1
|
Liu B, Shi P, Jin T, Feng X. Associations between meeting 24h movement behavior guidelines and cognition, gray matter volume, and academic performance in children and adolescents: a systematic review. Arch Public Health 2025; 83:10. [PMID: 39794834 PMCID: PMC11720839 DOI: 10.1186/s13690-024-01493-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND 24-h movement behaviors have a close relationship with children and adolescents' cognition, gray matter volume, and academic performance. This systematic review aims to precisely explore the associations between meeting different combinations of guidelines and the aforementioned indicators, in order to better serve public health policy. METHODS Computer retrieval was conducted on CNKI, Web of Science, PubMed, SPORT Discus and Cochrane library databases. The screening and data extraction processes were conducted by two researchers. This study used the Joanna Briggs Institute checklist for methodological quality assessment and the Grading of Recommendations Assessment, Development, and Evaluation system for the evaluation of the level of evidence. Descriptive statistical analysis is performed using frequency and percentage on the extracted data and key findings, primarily to assess the consistency of the positive benefits associated with meeting different guidelines and outcome variables. RESULTS A total of 10 studies were included (with 16 correlation analyses conducted), involving 51,566 children and adolescents aged between 4.2 and 15.9 years old. The included studies generally agreed upon the following associations: adherence to the screen time (ST) guidelines is positively linked to fluid intelligence; adherence to the sleep duration (SD) guidelines is positively linked to literacy; adherence to both ST and SD guidelines is associated with increased fluid intelligence and gray matter volume; and overall adherence to all guidelines is positively correlated with fluid intelligence. The included studies reported low certainty of evidence. Additionally, the included studies have provided clear evidence, but some studies did not strictly control confounding factors, and it is also unclear whether there is a larger effect size, hence the level of evidence is relatively low. CONCLUSION There are varying degrees of associations between different combinations of guidelines and cognition, gray matter volume, and academic performance, but further research is needed to confirm these findings, especially the relatively limited role of meeting physical activity guidelines.
Collapse
Affiliation(s)
- Bo Liu
- School of Athletic Performance, Shanghai University of Sport, Shanghai, 200438, China
| | - Peng Shi
- School of Physical Education, Shanghai University of Sport, Shanghai, 200438, China.
| | - Teng Jin
- School of Physical Education, Shandong University of Technology, Zibo, 255000, China
| | - Xiaosu Feng
- School of Physical Education, Liaoning Normal University, Dalian, 116029, China
| |
Collapse
|
2
|
Raul P, Rowe E, van Boxtel JJ. High neural noise in autism: A hypothesis currently at the nexus of explanatory power. Heliyon 2024; 10:e40842. [PMID: 39687175 PMCID: PMC11648220 DOI: 10.1016/j.heliyon.2024.e40842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 11/06/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Autism is a neurodevelopmental difference associated with specific autistic experiences and characteristics. Early models such as Weak Central Coherence and Enhanced Perceptual Functioning have tried to capture complex autistic behaviours in a single framework, however, these models lacked a neurobiological explanation. Conversely, current neurobiological theories of autism at the cellular and network levels suggest excitation/inhibition imbalances lead to high neural noise (or, a 'noisy brain') but lack a thorough explanation of how autistic behaviours occur. Critically, around 15 years ago, it was proposed that high neural noise in autism produced a stochastic resonance (SR) effect, a phenomenon where optimal amounts of noise improve signal quality. High neural noise can thus capture both the enhanced (through SR) and reduced performance observed in autistic individuals during certain tasks. Here, we provide a review and perspective that positions the "high neural noise" hypothesis in autism as best placed to provide research direction and impetus. Emphasis is placed on evidence for SR in autism, as this promising prediction has not yet been reviewed in the literature. Using this updated approach towards autism, we can explain a spectrum of autistic experiences all through a neurobiological lens. This approach can further aid in developing specific support or services for autism.
Collapse
Affiliation(s)
- Pratik Raul
- Discipline of Psychology, Faculty of Health, University of Canberra, Canberra, Australia
| | - Elise Rowe
- Discipline of Psychology, Faculty of Health, University of Canberra, Canberra, Australia
- Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Australia
| | - Jeroen J.A. van Boxtel
- Discipline of Psychology, Faculty of Health, University of Canberra, Canberra, Australia
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
3
|
Subri S, Palumbo L, Gowen E. Symmetry Detection in Autistic Adults Benefits from Local Processing in a Contour Integration Task. J Autism Dev Disord 2024; 54:3684-3696. [PMID: 37642870 DOI: 10.1007/s10803-023-06093-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 08/31/2023]
Abstract
Symmetry studies in autism are inconclusive possibly due to different types of stimuli used which depend on either local or global cues. Therefore, this study compared symmetry detection between 20 autistic and 18 non-autistic adults matched on age, IQ, gender and handedness, using contour integration tasks containing open and closed contours that rely more on local or global processing respectively. Results showed that the autistic group performed equally well with both stimuli and outperformed the non-autistic group only for the open contours, possibly due to a different strategy used in detecting symmetry. However, there were no group differences for the closed contour. Results explain discrepant findings in previous symmetry studies suggesting that symmetry tasks that favour a local strategy may be advantageous for autistic individuals. Implications of the findings towards understanding visual sensory issues in this group are discussed.
Collapse
Affiliation(s)
- Sabrina Subri
- Center of Optometry, Faculty of Health Sciences, Universiti Teknologi MARA, Cawangan Selangor, 42300, Puncak Alam, Selangor, Malaysia.
| | - Letizia Palumbo
- Department of Psychology, Liverpool Hope University, Liverpool, UK
| | - Emma Gowen
- Division of Psychology, Communication and Human Neuroscience, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PL, UK
| |
Collapse
|
4
|
Wang HC, Feldman DE. Degraded tactile coding in the Cntnap2 mouse model of autism. Cell Rep 2024; 43:114612. [PMID: 39110592 PMCID: PMC11396660 DOI: 10.1016/j.celrep.2024.114612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 06/20/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
Atypical sensory processing is common in autism, but how neural coding is disrupted in sensory cortex is unclear. We evaluate whisker touch coding in L2/3 of somatosensory cortex (S1) in Cntnap2-/- mice, which have reduced inhibition. This classically predicts excess pyramidal cell spiking, but this remains controversial, and other deficits may dominate. We find that c-fos expression is elevated in S1 of Cntnap2-/- mice under spontaneous activity conditions but is comparable to that of control mice after whisker stimulation, suggesting normal sensory-evoked spike rates. GCaMP8m imaging from L2/3 pyramidal cells shows no excess whisker responsiveness, but it does show multiple signs of degraded somatotopic coding. This includes broadened whisker-tuning curves, a blurred whisker map, and blunted whisker point representations. These disruptions are greater in noisy than in sparse sensory conditions. Tuning instability across days is also substantially elevated in Cntnap2-/-. Thus, Cntnap2-/- mice show no excess sensory-evoked activity, but a degraded and unstable tactile code in S1.
Collapse
Affiliation(s)
- Han Chin Wang
- Department of Molecular & Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Daniel E Feldman
- Department of Molecular & Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
5
|
Wang HC, Feldman DE. Degraded tactile coding in the Cntnap2 mouse model of autism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.29.560240. [PMID: 37808857 PMCID: PMC10557772 DOI: 10.1101/2023.09.29.560240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Atypical sensory processing in autism involves altered neural circuit function and neural coding in sensory cortex, but the nature of coding disruption is poorly understood. We characterized neural coding in L2/3 of whisker somatosensory cortex (S1) of Cntnap2-/- mice, an autism model with pronounced hypofunction of parvalbumin (PV) inhibitory circuits. We tested for both excess spiking, which is often hypothesized in autism models with reduced inhibition, and alterations in somatotopic coding, using c-fos immunostaining and 2-photon calcium imaging in awake mice. In Cntnap2-/- mice, c-fos-(+) neuron density was elevated in L2/3 of S1 under spontaneous activity conditions, but comparable to control mice after whisker stimulation, suggesting that sensory-evoked spiking was relatively normal. 2-photon GCaMP8m imaging in L2/3 pyramidal cells revealed no increase in whisker-evoked response magnitude, but instead showed multiple signs of degraded somatotopic coding. These included broadening of whisker tuning curves, blurring of the whisker map, and blunting of the point representation of each whisker. These altered properties were more pronounced in noisy than sparse sensory conditions. Tuning instability, assessed over 2-3 weeks of longitudinal imaging, was also significantly increased in Cntnap2-/- mice. Thus, Cntnap2-/- mice show no excess spiking, but a degraded and unstable tactile code in S1.
Collapse
Affiliation(s)
- Han Chin Wang
- Department of Molecular & Cell Biology, and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720, USA
| | - Daniel E. Feldman
- Department of Molecular & Cell Biology, and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
6
|
Raul P, McNally K, Ward LM, van Boxtel JJA. Does stochastic resonance improve performance for individuals with higher autism-spectrum quotient? Front Neurosci 2023; 17:1110714. [PMID: 37123379 PMCID: PMC10140507 DOI: 10.3389/fnins.2023.1110714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/29/2023] [Indexed: 05/02/2023] Open
Abstract
While noise is generally believed to impair performance, the detection of weak stimuli can sometimes be enhanced by introducing optimum noise levels. This phenomenon is termed 'Stochastic Resonance' (SR). Past evidence suggests that autistic individuals exhibit higher neural noise than neurotypical individuals. It has been proposed that the enhanced performance in Autism Spectrum Disorder (ASD) on some tasks could be due to SR. Here we present a computational model, lab-based, and online visual identification experiments to find corroborating evidence for this hypothesis in individuals without a formal ASD diagnosis. Our modeling predicts that artificially increasing noise results in SR for individuals with low internal noise (e.g., neurotypical), however not for those with higher internal noise (e.g., autistic, or neurotypical individuals with higher autistic traits). It also predicts that at low stimulus noise, individuals with higher internal noise outperform those with lower internal noise. We tested these predictions using visual identification tasks among participants from the general population with autistic traits measured by the Autism-Spectrum Quotient (AQ). While all participants showed SR in the lab-based experiment, this did not support our model strongly. In the online experiment, significant SR was not found, however participants with higher AQ scores outperformed those with lower AQ scores at low stimulus noise levels, which is consistent with our modeling. In conclusion, our study is the first to investigate the link between SR and superior performance by those with ASD-related traits, and reports limited evidence to support the high neural noise/SR hypothesis.
Collapse
Affiliation(s)
- Pratik Raul
- Discipline of Psychology, Faculty of Health, University of Canberra, Canberra, ACT, Australia
- *Correspondence: Pratik Raul,
| | - Kate McNally
- Discipline of Psychology, Faculty of Health, University of Canberra, Canberra, ACT, Australia
| | - Lawrence M. Ward
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Jeroen J. A. van Boxtel
- Discipline of Psychology, Faculty of Health, University of Canberra, Canberra, ACT, Australia
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
- Jeroen J. A. van Boxtel,
| |
Collapse
|
7
|
Bocheva N, Hristov I, Stefanov S, Totev T, Staykova SN, Mihaylova MS. How the External Visual Noise Affects Motion Direction Discrimination in Autism Spectrum Disorder. Behav Sci (Basel) 2022; 12:bs12040113. [PMID: 35447685 PMCID: PMC9031710 DOI: 10.3390/bs12040113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/31/2022] [Accepted: 04/15/2022] [Indexed: 02/05/2023] Open
Abstract
Along with social, cognitive, and behavior deficiencies, peculiarities in sensory processing, including an atypical global motion processing, have been reported in Autism Spectrum Disorder (ASD). The question about the enhanced motion pooling in ASD is still debatable. The aim of the present study was to compare global motion integration in ASD using a low-density display and the equivalent noise (EN) approach. Fifty-seven children and adolescents with ASD or with typical development (TD) had to determine the average direction of movement of 30 Laplacian-of-Gaussian micro-patterns. They moved in directions determined by a normal distribution with a standard deviation of 2°, 5°, 10°, 15°, 25°, and 35°, corresponding to the added external noise. The data obtained showed that the ASD group has much larger individual differences in motion direction thresholds on external noise effect than the TD group. Applying the equivalent noise paradigm, we found that the global motion direction discrimination thresholds were more elevated in ASD than in controls at all noise levels. These results suggest that ASD individuals have a poor ability to integrate the local motion information in low-density displays.
Collapse
Affiliation(s)
- Nadejda Bocheva
- Department of Sensory Neurobiology, Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.H.); (S.S.); (T.T.); (M.S.M.)
- Correspondence:
| | - Ivan Hristov
- Department of Sensory Neurobiology, Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.H.); (S.S.); (T.T.); (M.S.M.)
| | - Simeon Stefanov
- Department of Sensory Neurobiology, Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.H.); (S.S.); (T.T.); (M.S.M.)
| | - Tsvetalin Totev
- Department of Sensory Neurobiology, Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.H.); (S.S.); (T.T.); (M.S.M.)
| | | | - Milena Slavcheva Mihaylova
- Department of Sensory Neurobiology, Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.H.); (S.S.); (T.T.); (M.S.M.)
| |
Collapse
|