1
|
Zhang Q, Kang L, Yang H, Liu F, Wu X. Supervised analysis of alternative polyadenylation from single-cell and spatial transcriptomics data with spvAPA. Brief Bioinform 2024; 26:bbae720. [PMID: 39799000 PMCID: PMC11724721 DOI: 10.1093/bib/bbae720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/19/2024] [Accepted: 12/30/2024] [Indexed: 01/15/2025] Open
Abstract
Alternative polyadenylation (APA) is an important driver of transcriptome diversity that generates messenger RNA isoforms with distinct 3' ends. The rapid development of single-cell and spatial transcriptomic technologies opened up new opportunities for exploring APA data to discover hidden cell subpopulations invisible in conventional gene expression analysis. However, conventional gene-level analysis tools are not fully applicable to APA data, and commonly used unsupervised dimensionality reduction methods often disregard experimentally derived annotations such as cell type identities. Here, we proposed a supervised analytical framework termed spvAPA, specifically used for APA analysis from both single-cell and spatial transcriptomics data. First, an iterative imputation method based on weighted nearest neighbor was designed to recover missing APA signatures, by integrating both gene expression and APA modalities. Second, a supervised feature selection method based on sparse partial least squares discriminant analysis was devised to identify APA features distinguishing cell types or spatial morphologies. Additionally, spvAPA improves the visualization of high-dimensional data for discovering novel cell subtypes, which considers APA features and dual modalities of gene expression and APA. Evaluations across nine single-cell and spatial transcriptomics datasets demonstrate the effectiveness and applicability of spvAPA. spvAPA is available at https://github.com/BMILAB/spvAPA.
Collapse
Affiliation(s)
- Qinglong Zhang
- Cancer Institute, Suzhou Medical College, Soochow University, NO. 199 Ren-ai Road, SIP, Suzhou 215000, China
| | - Liping Kang
- Cancer Institute, Suzhou Medical College, Soochow University, NO. 199 Ren-ai Road, SIP, Suzhou 215000, China
| | - Haoran Yang
- Cancer Institute, Suzhou Medical College, Soochow University, NO. 199 Ren-ai Road, SIP, Suzhou 215000, China
| | - Fei Liu
- Cancer Institute, Suzhou Medical College, Soochow University, NO. 199 Ren-ai Road, SIP, Suzhou 215000, China
| | - Xiaohui Wu
- Cancer Institute, Suzhou Medical College, Soochow University, NO. 199 Ren-ai Road, SIP, Suzhou 215000, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, NO. 199 Ren-ai Road, SIP, Suzhou 215000, China
| |
Collapse
|
2
|
Xu Z, Song T, Yang X, Cong L, Yin L, Xu Y, Han X, Gao M, Xu L. TMT-based proteomics reveals methylprotodioscin alleviates oxidative stress and inflammation via COX6C in myocardial infraction. Biomed Pharmacother 2024; 180:117489. [PMID: 39321507 DOI: 10.1016/j.biopha.2024.117489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/04/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024] Open
Abstract
The effect of methylprotodioscin (MPD), a steroidal saponin obtained from medicinal plants, on myocardial infarction (MI) remains elusive. In this study, HL-1 and AC16 cells were subjected to injury induced by hypoxic environment, and a mouse model of MI was established by ligating the left anterior descending. MPD significantly increased viabilities and proliferations, improved the stability of MMP, reduced ROS and inflammatory factor levels in hypoxia cardiomyocytes. Moreover, MPD significantly improved cardiac functions, increased the ventricular ejection fraction and short axis shortening rate of mice with MI, reduced the infarction area, alleviated oxidative stress and increased ATPase activities. Then, differentially expressed proteins (DEPs) were discovered and evaluated using tandem mass tag (TMT)-based proteomics and bioinformatics approaches. Compared with sham group, there were 420 DEPs in the cardiac tissue of MI group, likewise, 163 DEPs in MPD group were identified compared to MI group. By validating, the expression of COX6C was elevated in MI group and declined in MPD groups, consistent with the TMT-based proteomics results. Correspondingly, p-NF-κB expression was downregulated, while Nrf2 and SOD expressions were upregulated by MPD. Moreover, si-COX6C transfection blocked the regulatory effects of MPD on COX6C-mediated inflammation and oxidative stress in MI. Our findings indicate that MPD, a naturally occurring active ingredient, could effectively improve cardiac function. Its ability may result from regulating COX6C to reduce oxidative stress and suppress inflammation, suggesting that MPD is very attractive for the treatment of MI.
Collapse
Affiliation(s)
- Zhihui Xu
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Tingyu Song
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Xiufang Yang
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Linhao Cong
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Lianhong Yin
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Youwei Xu
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Xu Han
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Meng Gao
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China.
| | - Lina Xu
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China.
| |
Collapse
|
3
|
Tian F, Liu D, Chen J, Liao W, Gong W, Huang R, Xie L, Yi F, Zhou J. Proteomic Response of Rat Pituitary Under Chronic Mild Stress Reveals Insights Into Vulnerability and Resistance to Anxiety or Depression. Front Genet 2021; 12:751999. [PMID: 34603401 PMCID: PMC8484759 DOI: 10.3389/fgene.2021.751999] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/01/2021] [Indexed: 12/31/2022] Open
Abstract
Chronic stress as one of the most significant risk factor can trigger overactivity of hypothalamic-pituitary-adrenal (HPA) axis in depression as well as anxiety. Yet, the shared and unique neurobiological underpinnings underlying the pituitary abnormality in these two disorders have not been made clear. We previously have established depression-susceptible, anxiety-susceptible and insusceptible groups using a valid chronic mild stress (CMS) model. In this work, the possible protein expression changes in the rat pituitary of these three groups were continuously investigated through the use of the comparative quantitative proteomics and bioinformatics approaches. The pituitary-proteome analysis identified totally 197 differential proteins as a CMS response. These deregulated proteins were involved in diverse biological functions and significant pathways potentially connected with the three different behavioral phenotypes, likely serving as new investigative protein targets. Afterwards, parallel reaction monitoring-based independent analysis found out that expression alterations in Oxct1, Sec24c, Ppp1cb, Dock1, and Coq3; Lama1, Glb1, Gapdh, Sccpdh, and Renbp; Sephs1, Nup188, Spp1, Prodh1, and Srm were specifically linked to depression-susceptible, anxiety-susceptible and insusceptible groups, respectively, suggesting that the same CMS had different impacts on the pituitary protein regulatory system. Collectively, the current proteomics research elucidated an important molecular basis and furnished new valuable insights into neurochemical commonalities and specificities of the pituitary dysfunctional mechanisms in HPA axis underlying vulnerability and resistance to stress-induced anxiety or depression.
Collapse
Affiliation(s)
- Fenfang Tian
- Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Dan Liu
- Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Jin Chen
- Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing, China.,Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei Liao
- Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Weibo Gong
- Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Rongzhong Huang
- Statistics Laboratory, ChuangXu Institute of Life Science, Chongqing, China.,Chongqing Institute of Life Science, Chongqing, China
| | - Liang Xie
- Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing, China.,Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Faping Yi
- Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Jian Zhou
- Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing, China
| |
Collapse
|