1
|
Yang Z, Teaney NA, Buttermore ED, Sahin M, Afshar-Saber W. Harnessing the potential of human induced pluripotent stem cells, functional assays and machine learning for neurodevelopmental disorders. Front Neurosci 2025; 18:1524577. [PMID: 39844857 PMCID: PMC11750789 DOI: 10.3389/fnins.2024.1524577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025] Open
Abstract
Neurodevelopmental disorders (NDDs) affect 4.7% of the global population and are associated with delays in brain development and a spectrum of impairments that can lead to lifelong disability and even mortality. Identification of biomarkers for accurate diagnosis and medications for effective treatment are lacking, in part due to the historical use of preclinical model systems that do not translate well to the clinic for neurological disorders, such as rodents and heterologous cell lines. Human-induced pluripotent stem cells (hiPSCs) are a promising in vitro system for modeling NDDs, providing opportunities to understand mechanisms driving NDDs in human neurons. Functional assays, including patch clamping, multielectrode array, and imaging-based assays, are popular tools employed with hiPSC disease models for disease investigation. Recent progress in machine learning (ML) algorithms also presents unprecedented opportunities to advance the NDD research process. In this review, we compare two-dimensional and three-dimensional hiPSC formats for disease modeling, discuss the applications of functional assays, and offer insights on incorporating ML into hiPSC-based NDD research and drug screening.
Collapse
Affiliation(s)
- Ziqin Yang
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- FM Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Nicole A. Teaney
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- FM Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Elizabeth D. Buttermore
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- FM Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- Human Neuron Core, Boston Children’s Hospital, Boston, MA, United States
| | - Mustafa Sahin
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- FM Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- Human Neuron Core, Boston Children’s Hospital, Boston, MA, United States
| | - Wardiya Afshar-Saber
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- FM Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
2
|
Kamal MM, Teeya ST, Rahman MM, Talukder MEK, Sarmin S, Wani TA, Hasan MM. Prediction and assessment of deleterious and disease causing nonsynonymous single nucleotide polymorphisms (nsSNPs) in human FOXP4 gene: An in - silico study. Heliyon 2024; 10:e32791. [PMID: 38994097 PMCID: PMC11237951 DOI: 10.1016/j.heliyon.2024.e32791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/10/2024] [Indexed: 07/13/2024] Open
Abstract
In humans, FOXP gene family is involved in embryonic development and cancer progression. The FOXP4 (Forkhead box protein P4) gene belongs to this FOXP gene family. FOXP4 gene plays a crucial role in oncogenesis. Single nucleotide polymorphisms are biological markers and common determinants of human diseases. Mutations can largely affect the function of the corresponding protein. Therefore, the molecular mechanism of nsSNPs in the FOXP4 gene needs to be elucidated. Initially, the SNPs of the FOXP4 gene were extracted from the dbSNP database and a total of 23124 SNPs was found, where 555 nonsynonymous, 20525 intronic, 1114 noncoding transcript, 334 synonymous were obtained and the rest were unspecified. Then, a series of bioinformatics tools (SIFT, PolyPhen2, SNAP2, PhD SNP, PANTHER, I-Mutant2.0, MUpro, GOR IV, ConSurf, NetSurfP 2.0, HOPE, DynaMut2, GeneMANIA, STRING and Schrodinger) were used to explore the effect of nsSNPs on FOXP4 protein function and structural stability. First, 555 nsSNPs were analyzed using SIFT, of which 57 were found as deleterious. Following, PolyPhen2, SNAP2, PhD SNP and PANTHER analyses, 10 nsSNPs (rs372762294, rs141899153, rs142575732, rs376938850, rs367607523, rs112517943, rs140387832, rs373949416, rs373949416 and rs376160648) were common and observed as deleterious, damaging and diseases associated. Following that, using I-Mutant2.0 and MUpro servers, 7 nsSNPs were found to be the most unstable. GOR IV predicted that these seven nsSNPs affect protein structure by altering the protein contents of alpha helixes, extended strands, and random coils. Following DynaMut2, 5 nsSNPs showed a decrease in the ΔΔG value compared with the wild-type and were found to be responsible for destabilizing the corresponding protein. GeneMANIA and STRING network revealed interaction of FOXP4 with other genes. Finally, molecular dynamics simulation analysis revealed consistent fluctuation in RMSD and RMSF values, Rg and hydrogen bonds in the mutant proteins compared with WT, which might alter the functional and structural stability of the corresponding protein. As a result, the aforementioned integrated comprehensive bioinformatic analyses provide insight into how various nsSNPs of the FOXP4 gene change the structural and functional properties of the corresponding protein, potentially proceeding with the pathophysiology of human diseases.
Collapse
Affiliation(s)
- Md Mostafa Kamal
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
- Laboratory of Computational Biology, Biological Solution Centre, Jashore, 7408, Bangladesh
| | - Shamiha Tabassum Teeya
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Mahfuzur Rahman
- Department of Genetic Engineering & Biotechnology, Bangabandhu Sheikh Mujibur Rahman Maritime University, Dhaka, 1216, Bangladesh
| | - Md Enamul Kabir Talukder
- Department of Genetic Engineering & Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
- Laboratory of Computational Biology, Biological Solution Centre, Jashore, 7408, Bangladesh
| | - Sonia Sarmin
- BIRTAN-Bangladesh Institute of Research and Training on Applied Nutrition, Jhenaidah, 7300, Bangladesh
| | - Tanveer A Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Md Mahmudul Hasan
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| |
Collapse
|
3
|
Zhang Q, Liu Y, Liu X, Zhao Y, Zhang J. A novel CTBP1 variant in a Chinese pediatric patient with a phenotype distinct from hypotonia, ataxia, developmental delay, and tooth enamel defect syndrome. Front Genet 2024; 15:1344682. [PMID: 38348454 PMCID: PMC10859494 DOI: 10.3389/fgene.2024.1344682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/10/2024] [Indexed: 02/15/2024] Open
Abstract
Hypotonia, Ataxia, Developmental Delay, and Tooth Enamel Defect Syndrome (HADDTS) is an exceptionally rare disorder resulting from a heterozygous variant in the C-terminal binding protein 1 (CTBP1) gene. To date, a mere two variants (14 patients) have been documented on a global scale. The aim of this study was to identify a causative CTBP1 variant in a Chinese patient, and to determine the potential pathogenicity of the identified variant. Here, Whole-exome sequencing (WES) was conducted on the proband to pinpoint the candidate variant. Following this, Sanger sequencing was employed to validate the identified candidate variant and examine its co-segregation within the available family members. Employing both in silico prediction and three-dimensional protein modeling, we conducted an analysis to assess the potential functional implications of the variant on the encoded protein. Our investigation led to the identification of a novel heterozygous variant in the CTBP1 gene, namely, c.371 C>T (p.Ser124Phe), in a Chinese patient. This case represents the first confirmed instance of such a variant in a Chinese patient. When comparing the patient's clinical symptoms with those reported in the literature, notable distinctions were observed between her primary symptoms and those associated with HADDTS. She showed other signs such as microcephaly, coarse facial features, single transverse palmar crease, visible beard, myopia, coarse toenail and skeletal anomalies. This study enriching the spectrum of genetic variants observed in different ethnic populations and expanding the phenotypic profile associated with this gene. These findings are expected to contribute to the enhancement of future variant-based screening and genetic diagnosis, while also providing further insights into the pathogenic mechanisms underlying CTBP1-related conditions.
Collapse
Affiliation(s)
- Qiang Zhang
- Hematology Laboratory, Sheng Jing Hospital of China Medical University, Shenyang, China
- The Maternal and Child Health Care Hospital of Guangxi Zhuang Autonomous Region, Guangxi Birth Defects Prevention and Control Institute, Nanning, China
| | - Yusi Liu
- Hematology Laboratory, Sheng Jing Hospital of China Medical University, Shenyang, China
| | - Xuan Liu
- Hematology Laboratory, Sheng Jing Hospital of China Medical University, Shenyang, China
| | - Yue Zhao
- Hematology Laboratory, Sheng Jing Hospital of China Medical University, Shenyang, China
| | - Jihong Zhang
- Hematology Laboratory, Sheng Jing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
4
|
Melano I, Lo YC, Su WC. Characterization of host substrates of SARS-CoV-2 main protease. Front Microbiol 2023; 14:1251705. [PMID: 37670988 PMCID: PMC10475589 DOI: 10.3389/fmicb.2023.1251705] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/31/2023] [Indexed: 09/07/2023] Open
Abstract
The main protease (Mpro) plays a crucial role in coronavirus, as it cleaves viral polyproteins and host cellular proteins to ensure successful replication. In this review, we discuss the preference in the recognition sequence of Mpro based on sequence-based studies and structural information and highlight the recent advances in computational and experimental approaches that have aided in discovering novel Mpro substrates. In addition, we provide an overview of the current understanding of Mpro host substrates and their implications for viral replication and pathogenesis. As Mpro has emerged as a promising target for the development of antiviral drugs, further insight into its substrate specificity may contribute to the design of specific inhibitors.
Collapse
Affiliation(s)
- Ivonne Melano
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Yan-Chung Lo
- Sinphar Pharmaceutical Co., Ltd., Sinphar Group, Yilan, Taiwan
| | - Wen-Chi Su
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- International Master’s Program of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
5
|
Saraiva C, Lopes-Nunes J, Esteves M, Santos T, Vale A, Cristóvão AC, Ferreira R, Bernardino L. CtBP Neuroprotective Role in Toxin-Based Parkinson's Disease Models: From Expression Pattern to Dopaminergic Survival. Mol Neurobiol 2023; 60:4246-4260. [PMID: 37060501 PMCID: PMC10293336 DOI: 10.1007/s12035-023-03331-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 02/07/2023] [Indexed: 04/16/2023]
Abstract
C-terminal binding proteins (CtBP) are transcriptional co-repressors regulating gene expression. CtBP promote neuronal survival through repression of pro-apoptotic genes, and may represent relevant targets for neurodegenerative disorders, such as Parkinson's disease (PD). Nevertheless, evidence of the role of CtBP1 and CtBP2 in neurodegeneration are scarce. Herein, we showed that CtBP1 and CtBP2 are expressed in neurons, dopaminergic neurons, astrocytes, and microglia in the substantia nigra (SN) and striatum of adult mice. Old mice showed a lower expression of CtBP1 in the SN and higher expression of CtPB2 in the SN and striatum compared with adult mice. In vivo models for PD (paraquat, MPTP, 6-OHDA) showed increased expression of CtBP1 in the SN and striatum while CtBP2 expression was increased in the striatum of paraquat-treated rats only. Moreover, an increased expression of both CtBP was found in a dopaminergic cell line (N27) exposed to 6-OHDA. In the 6-OHDA PD model, we found a dual effect using an unspecific ligand of CtBP, the 4-methylthio 2-oxobutyric acid (MTOB): higher concentrations (e.g. 2500 µM, 1000 µM) inhibited dopaminergic survival, while at 250 μM it counteracted cell death. In vitro, this latter protective role was absent after the siRNA silencing of CtBP1 or CtBP2. Altogether, this is the first report exploring the cellular and regional expression pattern of CtBP in the nigrostriatal pathway and the neuroprotective role in PD toxin-based models. CtBP could counteract dopaminergic cell death in the 6-OHDA PD model and, therefore, CtBP function and therapeutic potential in PD should be further explored.
Collapse
Affiliation(s)
- Cláudia Saraiva
- Brain Repair Group, Health Sciences Research Center (CICS-UBI), Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Present Address: Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 Avenue Des Hauts-Fourneaux, Esch-Sur-Alzette, Luxembourg
| | - Jéssica Lopes-Nunes
- Brain Repair Group, Health Sciences Research Center (CICS-UBI), Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Marta Esteves
- Brain Repair Group, Health Sciences Research Center (CICS-UBI), Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Tiago Santos
- Brain Repair Group, Health Sciences Research Center (CICS-UBI), Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Ana Vale
- Brain Repair Group, Health Sciences Research Center (CICS-UBI), Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Ana Clara Cristóvão
- Brain Repair Group, Health Sciences Research Center (CICS-UBI), Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Raquel Ferreira
- Brain Repair Group, Health Sciences Research Center (CICS-UBI), Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Present Address: CEDOC, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Dos Mártires da Pátria, 130, Lisboa, Portugal
| | - Liliana Bernardino
- Brain Repair Group, Health Sciences Research Center (CICS-UBI), Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| |
Collapse
|
6
|
Andres-Alonso M, Grochowska KM, Gundelfinger ED, Karpova A, Kreutz MR. Protein transport from pre- and postsynapse to the nucleus: Mechanisms and functional implications. Mol Cell Neurosci 2023; 125:103854. [PMID: 37084990 DOI: 10.1016/j.mcn.2023.103854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023] Open
Abstract
The extreme length of neuronal processes poses a challenge for synapse-to-nucleus communication. In response to this challenge several different mechanisms have evolved in neurons to couple synaptic activity to the regulation of gene expression. One of these mechanisms concerns the long-distance transport of proteins from pre- and postsynaptic sites to the nucleus. In this review we summarize current evidence on mechanisms of transport and consequences of nuclear import of these proteins for gene transcription. In addition, we discuss how information from pre- and postsynaptic sites might be relayed to the nucleus by this type of long-distance signaling. When applicable, we highlight how long-distance protein transport from synapse-to-nucleus can provide insight into the pathophysiology of disease or reveal new opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Maria Andres-Alonso
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany; Leibniz Group 'Dendritic Organelles and Synaptic Function', Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Katarzyna M Grochowska
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany; Leibniz Group 'Dendritic Organelles and Synaptic Function', Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Eckart D Gundelfinger
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto von Guericke University, 39120 Magdeburg, Germany; Institute of Pharmacology and Toxicology, Medical Faculty, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Anna Karpova
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Michael R Kreutz
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany; Leibniz Group 'Dendritic Organelles and Synaptic Function', Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; Center for Behavioral Brain Sciences, Otto von Guericke University, 39120 Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany.
| |
Collapse
|
7
|
Wong W, Balasubramaniam S, Wong RSH, Graf N, Thorburn DR, McFarland R, Troedson C. Mitochondrial respiratory chain dysfunction in a patient with a heterozygous de novo CTBP1 variant. JIMD Rep 2022; 63:546-554. [PMID: 36341169 PMCID: PMC9626656 DOI: 10.1002/jmd2.12326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/08/2022] Open
Abstract
The C-terminal binding protein 1 (CTBP1) functions as a transcriptional corepressor in vertebrates and has been identified to have critical roles in nervous system growth and development. Pathogenic variants in the CTBP1 gene has been shown to cause hypotonia, ataxia, developmental delay and tooth enamel defect syndrome (HADDTS). There have only been 16 cases reported to date with heterozygous, pathogenic variants in CTBP1 manifesting with a neurodevelopmental phenotype. We report a further case of a pathogenic, heterozygous, de novo variant in CTBP1 identified by whole exome sequencing in a female with the typical phenotype of global developmental delay, hypotonia, cerebellar dysfunction and failure to thrive. Additionally, muscle biopsy demonstrates evidence of a respiratory chain defect, only previously reported once in the literature. This supports the role of CTBP1 in maintenance of normal mitochondrial activity and highlights the importance of considering secondary mitochondrial dysfunction in genes not directly involved in the mitochondrial respiratory chain.
Collapse
Affiliation(s)
- Wui‐Kwan Wong
- TY Nelson Department of Neurology and NeurosurgeryThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
| | - Shanti Balasubramaniam
- Genetic Metabolic Disorders ServiceThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
- Discipline of Genomic Medicine, Sydney Medical SchoolUniversity of SydneySydneyNew South WalesAustralia
| | - Rachel S. H. Wong
- Genetic Metabolic Disorders ServiceThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
| | - Nicole Graf
- Department of HistopathologyThe Children's Hospital at WestmeadSydneyAustralia
| | - David R. Thorburn
- Murdoch Children's Research InstituteMelbourneVictoriaAustralia
- Department of PaediatricsUniversity of MelbourneMelbourneVictoriaAustralia
- Victorian Clinical Genetics ServicesMelbourneVictoriaAustralia
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
- NHS Highly Specialised Service for Rare Mitochondrial DisordersNewcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - Christopher Troedson
- TY Nelson Department of Neurology and NeurosurgeryThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
| |
Collapse
|
8
|
Park J, Kim J, Kim E, Won S, Kim WJ. Association between prenatal cadmium exposure and cord blood DNA methylation. ENVIRONMENTAL RESEARCH 2022; 212:113268. [PMID: 35405126 DOI: 10.1016/j.envres.2022.113268] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/13/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Prenatal cadmium exposure is known to affect infant growth and organ development. Nonetheless, the role of DNA methylation in cadmium-related health effects has yet to be determined. To this end, we investigated the relationship between prenatal cadmium exposure and cord blood DNA methylation in Korean infants through an epigenome-wide association study. Cadmium concentrations in maternal blood during early and late pregnancy and in cord blood collected from newborns were measured using atomic adsorption spectrometry and DNA methylation analysis was conducted using HumanMethylationEPIC BeadChip kits. After adjusting for infant sex, maternal pregnancy body mass index, smoking status, and estimated leukocyte composition, we analyzed the association between CpG methylation and cadmium concentration in 364 samples. Among 835,252 CpG sites, maternal blood cadmium concentration in early pregnancy was significantly associated with two differentially methylated CpG sites, cg05537752 and cg24904393, which were annotated ATP9A and no gene, respectively. The study findings indicate that prenatal cadmium exposure is significantly associated with methylation statuses of several CpG sites and regions in Korean infants, especially during early pregnancy.
Collapse
Affiliation(s)
- Jaehyun Park
- Interdisciplinary Program of Bioinformatics, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Jeeyoung Kim
- Department of Internal Medicine and Environmental Health Center, Kangwon National University, Chuncheon, South Korea
| | - Esther Kim
- Department of Internal Medicine and Environmental Health Center, Kangwon National University, Chuncheon, South Korea
| | - Sungho Won
- Interdisciplinary Program of Bioinformatics, College of Natural Sciences, Seoul National University, Seoul, South Korea; Department of Public Health Sciences, Seoul National University, Seoul, South Korea; Institute of Health and Environment, Seoul National University, Seoul, South Korea; RexSoft Corp, Seoul, South Korea.
| | - Woo Jin Kim
- Department of Internal Medicine and Environmental Health Center, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|