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Na He
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bin Li
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wen-Jun Bian
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yong-Hong Yi
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chuan-Fang Cheng
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Chuan-Fang Cheng,
| | - Jie Wang
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Jie Wang,
| |
Collapse
|
21
|
Liu XR, Ye TT, Zhang WJ, Guo X, Wang J, Huang SP, Xie LS, Song XW, Deng WW, Li BM, He N, Wu QY, Zhuang MZ, Xu M, Shi YW, Su T, Yi YH, Liao WP. CHD4 variants are associated with childhood idiopathic epilepsy with sinus arrhythmia. CNS Neurosci Ther 2021; 27:1146-1156. [PMID: 34109749 PMCID: PMC8446219 DOI: 10.1111/cns.13692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/20/2021] [Accepted: 05/23/2021] [Indexed: 11/27/2022] Open
Abstract
Aims CHD4 gene, encoding chromodomain helicase DNA‐binding protein 4, is a vital gene for fetal development. In this study, we aimed to explore the association between CHD4 variants and idiopathic epilepsy. Methods Trios‐based whole‐exome sequencing was performed in a cohort of 482 patients with childhood idiopathic epilepsy. The Clinical Validity Framework of ClinGen and an evaluating method from five clinical‐genetic aspects were used to determine the association between CHD4 variants and epilepsy. Results Four novel heterozygous missense mutations in CHD4, including two de novo mutations (c.1597A>G/p.K533E and c.4936G>A/p.E1646K) and two inherited mutations with co‐segregation (c.856C>G/p.P286A and c.4977C>G/p.D1659E), were identified in four unrelated families with eight individuals affected. Seven affected individuals had sinus arrhythmia. From the molecular sub‐regional point of view, the missense mutations located in the central regions from SNF2‐like region to DUF1087 domain were associated with multisystem developmental disorders, while idiopathic epilepsy‐related mutations were outside this region. Strong evidence from ClinGen Clinical Validity Framework and evidences from four of the five clinical‐genetic aspects suggested an association between CHD4 variants and epilepsy. Conclusions CHD4 was potentially a candidate pathogenic gene of childhood idiopathic epilepsy with arrhythmia. The molecular sub‐regional effect of CHD4 mutations helped explaining the mechanisms underlying phenotypic variations.
Collapse
Affiliation(s)
- Xiao-Rong Liu
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Ting-Ting Ye
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Wen-Jun Zhang
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Xuan Guo
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Jie Wang
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Shao-Ping Huang
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China
| | - Long-Shan Xie
- Epilepsy Center of Foshan First Hospital, Foshan, China
| | - Xing-Wang Song
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Wei-Wen Deng
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Bing-Mei Li
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Na He
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Qian-Yi Wu
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Min-Zhi Zhuang
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Meng Xu
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Yi-Wu Shi
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Tao Su
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Yong-Hong Yi
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Wei-Ping Liao
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | | |
Collapse
|
22
|
Jesus-Ribeiro J, Pereira C, Robalo C, Pereira DJ, Duro D, Ramos F, Freire A, Melo JB. DEPDC5 variant in focal cortical dysplasia: a case report and review of the literature. Oxf Med Case Reports 2021; 2021:omab027. [PMID: 34055363 PMCID: PMC8143668 DOI: 10.1093/omcr/omab027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/29/2021] [Accepted: 03/20/2021] [Indexed: 12/03/2022] Open
Abstract
Germline and 2-hit brain somatic variants in DEPDC5 gene, a negative regulator of the mammalian target of rapamycin (mTOR) pathway, are increasingly recognized in patients with focal cortical dysplasia (FCD). Next-generation targeted sequencing identified a heterozygous germline variant in DEPDC5 gene (c.3241A>C, p.Thr1081Pro), classified as of unknown significance, in a patient with clinical features compatible with DEPDC5 phenotype (FCD, focal epilepsy, attention-deficit/hyperactivity disorder and borderline intellectual functioning). This missense variant has previously been reported in two other epileptic patients. Although interpretation of missense variants remains a challenge, DEPDC5 variants in patients with FCD and epilepsy cannot be neglected. Null variants were the most frequently reported in FCD patients, but missense variants have been described as well. The recognition of DEPDC5 phenotype and the appropriate interpretation of the detected variants are essential, since it may have important treatment implications in the near future, namely the use of mTOR inhibitors.
Collapse
Affiliation(s)
- Joana Jesus-Ribeiro
- Epilepsy and Sleep Monitoring Unit, Neurology Department, Coimbra University Hospital Center, Coimbra 3000, Portugal.,iCBR/CIMAGO, Faculty of Medicine, University of Coimbra, Coimbra 3000, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra 3000, Portugal
| | - Cristina Pereira
- Faculty of Medicine, University of Coimbra, Coimbra 3000, Portugal.,Pediatric Neurology of Child Development Center, Pediatric Hospital, Coimbra University Hospital Center, Coimbra 3000, Portugal
| | - Conceição Robalo
- Pediatric Neurology of Child Development Center, Pediatric Hospital, Coimbra University Hospital Center, Coimbra 3000, Portugal
| | - Daniela J Pereira
- Neuroradiology Department, Coimbra University Hospital Center, Coimbra 3000, Portugal
| | - Diana Duro
- Faculty of Medicine, University of Coimbra, Coimbra 3000, Portugal.,Neurology Department, Coimbra University Hospital Center, Coimbra 3000, Portugal
| | - Fabiana Ramos
- Medical Genetics Unit, Pediatric Hospital, Coimbra University Hospital Center, Coimbra 3000, Portugal
| | - António Freire
- Faculty of Medicine, University of Coimbra, Coimbra 3000, Portugal.,Neurology Department, Luz Hospital, Coimbra 3000, Portugal
| | - Joana B Melo
- iCBR/CIMAGO, Faculty of Medicine, University of Coimbra, Coimbra 3000, Portugal.,Laboratory of Cytogenetics and Genomics, Faculty of Medicine, University of Coimbra, Coimbra 3000, Portugal
| |
Collapse
|
23
|
The Importance of Magnetic Resonance in Detection of Cortical Dysplasia. CURRENT HEALTH SCIENCES JOURNAL 2021; 47:585-589. [PMID: 35444831 PMCID: PMC8987480 DOI: 10.12865/chsj.47.04.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/20/2021] [Indexed: 11/18/2022]
Abstract
Focal cortical dysplasia is a malformation of cortical development in which there are abnormalities with cortical lamination, neuronal maturation, and neuronal differentiation. It is the most common cause of medically refractory epilepsy in the pediatric population and the second/third most common etiology of medically intractable seizures in adults. Herein, we present the case of 23-years-old female patient, presenting with loss of consciousness, and convulsions. A MRI revealed a 5mm cortical thickening on either side of the posterior aspect of the right superior temporal gyrus without transmantle extension towards ventricle. This abnormal area is measured about 24x16mm and there was no evidence for mesial temporal sclerosis. Both hippocampi are normal is size, morphology and signal. These features are consistent with cortical dysplasia type 1. This case report emphasizes the importance of MRI in the detection of FCD. MRI can show no abnormalities in type 1 FCD, but when the changes are apparent, they are on the temporal lobe, and seizures presents most commonly in adults.
Collapse
|