1
|
Kesler SR, Cuevas H, Lewis KA, Franco-Rocha OY, Flowers E. The expression of insulin signaling and N-methyl-D-aspartate receptor genes in areas of gray matter atrophy is associated with cognitive function in type 2 diabetes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.26.25324696. [PMID: 40236395 PMCID: PMC11998827 DOI: 10.1101/2025.03.26.25324696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Type 2 diabetes (T2DM) is associated with brain abnormalities and cognitive dysfunction, including increased risk for Alzheimer's disease. However, the mechanisms of T2DM-related dementia remain poorly understood. We obtained retrospective data from the Mayo Clinic Study of Aging for 271 individuals with T2DM and 542 demographically matched non-diabetic controls (age 51-89, 62% male). We identified regions of significant gray matter atrophy in the T2DM group and then determined which genes were significantly expressed in these brain regions using imaging transcriptomics. We selected 15 candidate genes involved in insulin signaling, lipid metabolism, amyloid processing, N-methyl-D-aspartate-mediated neurotransmission, and calcium signaling. The T2DM group demonstrated significant gray matter atrophy in regions of the default mode, frontal-parietal, and sensorimotor networks (p < 0.05 cluster threshold corrected for false discovery rate, FDR). IRS1, AKT1, PPARG, PRKAG2, and GRIN2B genes were significantly expressed in these same regions (R2 > 0.10, p < 0.03, FDR corrected). Bayesian network analysis indicated significant directional paths among all 5 genes as well as the Clinical Dementia Rating score. Directional paths among genes were significantly altered in the T2DM group (Structural Hamming Distance = 12, p = 0.004), with PPARG expression becoming more important in the context of T2DM-related pathophysiology. Alterations of brain transcriptome patterns occurred in the absence of significant cognitive deficit or amyloid accumulation, potentially representing an early biomarker of T2DM-related dementia.
Collapse
Affiliation(s)
- Shelli R Kesler
- Division of Adult Health, School of Nursing, University of Texas at Austin, Austin, TX, USA
- Department of Diagnostic Medicine, Dell School of Medicine, University of Texas at Austin, Austin, TX, USA
| | - Heather Cuevas
- Division of Adult Health, School of Nursing, University of Texas at Austin, Austin, TX, USA
| | - Kimberly A Lewis
- Department of Nursing Excellence, Kaiser Permanente Richmond Medical Center, Richmond, CA, USA
| | - Oscar Y Franco-Rocha
- Division of Adult Health, School of Nursing, University of Texas at Austin, Austin, TX, USA
| | - Elena Flowers
- Department of Physiological Nursing, School of Nursing, University of California, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, CA, USA
| |
Collapse
|
2
|
Lv Y, Dong X, Xi Y, Zhan F, Mao Y, Wu J, Wu X. Temporal Transcriptomic Differences in Stroke Between Diabetic and Non-Diabetic Mice. J Mol Neurosci 2025; 75:31. [PMID: 40053254 DOI: 10.1007/s12031-025-02327-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 02/21/2025] [Indexed: 04/02/2025]
Abstract
Diabetes is a key risk factor for ischemic stroke and negatively impacts long-term outcomes post-stroke. However, genomic studies on diabetic stroke remain insufficient. This study aims to investigate the interaction between diabetes and stroke from the acute phase to the early recovery phase by establishing a diabetic stroke animal model and comparing transcriptome sequencing results with those of non-diabetic stroke models. The study identified a greater number of downregulated genes in the diabetic stroke group compared to the non-diabetic group at different stages post-stroke. Functional enrichment analysis revealed an enhanced immune response and a relatively lower neurodegeneration potential in the diabetic group. Post-stroke, a higher presence of CD4 + T cells, eosinophils, and M1 macrophages was observed in the diabetic group. Additionally, time-series analysis identified a set of genes with time-specific expression patterns following diabetic stroke. This study underscores the role of inflammation and immune responses as potential factors exacerbating ischemic stroke in diabetes while also identifying gene regulatory networks at different stages post-stroke. These findings provide new insights into the role of diabetes in stroke and suggest potential therapeutic targets for improving outcomes in diabetic patients.
Collapse
Affiliation(s)
- Yifei Lv
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Pharmacy, Wuhan Children'S Hospital (Wuhan Maternal and Child Health Hospital, Wuhan Women's and Children's Health Care Center), Wuhan, 430014, China
| | - Xiaomin Dong
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yujie Xi
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Fang Zhan
- Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yining Mao
- Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jianhua Wu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Xiaoyan Wu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.
| |
Collapse
|
3
|
Butska LV, Drevitska OO, Dybkalyuk SV, Ryzhak VO. Comprehensive approach to the rehabilitation of professionals with high levels of psychophysical stress, pain syndromes and type 2 diabetes mellitus during the war Lidiia V. Butska1,2,3, Oksana O. Drevitska1,2,3, Sergei V. Dybkalyuk4, Valentyn O. Ryzhak 5 1TARAS SHEVCHENKO NATIONAL UNIVERSITY OF KYIV, KYIV, UKRAINE 2INTERREGIONAL ACADEMY OF PERSONNEL MANAGEMENT, KYIV, UKRAINE 3STATE INSTITUTION «KUNDIIEV INSTITUTE OF OCCUPATIONAL HEALTH OF THE NATIONAL ACADEMY OF MEDICAL SCIENCES OF UKRAINE», KYIV, UKRAINE 4SHUPYK NATIONAL HEALTHCARE UNIVERSITY OF UKRAINE, KYIV, UKRAINE 5OPTIMUM MEDIA UKRAINE, KYIV, UKRAINE. POLSKI MERKURIUSZ LEKARSKI : ORGAN POLSKIEGO TOWARZYSTWA LEKARSKIEGO 2025; 53:34-39. [PMID: 40063909 DOI: 10.36740/merkur202501105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
OBJECTIVE . Aim: To evaluate the effectiveness of a multilevel rehabilitation program integrating physiotherapy (PT), transcranial electrical stimulation (TES), and endonasal breathing of a singlet-oxygen mixture (EBSO) on pain syndromes (PS), quality of life (QL), and levels of depression in professionals with type 2 diabetes mellitus (T2DM) and high psychophysical stress. PATIENTS AND METHODS Materials and Methods: Sixty professionals with high psychophysical stress were randomly divided into three groups (n=20 each). Group 1 received standard rehabilitation. Group 2 underwent targeted PT, including ultrasound therapy for the pancreas projection and magneto-laser therapy for the liver projection and Th5-Th7 zones. Group 3 received the same PT as Group 2, supplemented with TES (alpha rhythm frequency) and EBSO. The rehabilitation program lasted two weeks, comprising 10 sessions. Outcomes were assessed using the QL questionnaire - SF-36 and Beck Depression Inventory-II (BDI-II). RESULTS Results: Group 3 demonstrated significant improvements in QL by SF-36 score, particularly in Physical Functioning (from 49,2 ± 2,6 to 70,3 ± 3,8), Bodily Pain (from 48,1 ± 2,6 to 69,3 ± 3,1), and Mental Health (from 38,0 ± 3,3 to 59,3 ± 3,6; p < 0,01). Depression score decreased from 30,6 ± 2,1 to 18,2 ± 2,0 (p < 0,01), with notable improvements in cognitive-affective and somatic subscales. Group 2 showed moderate improvements, while Group 1 exhibited minimal changes. CONCLUSION Conclusions: Combining targeted PT with TES and EBSO significantly improves somatic and psychological outcomes in T2DM patients compared to standard rehabilitation or PT alone.
Collapse
Affiliation(s)
- Lidiia V. Butska
- TARAS SHEVCHENKO NATIONAL UNIVERSITY OF KYIV, KYIV, UKRAINE; INTERREGIONAL ACADEMY OF PERSONNEL MANAGEMENT, KYIV, UKRAINE; STATE INSTITUTION «KUNDIIEV INSTITUTE OF OCCUPATIONAL HEALTH OF THE NATIONAL ACADEMY OF MEDICAL SCIENCES OF UKRAINE», KYIV, UKRAINE
| | - Oksana O. Drevitska
- TARAS SHEVCHENKO NATIONAL UNIVERSITY OF KYIV, KYIV, UKRAINE; INTERREGIONAL ACADEMY OF PERSONNEL MANAGEMENT, KYIV, UKRAINE; STATE INSTITUTION «KUNDIIEV INSTITUTE OF OCCUPATIONAL HEALTH OF THE NATIONAL ACADEMY OF MEDICAL SCIENCES OF UKRAINE», KYIV, UKRAINE
| | | | | |
Collapse
|
4
|
Chen MD, Deng CF, Chen PF, Li A, Wu HZ, Ouyang F, Hu XG, Liu JX, Wang SM, Tang D. Non-invasive metabolic biomarkers in initial cognitive impairment in patients with diabetes: A systematic review and meta-analysis. Diabetes Obes Metab 2024; 26:5519-5536. [PMID: 39233493 DOI: 10.1111/dom.15916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 09/06/2024]
Abstract
AIM Diabetic cognitive impairment (DCI), considered one of the most severe and commonly overlooked complications of diabetes, has shown inconsistent findings regarding the metabolic profiles in DCI patients. This systematic review and meta-analysis aimed to identify dysregulated metabolites as potential biomarkers for early DCI, providing valuable insights into the underlying pathophysiological mechanisms. MATERIALS AND METHODS A systematic search of four databases, namely PubMed, Embase, Web of Science and Cochrane, was conducted up to March 2024. Subsequently, a qualitative review of clinical studies was performed followed by a meta-analysis of metabolite markers. Finally, the sources of heterogeneity were explored through subgroup and sensitivity analyses. RESULTS A total of 774 unique publications involving 4357 participants and the identification of multiple metabolites were retrieved. Of these, 13 clinical studies reported metabolite differences between the DCI and control groups. Meta-analysis was conducted for six brain metabolites and two metabolite ratios. The results revealed a significant increase in myo-inositol (MI) concentration and decreases in glutamate (Glu), Glx (glutamate and glutamine) and N-acetylaspartate/creatine (NAA/Cr) ratios in DCI, which have been identified as the most sensitive metabolic biomarkers for evaluating DCI progression. Notably, brain metabolic changes associated with cognitive impairment are more pronounced in type 2 diabetes mellitus than in type 1 diabetes mellitus, and the hippocampus emerged as the most sensitive brain region regarding metabolic changes associated with DCI. CONCLUSIONS Our results suggest that MI, Glu, and Glx concentrations and NAA/Cr ratios within the hippocampus may serve as metabolic biomarkers for patients with early-stage DCI.
Collapse
Affiliation(s)
- Meng-Di Chen
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering and Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China
| | - Chao-Fan Deng
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering and Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China
| | - Peng-Fei Chen
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering and Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ao Li
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering and Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hua-Ze Wu
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering and Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China
| | - Fan Ouyang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering and Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xu-Guang Hu
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering and Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jian-Xin Liu
- School of Pharmaceutical Sciences, China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua City, China
| | - Shu-Mei Wang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering and Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China
| | - Dan Tang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering and Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
5
|
Qiu W, Yue X, Huang H, Ge L, Lu W, Cao Z, Rao Y, Tan X, Wang Y, Wu J, Chen Y, Qiu S, Li G. Structural characteristics of amygdala subregions in type 2 diabetes mellitus. Behav Brain Res 2024; 466:114992. [PMID: 38599250 DOI: 10.1016/j.bbr.2024.114992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
Type 2 diabetes mellitus (T2DM) patients often suffer from depressive symptoms, which seriously affect cooperation in treatment and nursing. The amygdala plays a significant role in depression. This study aims to explore the microstructural alterations of the amygdala in T2DM and to investigate the relationship between the alterations and depressive symptoms. Fifty T2DM and 50 healthy controls were included. Firstly, the volumes of subcortical regions and subregions of amygdala were calculated by FreeSurfer. Covariance analysis (ANCOVA) was conducted between the two groups with covariates of age, sex, and estimated total intracranial volume to explore the differences in volume of subcortical regions and subregions of amygdala. Furthermore, the structural covariance within the amygdala subregions was performed. Moreover, we investigate the correlation between depressive symptoms and the volume of subcortical regions and amygdala subregions in T2DM. We observed a reduction in the volume of the bilateral cortico-amygdaloid transition area, left basal nucleus, bilateral accessory basal nucleus, left anterior amygdaloid area of amygdala, the left thalamus and left hippocampus in T2DM. T2DM patients showed decreased structural covariance connectivity between left paralaminar nucleus and the right central nucleus. Moreover, there was a negative correlation between self-rating depression scale scores and the volume of the bilateral cortico-amygdaloid transition area in T2DM. This study reveals extensive structural alterations in the amygdala subregions of T2DM patients. The reduction in the volume of the bilateral cortico-amygdaloid transition area may be a promising imaging marker for early recognition of depressive symptoms in T2DM.
Collapse
Affiliation(s)
- Wenbin Qiu
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, PR China
| | - Xiaomei Yue
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, PR China
| | - Haoming Huang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, PR China; Critical Care Unit, The Affiliated Traditional Chinese Medicine Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510405, PR China
| | - Limin Ge
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, PR China
| | - Weiye Lu
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, PR China
| | - Zidong Cao
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, PR China
| | - Yawen Rao
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, PR China
| | - Xin Tan
- Department of Radiology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, PR China
| | - Yan Wang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, PR China
| | - Jinjian Wu
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, PR China
| | - Yuna Chen
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, PR China
| | - Shijun Qiu
- Department of Radiology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, PR China.
| | - Gang Li
- Department of Radiology and Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, NC 27599, USA.
| |
Collapse
|
6
|
Yu JH, Kim REY, Park SY, Lee DY, Cho HJ, Kim NH, Yoo HJ, Seo JA, Kim SG, Choi KM, Baik SH, Shin C, Kim NH. Association of long-term hyperglycaemia and insulin resistance with brain atrophy and cognitive decline: A longitudinal cohort study. Diabetes Obes Metab 2023; 25:1091-1100. [PMID: 36564910 DOI: 10.1111/dom.14958] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022]
Abstract
AIM To investigate the longitudinal changes in brain volume and cognitive function associated with diabetes at midlife, and to examine whether long-term hyperglycaemia, insulin resistance or secretory function is associated with brain atrophy and cognitive decline. MATERIALS AND METHODS We used data from 2377 participants with both baseline and 4-year follow-up brain magnetic resonance images and neuropsychological measures from the Ansan cohort of the Korean Genome Epidemiology Study. Time-weighted mean glycaemic values were calculated using all measurements over an average duration of 10.6 years from cohort initiation to baseline visits. RESULTS Type 2 diabetes was associated with greater white matter volume reduction (adjusted volume difference = -1.96 ml, 95% CI: -3.73, -0.18) and executive function decline (adjusted Z score difference = -0.14, 95% CI: -0.23, -0.05) during the follow-up period of 4.2 years. Decline of verbal and visual memory or verbal fluency was not associated with diabetes. Greater executive function decline was associated with higher time-weighted mean HbA1c level over the preceding 10.6 years (P < .001), but not with insulin resistance markers in the diabetes group. Participants with diabetes, whose time-weighted average HbA1c level was maintained above 6.5% over the previous decade, showed greater decline in executive function and global cognition than the normal glucose group. CONCLUSIONS Long-term hyperglycaemia was a major independent factor associated with rapid cognitive decline in middle-aged adults with diabetes. Maintaining ideal glucose levels in diabetes at midlife might prevent later rapid cognitive decline.
Collapse
Affiliation(s)
- Ji Hee Yu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Regina E Y Kim
- Institute of Human Genomic Study, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea
- Psychiatry, University of Iowa, Iowa City, Iowa, USA
| | - So Young Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Da Young Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hyun Joo Cho
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Nam Hoon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hye Jin Yoo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Ji A Seo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sin Gon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyung Mook Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sei Hyun Baik
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Chol Shin
- Institute of Human Genomic Study, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea
| | - Nan Hee Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
7
|
Li ZY, Ma T, Yu Y, Hu B, Han Y, Xie H, Ni MH, Chen ZH, Zhang YM, Huang YX, Li WH, Wang W, Yan LF, Cui GB. Changes of brain function in patients with type 2 diabetes mellitus measured by different analysis methods: A new coordinate-based meta-analysis of neuroimaging. Front Neurol 2022; 13:923310. [PMID: 36090859 PMCID: PMC9449648 DOI: 10.3389/fneur.2022.923310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/11/2022] [Indexed: 11/22/2022] Open
Abstract
Objective Neuroimaging meta-analysis identified abnormal neural activity alterations in patients with type 2 diabetes mellitus (T2DM), but there was no consistency or heterogeneity analysis between different brain imaging processing strategies. The aim of this meta-analysis was to determine consistent changes of regional brain functions in T2DM via the indicators obtained by using different post-processing methods. Methods Since the indicators obtained using varied post-processing methods reflect different neurophysiological and pathological characteristics, we further conducted a coordinate-based meta-analysis (CBMA) of the two categories of neuroimaging literature, which were grouped according to similar data processing methods: one group included regional homogeneity (ReHo), independent component analysis (ICA), and degree centrality (DC) studies, while the other group summarized the literature on amplitude of low-frequency fluctuation (ALFF) and cerebral blood flow (CBF). Results The final meta-analysis included 23 eligible trials with 27 data sets. Compared with the healthy control group, when neuroimaging studies were combined with ReHo, ICA, and DC measurements, the brain activity of the right Rolandic operculum, right supramarginal gyrus, and right superior temporal gyrus in T2DM patients decreased significantly. When neuroimaging studies were combined with ALFF and CBF measurements, there was no clear evidence of differences in the brain function between T2DM and HCs. Conclusion T2DM patients have a series of spontaneous abnormal brain activities, mainly involving brain regions related to learning, memory, and emotion, which provide early biomarkers for clarifying the mechanism of cognitive impairment and neuropsychiatric disorders in diabetes. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=247071, PROSPERO [CRD42021247071].
Collapse
Affiliation(s)
- Ze-Yang Li
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Teng Ma
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Ying Yu
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Bo Hu
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yu Han
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Hao Xie
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Min-Hua Ni
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
- Faculty of Medical Technology, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Zhu-Hong Chen
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yang-Ming Zhang
- Battalion of the Second Regiment of Cadets of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yu-Xiang Huang
- Battalion of the Second Regiment of Cadets of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Wen-Hua Li
- Battalion of the Second Regiment of Cadets of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Wen Wang
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
- *Correspondence: Guang-Bin Cui ;
| | - Lin-Feng Yan
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
- Lin-Feng Yan
| | - Guang-Bin Cui
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
- Wen Wang
| |
Collapse
|
8
|
Zhang J, Liu Y, Guo X, Guo J, Du Z, He M, Liu Q, Xu D, Liu T, Zhang J, Yuan H, Wang M, Li S. Causal Structural Covariance Network Suggesting Structural Alterations Progression in Type 2 Diabetes Patients. Front Hum Neurosci 2022; 16:936943. [PMID: 35911591 PMCID: PMC9336220 DOI: 10.3389/fnhum.2022.936943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/16/2022] [Indexed: 12/02/2022] Open
Abstract
Background and Purpose According to reports, type 2 diabetes (T2D) is a progressive disease. However, no known research has examined the progressive brain structural changes associated with T2D. The purpose of this study was to determine whether T2D patients exhibit progressive brain structural alterations and, if so, how the alterations progress. Materials and Methods Structural magnetic resonance imaging scans were collected for 81 T2D patients and 48 sex-and age-matched healthy controls (HCs). Voxel-based morphometry (VBM) and causal structural covariance network (CaSCN) analyses were applied to investigate gray matter volume (GMV) alterations and the likely chronological processes underlying them in T2D. Two sample t-tests were performed to compare group differences, and the differences were corrected using Gaussian random field (GRF) correction (voxel-level p < 0.001, cluster-level p < 0.01). Results Our findings demonstrated that GMV alterations progressed in T2D patients as disease duration increased. In the early stages of the disease, the right temporal pole of T2D patients had GMV atrophy. As the diseases duration prolonged, the limbic system, cerebellum, subcortical structures, parietal cortex, frontal cortex, and occipital cortex progressively exhibited GMV alterations. The patients also exhibited a GMV alterations sequence exerting from the right temporal pole to the limbic-cerebellum-striatal-cortical network areas. Conclusion Our results indicate that the progressive GMV alterations of T2D patients manifested a limbic-cerebellum-striatal-cortical sequence. These findings may contribute to a better understanding of the progression and an improvement of current diagnosis and intervention strategies for T2D.
Collapse
Affiliation(s)
- Jiang Zhang
- College of Electrical Engineering, Sichuan University, Chengdu, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Yuyan Liu
- College of Electrical Engineering, Sichuan University, Chengdu, China
| | - Xiaonan Guo
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, China
- Hebei Key Laboratory of Information Transmission and Signal Processing, Yanshan University, Qinhuangdao, China
| | - Jing Guo
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhengcong Du
- School of Information Science and Technology, Xichang University, Xichang, China
| | - Muyuan He
- College of Electrical Engineering, Sichuan University, Chengdu, China
| | - Qihong Liu
- College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Dundi Xu
- College of Electrical Engineering, Sichuan University, Chengdu, China
| | - Taiyuan Liu
- Department of Medical Imaging, Henan Provincial People's Hospital, Zhengzhou, China
| | - Junran Zhang
- College of Electrical Engineering, Sichuan University, Chengdu, China
- *Correspondence: Junran Zhang
| | - Huijuan Yuan
- Department of Endocrinology, Henan Provincial People's Hospital, Zhengzhou, China
- Huijuan Yuan
| | - Meiyun Wang
- Department of Medical Imaging, Henan Provincial People's Hospital, Zhengzhou, China
- Meiyun Wang
| | - Shasha Li
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| |
Collapse
|