1
|
Efthymiou S, Han W, Ilyas M, Li J, Yu Y, Scala M, Malintan NT, Ilyas M, Vavouraki N, Mankad K, Maroofian R, Rocca C, Salpietro V, Lakhani S, Mallack EJ, Palculict TB, Li H, Zhang G, Zafar F, Rana N, Takashima N, Matsunaga H, Manzoni C, Striano P, Lythgoe MF, Aruga J, Lu W, Houlden H. Human mutations in SLITRK3 implicated in GABAergic synapse development in mice. Front Mol Neurosci 2024; 17:1222935. [PMID: 38495551 PMCID: PMC10940442 DOI: 10.3389/fnmol.2024.1222935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 02/02/2024] [Indexed: 03/19/2024] Open
Abstract
This study reports on biallelic homozygous and monoallelic de novo variants in SLITRK3 in three unrelated families presenting with epileptic encephalopathy associated with a broad neurological involvement characterized by microcephaly, intellectual disability, seizures, and global developmental delay. SLITRK3 encodes for a transmembrane protein that is involved in controlling neurite outgrowth and inhibitory synapse development and that has an important role in brain function and neurological diseases. Using primary cultures of hippocampal neurons carrying patients' SLITRK3 variants and in combination with electrophysiology, we demonstrate that recessive variants are loss-of-function alleles. Immunostaining experiments in HEK-293 cells showed that human variants C566R and E606X change SLITRK3 protein expression patterns on the cell surface, resulting in highly accumulating defective proteins in the Golgi apparatus. By analyzing the development and phenotype of SLITRK3 KO (SLITRK3-/-) mice, the study shows evidence of enhanced susceptibility to pentylenetetrazole-induced seizure with the appearance of spontaneous epileptiform EEG as well as developmental deficits such as higher motor activities and reduced parvalbumin interneurons. Taken together, the results exhibit impaired development of the peripheral and central nervous system and support a conserved role of this transmembrane protein in neurological function. The study delineates an emerging spectrum of human core synaptopathies caused by variants in genes that encode SLITRK proteins and essential regulatory components of the synaptic machinery. The hallmark of these disorders is impaired postsynaptic neurotransmission at nerve terminals; an impaired neurotransmission resulting in a wide array of (often overlapping) clinical features, including neurodevelopmental impairment, weakness, seizures, and abnormal movements. The genetic synaptopathy caused by SLITRK3 mutations highlights the key roles of this gene in human brain development and function.
Collapse
Affiliation(s)
- Stephanie Efthymiou
- Department of Neuromuscular Disorders, University College London (UCL) Queen Square Institute of Neurology, London, United Kingdom
- U.O.C. Genetica Medica, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Wenyan Han
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Muhammad Ilyas
- Department of Biological Sciences, International Islamic University Islamabad, Islamabad, Pakistan
| | - Jun Li
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Yichao Yu
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, United Kingdom
| | - Marcello Scala
- Department of Neuromuscular Disorders, University College London (UCL) Queen Square Institute of Neurology, London, United Kingdom
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università Degli Studi di Genova, Genoa, Italy
- Pediatric Neurology and Muscular Diseases Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Nancy T. Malintan
- Department of Neuromuscular Disorders, University College London (UCL) Queen Square Institute of Neurology, London, United Kingdom
| | - Muhammad Ilyas
- Centre for Omic Sciences, Islamia College Peshawar, Peshawar, Pakistan
| | - Nikoleta Vavouraki
- School of Pharmacy, University of Reading, Reading, United Kingdom
- Department of Mathematics and Statistics, University of Reading, Reading, United Kingdom
| | - Kshitij Mankad
- Department of Radiology, Great Ormond Street Hospital, London, United Kingdom
- Developmental Neurosciences Department, University College London (UCL) Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Reza Maroofian
- Department of Neuromuscular Disorders, University College London (UCL) Queen Square Institute of Neurology, London, United Kingdom
| | - Clarissa Rocca
- Department of Neuromuscular Disorders, University College London (UCL) Queen Square Institute of Neurology, London, United Kingdom
| | - Vincenzo Salpietro
- Department of Neuromuscular Disorders, University College London (UCL) Queen Square Institute of Neurology, London, United Kingdom
| | - Shenela Lakhani
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| | - Eric J. Mallack
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| | | | - Hong Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| | - Guojun Zhang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
- Department of Pediatric Neurology, Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Faisal Zafar
- Department of Pediatrics, Multan Hospital, Multan, Pakistan
| | - Nuzhat Rana
- Department of Pediatrics, Multan Hospital, Multan, Pakistan
| | - Noriko Takashima
- Laboratory for Behavioral and Developmental Disorders, RIKEN Brain Science Institute (BSI), Saitama, Japan
| | - Hayato Matsunaga
- Department of Medical Pharmacology, Nagasaki University Institute of Biomedical Sciences, Nagasaki, Japan
| | - Claudia Manzoni
- School of Pharmacy, University College London, London, United Kingdom
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università Degli Studi di Genova, Genoa, Italy
- Pediatric Neurology and Muscular Diseases Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Mark F. Lythgoe
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, United Kingdom
| | - Jun Aruga
- Laboratory for Behavioral and Developmental Disorders, RIKEN Brain Science Institute (BSI), Saitama, Japan
- Department of Medical Pharmacology, Nagasaki University Institute of Biomedical Sciences, Nagasaki, Japan
| | - Wei Lu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Henry Houlden
- Department of Neuromuscular Disorders, University College London (UCL) Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
2
|
Jahangir M, Li L, Zhou JS, Lang B, Wang XP. L1 Retrotransposons: A Potential Endogenous Regulator for Schizophrenia. Front Genet 2022; 13:878508. [PMID: 35832186 PMCID: PMC9271560 DOI: 10.3389/fgene.2022.878508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
The long interspersed nuclear elements 1 (LINE-1/L1s) are the only active autonomous retrotransposons found in humans which can integrate anywhere in the human genome. They can expand the genome and thus bring good or bad effects to the host cells which really depends on their integration site and associated polymorphism. LINE-1 retrotransposition has been found participating in various neurological disorders such as autism spectrum disorder, Alzheimer’s disease, major depression disorder, post-traumatic stress disorder and schizophrenia. Despite the recent progress, the roles and pathological mechanism of LINE-1 retrotransposition in schizophrenia and its heritable risks, particularly, contribution to “missing heritability” are yet to be determined. Therefore, this review focuses on the potentially etiological roles of L1s in the development of schizophrenia, possible therapeutic choices and unaddressed questions in order to shed lights on the future research.
Collapse
Affiliation(s)
| | | | | | - Bing Lang
- *Correspondence: Bing Lang, ; Xiao-Ping Wang,
| | | |
Collapse
|
4
|
Reichard J, Zimmer-Bensch G. The Epigenome in Neurodevelopmental Disorders. Front Neurosci 2021; 15:776809. [PMID: 34803599 PMCID: PMC8595945 DOI: 10.3389/fnins.2021.776809] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/04/2021] [Indexed: 12/26/2022] Open
Abstract
Neurodevelopmental diseases (NDDs), such as autism spectrum disorders, epilepsy, and schizophrenia, are characterized by diverse facets of neurological and psychiatric symptoms, differing in etiology, onset and severity. Such symptoms include mental delay, cognitive and language impairments, or restrictions to adaptive and social behavior. Nevertheless, all have in common that critical milestones of brain development are disrupted, leading to functional deficits of the central nervous system and clinical manifestation in child- or adulthood. To approach how the different development-associated neuropathologies can occur and which risk factors or critical processes are involved in provoking higher susceptibility for such diseases, a detailed understanding of the mechanisms underlying proper brain formation is required. NDDs rely on deficits in neuronal identity, proportion or function, whereby a defective development of the cerebral cortex, the seat of higher cognitive functions, is implicated in numerous disorders. Such deficits can be provoked by genetic and environmental factors during corticogenesis. Thereby, epigenetic mechanisms can act as an interface between external stimuli and the genome, since they are known to be responsive to external stimuli also in cortical neurons. In line with that, DNA methylation, histone modifications/variants, ATP-dependent chromatin remodeling, as well as regulatory non-coding RNAs regulate diverse aspects of neuronal development, and alterations in epigenomic marks have been associated with NDDs of varying phenotypes. Here, we provide an overview of essential steps of mammalian corticogenesis, and discuss the role of epigenetic mechanisms assumed to contribute to pathophysiological aspects of NDDs, when being disrupted.
Collapse
Affiliation(s)
- Julia Reichard
- Functional Epigenetics in the Animal Model, Institute for Biology II, RWTH Aachen University, Aachen, Germany
- Research Training Group 2416 MultiSenses-MultiScales, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - Geraldine Zimmer-Bensch
- Functional Epigenetics in the Animal Model, Institute for Biology II, RWTH Aachen University, Aachen, Germany
- Research Training Group 2416 MultiSenses-MultiScales, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| |
Collapse
|