1
|
Ineichen C, Glannon W. Deep Brain Stimulation and Neuropsychiatric Anthropology - The "Prosthetisability" of the Lifeworld. AJOB Neurosci 2025; 16:3-11. [PMID: 39302245 DOI: 10.1080/21507740.2024.2402219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Deep Brain Stimulation (DBS) represents a key area of neuromodulation that has gained wide adoption for the treatment of neurological and experimental testing for psychiatric disorders. It is associated with specific therapeutic effects based on the precision of an evolving mechanistic neuroscientific understanding. At the same time, there are obstacles to achieving symptom relief because of the incompleteness of such an understanding. These obstacles are at least in part based on the complexity of neuropsychiatric disorders and the incompleteness of DBS devices to represent prosthetics that modulate the breadth of pathological processes implicated in these disorders. Neuroprostheses, such as an implanted DBS system, can have vast effects on subjects in addition to the specific neuropsychiatric changes they are intended to produce. These effects largely represent blind spots in the current debate on neuromodulation. Anthropological accounts can illustrate the broad existential dimensions of patients' illness and responses to neural implants. In combination with current neuroscientific understanding, neuropsychiatric anthropology may illuminate the possibilities and limits of neurodevices as technical "world enablers".
Collapse
|
2
|
Honma M, Terao Y. Modulation of time in Parkinson's disease: a review and perspective on cognitive rehabilitation. Front Psychiatry 2024; 15:1379496. [PMID: 38686125 PMCID: PMC11056500 DOI: 10.3389/fpsyt.2024.1379496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024] Open
Abstract
Time cognition is an essential function of human life, and the impairment affects a variety of behavioral patterns. Neuropsychological approaches have been widely demonstrated that Parkinson's disease (PD) impairs time cognitive processing. Many researchers believe that time cognitive deficits are due to the basal ganglia, including the striatum or subthalamic nucleus, which is the pathomechanism of PD, and are considered to produce only transient recovery due to medication effects. In this perspective, we focus on a compensatory property of brain function based on the improved time cognition independent of basal ganglia recovery and an overlapping structure on the neural network based on an improved inhibitory system by time cognitive training, in patients with PD. This perspective may lead to restoring multiple functions through single function training.
Collapse
Affiliation(s)
- Motoyasu Honma
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
| | - Yasuo Terao
- Department of Medical Physiology, Kyorin University of School of Medicine, Tokyo, Japan
| |
Collapse
|
3
|
Sadibolova R, DiMarco EK, Jiang A, Maas B, Tatter SB, Laxton A, Kishida KT, Terhune DB. Sub-second and multi-second dopamine dynamics underlie variability in human time perception. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.09.24302276. [PMID: 38370629 PMCID: PMC10871373 DOI: 10.1101/2024.02.09.24302276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Timing behaviour and the perception of time are fundamental to cognitive and emotional processes in humans. In non-human model organisms, the neuromodulator dopamine has been associated with variations in timing behaviour, but the connection between variations in dopamine levels and the human experience of time has not been directly assessed. Here, we report how dopamine levels in human striatum, measured with sub-second temporal resolution during awake deep brain stimulation surgery, relate to participants' perceptual judgements of time intervals. Fast, phasic, dopaminergic signals were associated with underestimation of temporal intervals, whereas slower, tonic, decreases in dopamine were associated with poorer temporal precision. Our findings suggest a delicate and complex role for the dynamics and tone of dopaminergic signals in the conscious experience of time in humans.
Collapse
Affiliation(s)
- Renata Sadibolova
- Department of Psychology, Goldsmiths, University of London; London SE14 6NW, UK
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King’s College London; London SE5 8AB, UK
- School of Psychology, University of Roehampton; London SW15 4JD, UK
| | - Emily K. DiMarco
- Neuroscience Graduate Program, Wake Forest School of Medicine; Winston-Salem, NC, 27157, USA
- Department of Translational Neuroscience, Wake Forest School of Medicine; Winston-Salem, NC, 27157, USA
| | - Angela Jiang
- Department of Translational Neuroscience, Wake Forest School of Medicine; Winston-Salem, NC, 27157, USA
| | - Benjamin Maas
- Department of Translational Neuroscience, Wake Forest School of Medicine; Winston-Salem, NC, 27157, USA
- Virginia Tech – Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest School of Medicine; Winston-Salem, NC, 27157, USA
- Department of Biomedical Engineering, Wake Forest School of Medicine; Winston-Salem, NC, 27157, USA
| | - Stephen B. Tatter
- Department of Neurosurgery, Wake Forest School of Medicine; Winston-Salem, NC, 27157, USA
| | - Adrian Laxton
- Department of Neurosurgery, Wake Forest School of Medicine; Winston-Salem, NC, 27157, USA
| | - Kenneth T. Kishida
- Neuroscience Graduate Program, Wake Forest School of Medicine; Winston-Salem, NC, 27157, USA
- Department of Translational Neuroscience, Wake Forest School of Medicine; Winston-Salem, NC, 27157, USA
- Virginia Tech – Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest School of Medicine; Winston-Salem, NC, 27157, USA
- Department of Biomedical Engineering, Wake Forest School of Medicine; Winston-Salem, NC, 27157, USA
- Department of Neurosurgery, Wake Forest School of Medicine; Winston-Salem, NC, 27157, USA
| | - Devin B. Terhune
- Department of Psychology, Goldsmiths, University of London; London SE14 6NW, UK
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King’s College London; London SE5 8AB, UK
| |
Collapse
|
4
|
Hinault T, D'Argembeau A, Bowler DM, La Corte V, Desaunay P, Provasi J, Platel H, Tran The J, Charretier L, Giersch A, Droit-Volet S. Time processing in neurological and psychiatric conditions. Neurosci Biobehav Rev 2023; 154:105430. [PMID: 37871780 DOI: 10.1016/j.neubiorev.2023.105430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/25/2023]
Abstract
A central question in understanding cognition and pathology-related cognitive changes is how we process time. However, time processing difficulties across several neurological and psychiatric conditions remain seldom investigated. The aim of this review is to develop a unifying taxonomy of time processing, and a neuropsychological perspective on temporal difficulties. Four main temporal judgments are discussed: duration processing, simultaneity and synchrony, passage of time, and mental time travel. We present an integrated theoretical framework of timing difficulties across psychiatric and neurological conditions based on selected patient populations. This framework provides new mechanistic insights on both (a) the processes involved in each temporal judgement, and (b) temporal difficulties across pathologies. By identifying underlying transdiagnostic time-processing mechanisms, this framework opens fruitful avenues for future research.
Collapse
Affiliation(s)
- Thomas Hinault
- Normandie Univ, UNICAEN, PSL Research University, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, 14032 Caen, France.
| | - Arnaud D'Argembeau
- Psychology and Neuroscience of Cognition Research Unit, University of Liège, F.R.S-FNRS, 4000 Liège, Belgium
| | - Dermot M Bowler
- Autism Research Group, City, University of London, EC1V 0HB London, United Kingdom
| | - Valentina La Corte
- Laboratoire Mémoire, Cerveau et Cognition (MC2Lab), UR 7536, Université de Paris cité, 92774 Boulogne-Billancourt, France; Institut Universitaire de France, 75231 Paris, France
| | - Pierre Desaunay
- Normandie Univ, UNICAEN, PSL Research University, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, 14032 Caen, France; Service de Psychiatrie de l'enfant et de l'adolescent, CHU de Caen, 14000 Caen, France
| | - Joelle Provasi
- CHArt laboratory (Human and Artificial Cognition), EPHE-PSL, 75014 Paris, France
| | - Hervé Platel
- Normandie Univ, UNICAEN, PSL Research University, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, 14032 Caen, France
| | - Jessica Tran The
- Normandie Univ, UNICAEN, PSL Research University, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, 14032 Caen, France
| | - Laura Charretier
- Normandie Univ, UNICAEN, PSL Research University, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, 14032 Caen, France
| | - Anne Giersch
- Cognitive Neuropsychology and Pathophysiology of Schizophrenia Laboratory, National Institute of Health and Medical Research, University of Strasbourg, 67081 Strasbourg, France
| | - Sylvie Droit-Volet
- Université Clermont Auvergne, LAPSCO, CNRS, UMR 6024, 60032 Clermont-Ferrand, France
| |
Collapse
|
5
|
DiMarco E, Sadibolova R, Jiang A, Liebenow B, Jones RE, Ul Haq I, Siddiqui MS, Terhune DB, Kishida KT. Time perception reflects individual differences in motor and non-motor symptoms of Parkinson's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.02.530411. [PMID: 36909605 PMCID: PMC10002735 DOI: 10.1101/2023.03.02.530411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Dopaminergic signaling in the striatum has been shown to play a critical role in the perception of time. Decreasing striatal dopamine efficacy is at the core of Parkinson's disease (PD) motor symptoms and changes in dopaminergic action have been associated with many comorbid non-motor symptoms in PD. We hypothesize that patients with PD perceive time differently and in accordance with their specific comorbid non-motor symptoms and clinical state. We recruited patients with PD and compared individual differences in patients' clinical features with their ability to judge millisecond to second intervals of time (500ms-1100ms) while on or off their prescribed dopaminergic medications. We show that individual differences in comorbid non-motor symptoms, PD duration, and prescribed dopaminergic pharmacotherapeutics account for individual differences in time perception performance. We report that comorbid impulse control disorder is associated with temporal overestimation; depression is associated with decreased temporal accuracy; and PD disease duration and prescribed levodopa monotherapy are associated with reduced temporal precision and accuracy. Observed differences in time perception are consistent with hypothesized dopaminergic mechanisms thought to underlie the respective motor and non-motor symptoms in PD, but also raise questions about specific dopaminergic mechanisms. In future work, time perception tasks like the one used here, may provide translational or reverse translational utility in investigations aimed at disentangling neural and cognitive systems underlying PD symptom etiology. One Sentence Summary Quantitative characterization of time perception behavior reflects individual differences in Parkinson's disease motor and non-motor symptom clinical presentation that are consistent with hypothesized neural and cognitive mechanisms.
Collapse
|
6
|
Honma M, Sasaki F, Kamo H, Nuermaimaiti M, Kujirai H, Atsumi T, Umemura A, Iwamuro H, Shimo Y, Oyama G, Hattori N, Terao Y. Role of the subthalamic nucleus in perceiving and estimating the passage of time. Front Aging Neurosci 2023; 15:1090052. [PMID: 36936495 PMCID: PMC10017994 DOI: 10.3389/fnagi.2023.1090052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/25/2023] [Indexed: 03/06/2023] Open
Abstract
Sense of time (temporal sense) is believed to be processed by various brain regions in a complex manner, among which the basal ganglia, including the striatum and subthalamic nucleus (STN), play central roles. However, the precise mechanism for processing sense of time has not been clarified. To examine the role of the STN in temporal processing of the sense of time by directly manipulating STN function by switching a deep brain stimulation (DBS) device On/Off in 28 patients with Parkinson's disease undergoing STN-DBS therapy. The test session was performed approximately 20 min after switching the DBS device from On to Off or from Off to On. Temporal sense processing was assessed in three different tasks (time reproduction, time production, and bisection). In the three temporal cognitive tasks, switching STN-DBS to Off caused shorter durations to be produced compared with the switching to the On condition in the time production task. In contrast, no effect of STN-DBS was observed in the time bisection or time reproduction tasks. These findings suggest that the STN is involved in the representation process of time duration and that the role of the STN in the sense of time may be limited to the exteriorization of memories formed by experience.
Collapse
Affiliation(s)
- Motoyasu Honma
- Department of Medical Physiology, Kyorin University of School of Medicine, Tokyo, Japan
- *Correspondence: Motoyasu Honma,
| | - Fuyuko Sasaki
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Hikaru Kamo
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | | | - Hitoshi Kujirai
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Takeshi Atsumi
- Department of Medical Physiology, Kyorin University of School of Medicine, Tokyo, Japan
| | - Atsushi Umemura
- Department of Neurosurgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Hirokazu Iwamuro
- Department of Neurosurgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Yasushi Shimo
- Department of Neurology, Juntendo University Nerima Hospital, Tokyo, Japan
| | - Genko Oyama
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yasuo Terao
- Department of Medical Physiology, Kyorin University of School of Medicine, Tokyo, Japan
- Yasuo Terao,
| |
Collapse
|
7
|
Su ZH, Patel S, Bredemeyer O, FitzGerald JJ, Antoniades CA. Parkinson’s disease deficits in time perception to auditory as well as visual stimuli – A large online study. Front Neurosci 2022; 16:995438. [DOI: 10.3389/fnins.2022.995438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Cognitive deficits are common in Parkinson’s disease (PD) and range from mild cognitive impairment to dementia, often dramatically reducing quality of life. Physiological models have shown that attention and memory are predicated on the brain’s ability to process time. Perception has been shown to be increased or decreased by activation or deactivation of dopaminergic neurons respectively. Here we investigate differences in time perception between patients with PD and healthy controls. We have measured differences in sub-second- and second-time intervals. Sensitivity and error in perception as well as the response times are calculated. Additionally, we investigated intra-individual response variability and the effect of participant devices on both reaction time and sensitivity. Patients with PD have impaired sensitivity in discriminating between durations of both visual and auditory stimuli compared to healthy controls. Though initially designed as an in-person study, because of the pandemic the experiment was adapted into an online study. This adaptation provided a unique opportunity to enroll a larger number of international participants and use this study to evaluate the feasibility of future virtual studies focused on cognitive impairment. To our knowledge this is the only time perception study, focusing on PD, which measures the differences in perception using both auditory and visual stimuli. The cohort involved is the largest to date, comprising over 800 participants.
Collapse
|
8
|
From anticipation to impulsivity in Parkinson's disease. NPJ Parkinsons Dis 2022; 8:125. [PMID: 36184657 PMCID: PMC9527232 DOI: 10.1038/s41531-022-00393-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 09/08/2022] [Indexed: 11/08/2022] Open
Abstract
Anticipatory actions require to keep track of elapsed time and inhibitory control. These cognitive functions could be impacted in Parkinson's disease (iPD). To test this hypothesis, a saccadic reaction time task was used where a visual warning stimulus (WS) predicted the occurrence of an imperative one (IS) appearing after a short delay. In the implicit condition, subjects were not informed about the duration of the delay, disfavoring anticipatory behavior but leaving inhibitory control unaltered. In the explicit condition, delay duration was cued. This should favor anticipatory behavior and perhaps alter inhibitory control. This hypothesis was tested in controls (N = 18) and age-matched iPD patients (N = 20; ON and OFF L-DOPA). We found that the latency distribution of saccades before the IS was bimodal. The 1st mode weakly depended on temporal information and was more prominent in iPD. Saccades in this mode were premature and could result of a lack of inhibition. The 2nd mode covaried with cued duration suggesting that these movements were genuine anticipatory saccades. The explicit condition increased the probability of anticipatory saccades before the IS in controls and iPDON but not iPDOFF patients. Furthermore, in iPD patients the probability of sequences of 1st mode premature responses increased. In conclusion, the triggering of a premature saccade or the initiation of a controlled anticipatory one could be conceptualized as the output of two independent stochastic processes. Altered time perception and increased motor impulsivity could alter the balance between these two processes in favor of the latter in iPD, particularly OFF L-Dopa.
Collapse
|
9
|
Irie S, Watanabe Y, Tachibana A, Sakata N. Mental arithmetic modulates temporal variabilities of finger-tapping tasks in a tempo-dependent manner. PeerJ 2022; 10:e13944. [PMID: 36042862 PMCID: PMC9420403 DOI: 10.7717/peerj.13944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 08/03/2022] [Indexed: 01/19/2023] Open
Abstract
Background Several psychiatric diseases impair temporal processing. Temporal processing is thought to be based on two domains: supra-second intervals and sub-second intervals. Studies show that temporal processing in sub-second intervals is mainly an automated process. However, the brain functions involved in temporal processing at each time scale remain unclear. We hypothesized that temporal processing in supra-second intervals requires several brain areas, such as the ventrolateral prefrontal cortex, intraparietal sulcus (IPS), and inferior parietal lobe, corresponding to various cognitions in a time scale-dependent manner. We focused on a dual-task paradigm (DTP) involving simultaneous performance of cognitive and motor tasks, which is an effective method for screening psychomotor functions; we then designed a DTP comprising finger tapping at various tempi as the temporal processing task and two cognitive tasks (mental arithmetic and reading) that might affect temporal processing. We hoped to determine whether task-dependent interferences on temporal processing in supra-second intervals differed depending on the cognitive tasks involved. Methods The study included 30 participants with no history of neuromuscular disorders. Participants were asked to perform a DTP involving right index finger tapping at varying tempi (0.33, 0.5, 1, 2, 3, and 4 s inter-tapping intervals). Cognitive tasks comprised mental arithmetic (MA) involving three-digit addition, mental reading (MR) of three- to four-digit numbers, and a control (CTL) task without any cognitive loading. For comparison between tasks, we calculated the SDs of the inter-tapping intervals. Participants' MA abilities in the three-digit addition task were evaluated. Results The MA and MR tasks significantly increased the SDs of the inter-tapping intervals compared to those of the CTL task in 2-3 s and 3-4 s for the MA and MR tasks, respectively. Furthermore, SD peaks in the finger-tapping tasks involving MA were normalized by those in the CTL task, which were moderately correlated with the participants' MA ability (r = 0.462, P = 0.010). Discussion Our results established that DTP involving the temporal coordination of finger-tapping and cognitive tasks increased temporal variability in a task- and tempo-dependent manner. Based on the behavioral aspects, we believe that these modulations of temporal variability might result from the interaction between finger function, arithmetic processing, and temporal processing, especially during the "pre-semantic period". Our findings may help in understanding the temporal processing deficits in various disorders such as dementia, Parkinson's disease, and autism.
Collapse
Affiliation(s)
- Shun Irie
- Division for Smart Healthcare Research, Dokkyo Medical University, Mibu-machi, Tochigi, Japan
| | - Yoshiteru Watanabe
- Major of Physical Therapy, Department of Rehabilitation, School of Health Sciences, Tokyo University of Technology, Ota-ku, Tokyo, Japan
| | - Atsumichi Tachibana
- Department of Anatomy, Dokkyo Medical University, Mibu-machi, Tochigi, Japan
| | - Nobuhiro Sakata
- Division for Smart Healthcare Research, Dokkyo Medical University, Mibu-machi, Tochigi, Japan,Center for Information & Communication Technology, Dokkyo Medical University, Mibu-machi, Tochigi, Japan
| |
Collapse
|
10
|
Miyawaki EK. Review: Subjective Time Perception, Dopamine Signaling, and Parkinsonian Slowness. Front Neurol 2022; 13:927160. [PMID: 35899266 PMCID: PMC9311331 DOI: 10.3389/fneur.2022.927160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/16/2022] [Indexed: 11/25/2022] Open
Abstract
The association between idiopathic Parkinson's disease, a paradigmatic dopamine-deficiency syndrome, and problems in the estimation of time has been studied experimentally for decades. I review that literature, which raises a question about whether and if dopamine deficiency relates not only to the motor slowness that is an objective and cardinal parkinsonian sign, but also to a compromised neural substrate for time perception. Why does a clinically (motorically) significant deficiency in dopamine play a role in the subjective perception of time's passage? After a discussion of a classical conception of basal ganglionic control of movement under the influence of dopamine, I describe recent work in healthy mice using optogenetics; the methodology visualizes dopaminergic neuronal firing in very short time intervals, then allows for correlation with motor behaviors in trained tasks. Moment-to-moment neuronal activity is both highly dynamic and variable, as assessed by photometry of genetically defined dopaminergic neurons. I use those animal data as context to review a large experimental experience in humans, spanning decades, that has examined subjective time perception mainly in Parkinson's disease, but also in other movement disorders. Although the human data are mixed in their findings, I argue that loss of dynamic variability in dopaminergic neuronal activity over very short intervals may be a fundamental sensory aspect in the pathophysiology of parkinsonism. An important implication is that therapeutic response in Parkinson's disease needs to be understood in terms of short-term alterations in dynamic neuronal firing, as has already been examined in novel ways—for example, in the study of real-time changes in neuronal network oscillations across very short time intervals. A finer analysis of a treatment's network effects might aid in any effort to augment clinical response to either medications or functional neurosurgical interventions in Parkinson's disease.
Collapse
Affiliation(s)
- Edison K. Miyawaki
- Department of Neurology, Mass General Brigham, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- *Correspondence: Edison K. Miyawaki
| |
Collapse
|
11
|
A proxy measure of striatal dopamine predicts individual differences in temporal precision. Psychon Bull Rev 2022; 29:1307-1316. [PMID: 35318580 PMCID: PMC9436857 DOI: 10.3758/s13423-022-02077-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2022] [Indexed: 11/23/2022]
Abstract
The perception of time is characterized by pronounced variability across individuals, with implications for a diverse array of psychological functions. The neurocognitive sources of this variability are poorly understood, but accumulating evidence suggests a role for inter-individual differences in striatal dopamine levels. Here we present a pre-registered study that tested the predictions that spontaneous eyeblink rates, which provide a proxy measure of striatal dopamine availability, would be associated with aberrant interval timing (lower temporal precision or overestimation bias). Neurotypical adults (N = 69) underwent resting state eye tracking and completed visual psychophysical interval timing and control tasks. Elevated spontaneous eyeblink rates were associated with poorer temporal precision but not with inter-individual differences in perceived duration or performance on the control task. These results signify a role for striatal dopamine in variability in human time perception and can help explain deficient temporal precision in psychiatric populations characterized by elevated dopamine levels.
Collapse
|