1
|
Abdelaziz AM. Alpha-Synuclein drives NURR1 and NLRP3 Inflammasome dysregulation in Parkinson's disease: From pathogenesis to potential therapeutic strategies. Int Immunopharmacol 2025; 156:114692. [PMID: 40267723 DOI: 10.1016/j.intimp.2025.114692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/10/2025] [Accepted: 04/17/2025] [Indexed: 04/25/2025]
Abstract
Parkinson's disease (PD), a progressive neurodegenerative disorder, is characterized by the loss of dopaminergic neurons and pathological aggregation of α-synuclein (α-Syn). Emerging evidence highlights the interplay between genetic susceptibility, neuroinflammation, and transcriptional dysregulation in driving PD pathogenesis. This review brings together the latest information on three important players: α-Syn, the transcription factor Orphan nuclear receptor (NURR1), and the NOD-like receptor 3 (NLRP3) inflammasome. Pathogenic α-syn aggregates cause damage to neurons by disrupting mitochondria and lysosomes and spreading in a way similar to prion proteins. They also turn on the NLRP3 inflammasome, which is a key player in neuroinflammation. NLRP3-driven release of pro-inflammatory cytokines exacerbates neurodegeneration and creates a self-sustaining inflammatory milieu. Meanwhile, reduced NURR1 activity, a pivotal modulator of dopaminergic neuron survival and development, exposes neurons to oxidative stress, neuroinflammation, and α-Syn toxicity, hence exacerbating disease progression. So, targeting this trio exhibits transformative potential against PD pathogenesis.
Collapse
Affiliation(s)
- Ahmed M Abdelaziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University- Arish Branch, Arish 45511, Egypt.
| |
Collapse
|
2
|
Fani G, Coppi E, Errico S, Cherchi F, Gennari M, Barbut D, Vendruscolo M, Zasloff M, Pugliese AM, Chiti F. Natural aminosterols inhibit NMDA receptors with low nanomolar potency. FEBS J 2025. [PMID: 40123295 DOI: 10.1111/febs.70072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/21/2025] [Accepted: 01/31/2025] [Indexed: 03/25/2025]
Abstract
Abnormal functions of N-methyl-D-aspartate receptors (NMDARs) are associated with many brain disorders, making them primary targets for drug discovery. We show that natural aminosterols inhibit the NMDAR-mediated increase of intracellular calcium ions in cultured primary neurons and neuroblastoma cells. Structural comparison with known NMDAR-negative allosteric modulators, such as pregnanolone-sulfate-2 (PAS), raises the hypothesis that aminosterols have the same mechanism of action. Fluorescence resonance energy transfer (FRET) measurements using labeled NMDAR and the labeled aminosterol trodusquemine (TRO) indicate close spatial proximity, likely arising from binding. Other indirect yet plausible mechanisms for NMDAR inhibition by TRO were excluded. Electrophysiological patch clamp measurements on primary neurons indicate that pre-incubated TRO inhibits NMDA-induced ion currents with a IC50 of 5 nm. Inhibition is observed only after cell membrane pre-adsorption, indicating accessibility to NMDAR from the cell membrane and binding to the transmembrane domains (TMDs) and TMD-ligand-binding domain (LBD) linkers, similarly to PAS. The TRO IC50 is 5000-fold higher than that of PAS and 20-16 000 times higher than those of other inhibitors binding to TMD/TMD-LBD regions, identifying aminosterols as promising and potent NMDAR modulators.
Collapse
Affiliation(s)
- Giulia Fani
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Italy
| | - Elisabetta Coppi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Italy
| | - Silvia Errico
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Italy
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, UK
| | - Federica Cherchi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Italy
| | - Martina Gennari
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Italy
| | - Denise Barbut
- Enterin Research Institute Inc., Philadelphia, PA, USA
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, UK
| | - Michael Zasloff
- Enterin Research Institute Inc., Philadelphia, PA, USA
- MedStar-Georgetown Transplant Institute, Georgetown University School of Medicine, Washington, DC, USA
| | - Anna Maria Pugliese
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Italy
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Italy
| |
Collapse
|
3
|
Wang W, Wu X, Zhang Q, Zhang T, Jiang L, Qu L, Lu F, Liu F. Tetrahydrofolic acid accelerates amyloid fibrillization, decreases cytotoxic oligomers and suppresses their toxicity. Int J Biol Macromol 2025; 290:139041. [PMID: 39708879 DOI: 10.1016/j.ijbiomac.2024.139041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/03/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
Soluble cytotoxic oligomers produced during the fibrillation of both α-synuclein (αS) and amyloid-β protein (Aβ) are key pathogenic factors in Parkinson's disease (PD) and Alzheimer's disease (AD). Reducing toxic oligomers by regulating the aggregation process of αS and Aβ is an important strategy for the treatment of PD and AD. Herein, tetrahydrofolic acid (THF) is found to accelerate amyloid fibrillization, decreases cytotoxic oligomers and suppresses their toxicity. Thioflavin T and atomic force microscopy assays results showed that THF was able to accelerate the formation of dense fibrils from αS and Aβ in a dose-dependent manner. Strikingly, this was accompanied by a reduction in the abundance of toxic oligomers, and these results were confirmed by DB. Meanwhile, MTT and FDA/PI assays demonstrated that THF-induced accelerated fibril formation was accompanied by a reduction in αS- and Aβ-induced cytotoxicity. In addition, the lifespan of genetically modified αS and Aβ expressing C. elegans was extended by feeding THF, although plaque deposits of αS and Aβ increased. These findings suggest that THF enhances the conversion of αS and Aβ oligomers into less toxic fibrils and is a potential therapeutic agent for PD and AD.
Collapse
Affiliation(s)
- Wenqian Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, PR China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, PR China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xinming Wu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, PR China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, PR China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Qingfu Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, PR China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, PR China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Tong Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, PR China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, PR China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Luying Jiang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, PR China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, PR China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Lili Qu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, PR China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, PR China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, PR China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, PR China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, PR China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, PR China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
4
|
Khodadadi M, Javadi B. A Review of the Protective Effects of Alkaloids against Alpha-synuclein Toxicity in Parkinson's Disease. Mini Rev Med Chem 2025; 25:112-127. [PMID: 38874050 DOI: 10.2174/0113895575306884240604065754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Alpha-synuclein (α-syn) aggregation products may cause neural injury and several neurodegenerative disorders (NDs) known as α-synucleinopathies. Alkaloids are secondary metabolites present in a variety of plant species and may positively affect human health, particularly α-synucleinopathy-associated NDs. AIM To summarize the latest scientific data on the inhibitory properties of alkaloids in α- synucleinopathies, especially in Parkinson's disease. METHODS Literature search was performed using web-based databases including Web of Science, PubMed, and Scopus up to January 2024, in the English language. RESULTS Harmala alkaloids, caffein, lycorine, piperin, acetylcorynoline, berberin, papaverine, squalamine, trodusquemine and nicotin have been found to be the most active natural alkaloids against synucleinopathy. The underlying mechanisms that contribute to this effect would be the inhibition of α-syn aggregation; elimination of formed aggregates; improvement in autophagy activation; promotion of the activity and expression of antioxidative enzymes; and prevention of oxidative injury and apoptosis in dopaminergic neurons. CONCLUSION The findings of the present study highlight the inhibitory activities of alkaloids against synucleinopathy. However, no clinical data supports the reported activities in humans, which calls attention to the need for conducting clinical trials to elucidate the efficacy, safety, proper dosage, unwanted effects and pharmacokinetics aspects of alkaloids in humans.
Collapse
Affiliation(s)
- Mahdi Khodadadi
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Behjat Javadi
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Barbut D, Perni M, Zasloff M. Anti-aging properties of the aminosterols of the dogfish shark. NPJ AGING 2024; 10:62. [PMID: 39702521 DOI: 10.1038/s41514-024-00188-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 11/29/2024] [Indexed: 12/21/2024]
Abstract
The development of anti-aging drugs is challenged by both the apparent complexity of the physiological mechanisms involved in aging and the likelihood that many of these mechanisms remain unknown. As a consequence, the development of anti-aging compounds based on the rational targeting of specific pathways has fallen short of the goal. To date, the most impressive compound is rapamycin, a natural bacterial product initially identified as an antifungal, and only subsequently discovered to have anti-aging properties. In this review, we focus on two aminosterols from the dogfish shark, Squalus acanthias, that we discovered initially as broad-spectrum anti-microbial agents. This review is the first to gather together published studies conducted both in vitro and in numerous vertebrate species to demonstrate that these compounds target aging pathways at the cellular level and provide benefits in multiple aging-associated conditions in relevant animal models and in humans. The dogfish aminosterols should be recognized as potential anti-aging drugs.
Collapse
Affiliation(s)
- Denise Barbut
- BAZ Therapeutics, Inc., Philadelphia, PA, 19103, USA
| | - Michele Perni
- BAZ Therapeutics, Inc., Philadelphia, PA, 19103, USA
| | - Michael Zasloff
- BAZ Therapeutics, Inc., Philadelphia, PA, 19103, USA.
- MedStar Georgetown Transplant Institute, Georgetown University School of Medicine, Washington, DC, 20010, USA.
| |
Collapse
|
6
|
Kawka A, Koenig H, Pospieszny T. Steroid and bioactive molecule conjugates: Improving therapeutic approaches in disease management. Bioorg Chem 2024; 153:107933. [PMID: 39509790 DOI: 10.1016/j.bioorg.2024.107933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/25/2024] [Accepted: 10/27/2024] [Indexed: 11/15/2024]
Abstract
Conjugates of steroids and other natural bioactive molecules (such as amino acids or carbohydrates) have proven promising compounds with diverse biological effects. This literature review summarises the importance of steroid conjugates in a broad spectrum of therapeutic applications. Steroid conjugates exhibit improved pharmacokinetic properties, improved target specificity, and reduced side effects compared to the parent compounds. This increases their clinical usefulness. Their versatility extends to drug delivery systems, enabling precise modulation of drug release kinetics and bioavailability. Moreover, steroid conjugates are vital in treating inflammatory and neurodegenerative diseases, hormonal disorders, cancer therapy, and combating microbial infections. The review presents the current state of research on steroid conjugates, highlighting the crucial role of steroid conjugates in modern medicine and their potential to revolutionise therapeutic paradigms and improve patient outcomes. Steroid compounds are excellent for developing agents with better bioavailability and are used as drug carriers or hydrogelators.
Collapse
Affiliation(s)
- Anna Kawka
- Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8 Street, 61-614 Poznań, Poland.
| | - Hanna Koenig
- Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8 Street, 61-614 Poznań, Poland
| | - Tomasz Pospieszny
- Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8 Street, 61-614 Poznań, Poland.
| |
Collapse
|
7
|
Seychell RM, El Saghir A, Vassallo N. Modulation of Biological Membranes Using Small-Molecule Compounds to Counter Toxicity Caused by Amyloidogenic Proteins. MEMBRANES 2024; 14:231. [PMID: 39590617 PMCID: PMC11596372 DOI: 10.3390/membranes14110231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024]
Abstract
The transition of peptides or proteins along a misfolding continuum from soluble functional states to pathological aggregates, to ultimately deposit as amyloid fibrils, is a process that underlies an expanding group of human diseases-collectively known as protein-misfolding disorders (PMDs). These include common and debilitating conditions, such as Alzheimer's disease, Parkinson's disease, and type-2 diabetes. Compelling evidence has emerged that the complex interplay between the misfolded proteins and biological membranes is a key determinant of the pathogenic mechanisms by which harmful amyloid entities are formed and exert their cytotoxicity. Most efforts thus far to develop disease-modifying treatments for PMDs have largely focused on anti-aggregation strategies: to neutralise, or prevent the formation of, toxic amyloid species. Herein, we review the critical role of the phospholipid membrane in mediating and enabling amyloid pathogenicity. We consequently propose that the development of small molecules, which have the potential to uniquely modify the physicochemical properties of the membrane and make it more resilient against damage by misfolded proteins, could provide a novel therapeutic approach in PMDs. By way of an example, natural compounds shown to intercalate into lipid bilayers and inhibit amyloid-lipid interactions, such as the aminosterols, squalamine and trodusquamine, cholesterol, ubiquinone, and select polyphenols, are discussed. Such a strategy would provide a novel approach to counter a wide range of toxic biomolecules implicit in numerous human amyloid pathologies.
Collapse
Affiliation(s)
- Raina Marie Seychell
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta
| | - Adam El Saghir
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta
| | - Neville Vassallo
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, MSD 2080 Msida, Malta
| |
Collapse
|
8
|
Vekrellis K, Emmanouilidou E, Xilouri M, Stefanis L. α-Synuclein in Parkinson's Disease: 12 Years Later. Cold Spring Harb Perspect Med 2024; 14:a041645. [PMID: 39349314 PMCID: PMC11529858 DOI: 10.1101/cshperspect.a041645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
α-Synuclein (AS) is a small presynaptic protein that is genetically, biochemically, and neuropathologically linked to Parkinson's disease (PD) and related synucleinopathies. We present here a review of the topic of this relationship, focusing on more recent knowledge. In particular, we review the genetic evidence linking AS to familial and sporadic PD, including a number of recently identified point mutations in the SNCA gene. We briefly go over the relevant neuropathological findings, stressing the evidence indicating a correlation between aberrant AS deposition and nervous system dysfunction. We analyze the structural characteristics of the protein, in relation to both its physiologic and pathological conformations, with particular emphasis on posttranslational modifications, aggregation properties, and secreted forms. We review the interrelationship of AS with various cellular compartments and functions, with particular focus on the synapse and protein degradation systems. We finally go over the recent exciting data indicating that AS can provide the basis for novel robust biomarkers in the field of synucleinopathies, while at the same time results from the first clinical trials specifically targeting AS are being reported.
Collapse
Affiliation(s)
- Kostas Vekrellis
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Evangelia Emmanouilidou
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens 15784, Greece
| | - Maria Xilouri
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Leonidas Stefanis
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
- First Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens 11528, Greece; and Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| |
Collapse
|
9
|
Gonçalves PB, Sodero ACR, Cordeiro Y. Natural products targeting amyloid-β oligomer neurotoxicity in Alzheimer's disease. Eur J Med Chem 2024; 276:116684. [PMID: 39032401 DOI: 10.1016/j.ejmech.2024.116684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/07/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
Alzheimer's disease (AD) constitutes a major global health issue, characterized by progressive neurodegeneration and cognitive impairment, for which no curative treatment is currently available. Current therapeutic approaches are focused on symptom management, highlighting the critical need for disease-modifying therapy. The hallmark pathology of AD involves the aggregation and accumulation of amyloid-β (Aβ) peptides in the brain. Consequently, drug discovery efforts in recent decades have centered on the Aβ aggregation cascade, which includes the transition of monomeric Aβ peptides into toxic oligomers and, ultimately, mature fibrils. Historically, anti-Aβ strategies focused on the clearance of amyloid fibrils using monoclonal antibodies. However, substantial evidence has highlighted the critical role of Aβ oligomers (AβOs) in AD pathogenesis. Soluble AβOs are now recognized as more toxic than fibrils, directly contributing to synaptic impairment, neuronal damage, and the onset of AD. Targeting AβOs has emerged as a promising therapeutic approach to mitigate cognitive decline in AD. Natural products (NPs) have demonstrated promise against AβO neurotoxicity through various mechanisms, including preventing AβO formation, enhancing clearance mechanisms, or converting AβOs into non-toxic species. Understanding the mechanisms by which anti-AβO NPs operate is useful for developing disease-modifying treatments for AD. In this review, we explore the role of NPs in mitigating AβO neurotoxicity for AD drug discovery, summarizing key evidence from biophysical methods, cellular assays, and animal models. By discussing how NPs modulate AβO neurotoxicity across various experimental systems, we aim to provide valuable insights into novel therapeutic strategies targeting AβOs in AD.
Collapse
Affiliation(s)
| | | | - Yraima Cordeiro
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-900, Brazil
| |
Collapse
|
10
|
Morris OM, Toprakcioglu Z, Röntgen A, Cali M, Knowles TPJ, Vendruscolo M. Aggregation of the amyloid-β peptide (Aβ40) within condensates generated through liquid-liquid phase separation. Sci Rep 2024; 14:22633. [PMID: 39349560 PMCID: PMC11442885 DOI: 10.1038/s41598-024-72265-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 09/05/2024] [Indexed: 10/02/2024] Open
Abstract
The deposition of the amyloid-β (Aβ) peptide into amyloid fibrils is a hallmark of Alzheimer's disease. Recently, it has been reported that some proteins can aggregate and form amyloids through an intermediate pathway involving a liquid-like condensed phase. These observations prompted us to investigate the phase space of Aβ. We thus explored the ability of Aβ to undergo liquid-liquid phase separation, and the subsequent liquid-to-solid transition that takes place within the resulting condensates. Through the use of microfluidic approaches, we observed that the 40-residue form of Αβ (Αβ40) can undergo liquid-liquid phase separation, and that accessing a liquid-like intermediate state enables Αβ40 to self-assemble and aggregate into amyloid fibrils through this pathway. These results prompt further studies to investigate the possible role of Αβ liquid-liquid phase separation and its subsequent aggregation in the context of Alzheimer's disease and more generally on neurodegenerative processes.
Collapse
Affiliation(s)
- Owen M Morris
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Zenon Toprakcioglu
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Alexander Röntgen
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Mariana Cali
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 OHE, UK
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| |
Collapse
|
11
|
Muscat S, Errico S, Danani A, Chiti F, Grasso G. Leveraging Machine Learning-Guided Molecular Simulations Coupled with Experimental Data to Decipher Membrane Binding Mechanisms of Aminosterols. J Chem Theory Comput 2024. [PMID: 38979909 PMCID: PMC11447954 DOI: 10.1021/acs.jctc.4c00127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Understanding the molecular mechanisms of the interactions between specific compounds and cellular membranes is essential for numerous biotechnological applications, including targeted drug delivery, elucidation of the drug mechanism of action, pathogen identification, and novel antibiotic development. However, estimation of the free energy landscape associated with solute binding to realistic biological systems is still a challenging task. In this work, we leverage the Time-lagged Independent Component Analysis (TICA) in combination with neural networks (NN) through the Deep-TICA approach for determining the free energy associated with the membrane insertion processes of two natural aminosterol compounds, trodusquemine (TRO), and squalamine (SQ). These compounds are particularly noteworthy because they interact with the outer layer of neuron membranes, protecting them from the toxic action of misfolded proteins involved in neurodegenerative disorders, in both their monomeric and oligomeric forms. We demonstrate how this strategy could be used to generate an effective collective variable for describing solute absorption in the membrane and for estimating free energy landscape of translocation via on-the-fly probability enhanced sampling (OPES) method. In this context, the computational protocol allowed an exhaustive characterization of the aminosterol entry pathway into a neuron-like lipid bilayer. Furthermore, it provided accurate prediction of membrane binding affinities, in close agreement with the experimental binding data obtained by using fluorescently labeled aminosterols and large unilamellar vesicles (LUVs). The findings contribute significantly to our understanding of aminosterol entry pathways and aminosterol-lipid membrane interactions. Finally, the computational methods deployed in this study further demonstrate considerable potential for investigating membrane binding processes.
Collapse
Affiliation(s)
- Stefano Muscat
- Dalle Molle Institute for Artificial Intelligence IDSIA USI-SUPSI, Via la Santa 1 ,Lugano-Viganello 6962, Switzerland
| | - Silvia Errico
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence 50134, Italy
| | - Andrea Danani
- Dalle Molle Institute for Artificial Intelligence IDSIA USI-SUPSI, Via la Santa 1 ,Lugano-Viganello 6962, Switzerland
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence 50134, Italy
| | - Gianvito Grasso
- Dalle Molle Institute for Artificial Intelligence IDSIA USI-SUPSI, Via la Santa 1 ,Lugano-Viganello 6962, Switzerland
| |
Collapse
|
12
|
Li B, Xiao X, Bi M, Jiao Q, Chen X, Yan C, Du X, Jiang H. Modulating α-synuclein propagation and decomposition: Implications in Parkinson's disease therapy. Ageing Res Rev 2024; 98:102319. [PMID: 38719160 DOI: 10.1016/j.arr.2024.102319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/03/2024] [Accepted: 04/27/2024] [Indexed: 05/14/2024]
Abstract
α-Synuclein (α-Syn) is closely related to the pathogenesis of Parkinson's disease (PD). Under pathological conditions, the conformation of α-syn changes and different forms of α-syn lead to neurotoxicity. According to Braak stages, α-syn can propagate in different brain regions, inducing neurodegeneration and corresponding clinical manifestations through abnormal aggregation of Lewy bodies (LBs) and lewy axons in different types of neurons in PD. So far, PD lacks early diagnosis biomarkers, and treatments are mainly targeted at some clinical symptoms. There is no effective therapy to delay the progression of PD. This review first summarized the role of α-syn in physiological and pathological states, and the relationship between α-syn and PD. Then, we focused on the origin, secretion, aggregation, propagation and degradation of α-syn as well as the important regulatory factors in these processes systematically. Finally, we reviewed some potential drug candidates for alleviating the abnormal aggregation of α-syn in order to provide valuable targets for the treatment of PD to cope with the occurrence and progression of this disease.
Collapse
Affiliation(s)
- Beining Li
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Xue Xiao
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Mingxia Bi
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Qian Jiao
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Xi Chen
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Chunling Yan
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Xixun Du
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China.
| | - Hong Jiang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266113, China; School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China.
| |
Collapse
|
13
|
Xu Y, Filice CT, Leonenko Z. Protective effect of trehalose sugar on amyloid-membrane interactions using BLM electrophysiology. Biophys J 2024; 123:1690-1704. [PMID: 38751113 PMCID: PMC11213996 DOI: 10.1016/j.bpj.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/10/2024] [Accepted: 05/13/2024] [Indexed: 05/30/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by dementia and memory loss in the elderly population. The amyloid-β peptide (Aβ) is one of the main pathogenic factors in AD and is known to cause damage to neuronal cellular membranes. There is no cure currently available for AD, and new approaches, including preventive strategies, are highly desirable. In this work, we explore the possibility of protecting neuronal membranes from amyloid-induced damage with naturally existing sugar trehalose. Trehalose has been shown to protect plant cellular membranes in extreme conditions and modify Aβ misfolding. We hypothesize that trehalose can protect the neuronal membrane from amyloid toxicity. In this work, we studied the protective effect of trehalose against Aβ1-42-induced damage in model lipid membranes (DPPC/POPC/cholesterol) using atomic force microscopy and black lipid membrane electrophysiology. Our results demonstrate that Aβ1-42 damaged membranes and led to ionic current leakage across these membranes due to the formation of various defects and pores. The presence of trehalose reduced the ion current across membranes caused by Aβ1-42 peptide damage, thus efficiently protecting the membranes. These findings suggest that the trehalose sugar can potentially be useful in protecting neuronal membranes against amyloid toxicity in AD.
Collapse
Affiliation(s)
- Yue Xu
- Department of Physics & Astronomy, University of Waterloo, Waterloo, ON, Canada
| | - Carina Teresa Filice
- Department of Biology, University of Waterloo, Waterloo, ON, Canada; Waterloo Institute for Nanotechnology, Waterloo, ON, Canada
| | - Zoya Leonenko
- Department of Physics & Astronomy, University of Waterloo, Waterloo, ON, Canada; Department of Biology, University of Waterloo, Waterloo, ON, Canada; Waterloo Institute for Nanotechnology, Waterloo, ON, Canada.
| |
Collapse
|
14
|
Rinauro DJ, Chiti F, Vendruscolo M, Limbocker R. Misfolded protein oligomers: mechanisms of formation, cytotoxic effects, and pharmacological approaches against protein misfolding diseases. Mol Neurodegener 2024; 19:20. [PMID: 38378578 PMCID: PMC10877934 DOI: 10.1186/s13024-023-00651-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/17/2023] [Indexed: 02/22/2024] Open
Abstract
The conversion of native peptides and proteins into amyloid aggregates is a hallmark of over 50 human disorders, including Alzheimer's and Parkinson's diseases. Increasing evidence implicates misfolded protein oligomers produced during the amyloid formation process as the primary cytotoxic agents in many of these devastating conditions. In this review, we analyze the processes by which oligomers are formed, their structures, physicochemical properties, population dynamics, and the mechanisms of their cytotoxicity. We then focus on drug discovery strategies that target the formation of oligomers and their ability to disrupt cell physiology and trigger degenerative processes.
Collapse
Affiliation(s)
- Dillon J Rinauro
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Fabrizio Chiti
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - Ryan Limbocker
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, 10996, USA.
| |
Collapse
|
15
|
McVey Neufeld KA, Mao YK, West CL, Ahn M, Hameed H, Iwashita E, Stanisz AM, Forsythe P, Barbut D, Zasloff M, Kunze WA. Squalamine reverses age-associated changes of firing patterns of myenteric sensory neurons and vagal fibres. Commun Biol 2024; 7:80. [PMID: 38200107 PMCID: PMC10781697 DOI: 10.1038/s42003-023-05623-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 11/21/2023] [Indexed: 01/12/2024] Open
Abstract
Vagus nerve signaling is a key component of the gut-brain axis and regulates diverse physiological processes that decline with age. Gut to brain vagus firing patterns are regulated by myenteric intrinsic primary afferent neuron (IPAN) to vagus neurotransmission. It remains unclear how IPANs or the afferent vagus age functionally. Here we identified a distinct ageing code in gut to brain neurotransmission defined by consistent differences in firing rates, burst durations, interburst and intraburst firing intervals of IPANs and the vagus, when comparing young and aged neurons. The aminosterol squalamine changed aged neurons firing patterns to a young phenotype. In contrast to young neurons, sertraline failed to increase firing rates in the aged vagus whereas squalamine was effective. These results may have implications for improved treatments involving pharmacological and electrical stimulation of the vagus for age-related mood and other disorders. For example, oral squalamine might be substituted for or added to sertraline for the aged.
Collapse
Affiliation(s)
| | - Yu-Kang Mao
- Brain-Body Institute, McMaster University, Hamilton, ON, Canada
| | - Christine L West
- Brain-Body Institute, McMaster University, Hamilton, ON, Canada
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Matthew Ahn
- Brain-Body Institute, McMaster University, Hamilton, ON, Canada
| | - Hashim Hameed
- Brain-Body Institute, McMaster University, Hamilton, ON, Canada
| | - Eiko Iwashita
- Brain-Body Institute, McMaster University, Hamilton, ON, Canada
| | | | - Paul Forsythe
- Department of Medicine, 569 Heritage Medical Research Center, University of Alberta, Edmonton, AB, Canada
| | | | - Michael Zasloff
- Enterin, Inc., Philadelphia, PA, USA.
- MedStar-Georgetown Transplant Institute, Georgetown University School of Medicine, Washington, DC, USA.
| | - Wolfgang A Kunze
- Brain-Body Institute, McMaster University, Hamilton, ON, Canada.
- Department of Biology, McMaster University, Hamilton, ON, Canada.
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
16
|
Pintado-Grima C, Bárcenas O, Iglesias V, Santos J, Manglano-Artuñedo Z, Pallarès I, Burdukiewicz M, Ventura S. aSynPEP-DB: a database of biogenic peptides for inhibiting α-synuclein aggregation. Database (Oxford) 2023; 2023:baad084. [PMID: 38011719 PMCID: PMC10681447 DOI: 10.1093/database/baad084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/13/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder, yet effective treatments able to stop or delay disease progression remain elusive. The aggregation of a presynaptic protein, α-synuclein (aSyn), is the primary neurological hallmark of PD and, thus, a promising target for therapeutic intervention. However, the lack of consensus on the molecular properties required to specifically bind the toxic species formed during aSyn aggregation has hindered the development of therapeutic molecules. Recently, we defined and experimentally validated a peptide architecture that demonstrated high affinity and selectivity in binding to aSyn toxic oligomers and fibrils, effectively preventing aSyn pathogenic aggregation. Human peptides with such properties may have neuroprotective activities and hold a huge therapeutic interest. Driven by this idea, here, we developed a discriminative algorithm for the screening of human endogenous neuropeptides, antimicrobial peptides and diet-derived bioactive peptides with the potential to inhibit aSyn aggregation. We identified over 100 unique biogenic peptide candidates and ensembled a comprehensive database (aSynPEP-DB) that collects their physicochemical features, source datasets and additional therapeutic-relevant information, including their sites of expression and associated pathways. Besides, we provide access to the discriminative algorithm to extend its application to the screening of artificial peptides or new peptide datasets. aSynPEP-DB is a unique repository of peptides with the potential to modulate aSyn aggregation, serving as a platform for the identification of previously unexplored therapeutic agents. Database URL: https://asynpepdb.ppmclab.com/.
Collapse
Affiliation(s)
- Carlos Pintado-Grima
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Oriol Bárcenas
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Valentín Iglesias
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Jaime Santos
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg 69120, Germany
| | - Zoe Manglano-Artuñedo
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Irantzu Pallarès
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Michał Burdukiewicz
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Clinical Research Centre, Medical University of Białystok, Kilińskiego 1, Białystok 15-369, Poland
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| |
Collapse
|
17
|
Bigi A, Cascella R, Cecchi C. α-Synuclein oligomers and fibrils: partners in crime in synucleinopathies. Neural Regen Res 2023; 18:2332-2342. [PMID: 37282450 PMCID: PMC10360081 DOI: 10.4103/1673-5374.371345] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023] Open
Abstract
The misfolding and aggregation of α-synuclein is the general hallmark of a group of devastating neurodegenerative pathologies referred to as synucleinopathies, such as Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. In such conditions, a range of different misfolded aggregates, including oligomers, protofibrils, and fibrils, are present both in neurons and glial cells. Growing experimental evidence supports the proposition that soluble oligomeric assemblies, formed during the early phases of the aggregation process, are the major culprits of neuronal toxicity; at the same time, fibrillar conformers appear to be the most efficient at propagating among interconnected neurons, thus contributing to the spreading of α-synuclein pathology. Moreover, α-synuclein fibrils have been recently reported to release soluble and highly toxic oligomeric species, responsible for an immediate dysfunction in the recipient neurons. In this review, we discuss the current knowledge about the plethora of mechanisms of cellular dysfunction caused by α-synuclein oligomers and fibrils, both contributing to neurodegeneration in synucleinopathies.
Collapse
Affiliation(s)
- Alessandra Bigi
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence, Italy
| | - Roberta Cascella
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence, Italy
| | - Cristina Cecchi
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence, Italy
| |
Collapse
|
18
|
Errico S, Lucchesi G, Odino D, Osman EY, Cascella R, Neri L, Capitini C, Calamai M, Bemporad F, Cecchi C, Kinney WA, Barbut D, Relini A, Canale C, Caminati G, Limbocker R, Vendruscolo M, Zasloff M, Chiti F. Quantitative Attribution of the Protective Effects of Aminosterols against Protein Aggregates to Their Chemical Structures and Ability to Modulate Biological Membranes. J Med Chem 2023. [PMID: 37433124 PMCID: PMC10388293 DOI: 10.1021/acs.jmedchem.3c00182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Natural aminosterols are promising drug candidates against neurodegenerative diseases, like Alzheimer and Parkinson, and one relevant protective mechanism occurs via their binding to biological membranes and displacement or binding inhibition of amyloidogenic proteins and their cytotoxic oligomers. We compared three chemically different aminosterols, finding that they exhibited different (i) binding affinities, (ii) charge neutralizations, (iii) mechanical reinforcements, and (iv) key lipid redistributions within membranes of reconstituted liposomes. They also had different potencies (EC50) in protecting cultured cell membranes against amyloid-β oligomers. A global fitting analysis led to an analytical equation describing quantitatively the protective effects of aminosterols as a function of their concentration and relevant membrane effects. The analysis correlates aminosterol-mediated protection with well-defined chemical moieties, including the polyamine group inducing a partial membrane-neutralizing effect (79 ± 7%) and the cholestane-like tail causing lipid redistribution and bilayer mechanical resistance (21 ± 7%), linking quantitatively their chemistry to their protective effects on biological membranes.
Collapse
Affiliation(s)
- Silvia Errico
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence 50134, Italy
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Giacomo Lucchesi
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Sesto Fiorentino 50019, Italy
| | - Davide Odino
- Department of Physics, University of Genoa, Genoa 16146, Italy
| | - Enass Youssef Osman
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence 50134, Italy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, The Arab Republic of Egypt
| | - Roberta Cascella
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence 50134, Italy
| | - Lorenzo Neri
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence 50134, Italy
| | - Claudia Capitini
- European Laboratory for Non-linear Spectroscopy (LENS), Sesto Fiorentino 50019, Italy
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino 50019, Italy
- National Institute of Optics, National Research Council of Italy (CNR), Florence 50125, Italy
| | - Martino Calamai
- European Laboratory for Non-linear Spectroscopy (LENS), Sesto Fiorentino 50019, Italy
- National Institute of Optics, National Research Council of Italy (CNR), Florence 50125, Italy
| | - Francesco Bemporad
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence 50134, Italy
| | - Cristina Cecchi
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence 50134, Italy
| | - William A Kinney
- Enterin Research Institute Inc., Philadelphia, Pennsylvania 19103, United States
| | - Denise Barbut
- Enterin Research Institute Inc., Philadelphia, Pennsylvania 19103, United States
| | - Annalisa Relini
- Department of Physics, University of Genoa, Genoa 16146, Italy
| | - Claudio Canale
- Department of Physics, University of Genoa, Genoa 16146, Italy
| | - Gabriella Caminati
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Sesto Fiorentino 50019, Italy
| | - Ryan Limbocker
- Department of Chemistry and Life Science, United States Military Academy, West Point, New York 10996, United States
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Michael Zasloff
- Enterin Research Institute Inc., Philadelphia, Pennsylvania 19103, United States
- MedStar-Georgetown Transplant Institute, Georgetown University School of Medicine, Washington, District of Columbia 20007, United States
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence 50134, Italy
| |
Collapse
|
19
|
Maccari R, Ottanà R. Can Allostery Be a Key Strategy for Targeting PTP1B in Drug Discovery? A Lesson from Trodusquemine. Int J Mol Sci 2023; 24:ijms24119621. [PMID: 37298571 DOI: 10.3390/ijms24119621] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is an enzyme crucially implicated in aberrations of various signaling pathways that underlie the development of different human pathologies, such as obesity, diabetes, cancer, and neurodegenerative disorders. Its inhibition can prevent these pathogenetic events, thus providing a useful tool for the discovery of novel therapeutic agents. The search for allosteric PTP1B inhibitors can represent a successful strategy to identify drug-like candidates by offering the opportunity to overcome some issues related to catalytic site-directed inhibitors, which have so far hampered the development of drugs targeting this enzyme. In this context, trodusquemine (MSI-1436), a natural aminosterol that acts as a non-competitive PTP1B inhibitor, appears to be a milestone. Initially discovered as a broad-spectrum antimicrobial agent, trodusquemine exhibited a variety of unexpected properties, ranging from antidiabetic and anti-obesity activities to effects useful to counteract cancer and neurodegeneration, which prompted its evaluation in several preclinical and clinical studies. In this review article, we provide an overview of the main findings regarding the activities and therapeutic potential of trodusquemine and their correlation with PTP1B inhibition. We also included some aminosterol analogues and related structure-activity relationships that could be useful for further studies aimed at the discovery of new allosteric PTP1B inhibitors.
Collapse
Affiliation(s)
- Rosanna Maccari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Rosaria Ottanà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
20
|
Forloni G. Alpha Synuclein: Neurodegeneration and Inflammation. Int J Mol Sci 2023; 24:ijms24065914. [PMID: 36982988 PMCID: PMC10059798 DOI: 10.3390/ijms24065914] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Alpha-Synuclein (α-Syn) is one of the most important molecules involved in the pathogenesis of Parkinson's disease and related disorders, synucleinopathies, but also in several other neurodegenerative disorders with a more elusive role. This review analyzes the activities of α-Syn, in different conformational states, monomeric, oligomeric and fibrils, in relation to neuronal dysfunction. The neuronal damage induced by α-Syn in various conformers will be analyzed in relation to its capacity to spread the intracellular aggregation seeds with a prion-like mechanism. In view of the prominent role of inflammation in virtually all neurodegenerative disorders, the activity of α-Syn will also be illustrated considering its influence on glial reactivity. We and others have described the interaction between general inflammation and cerebral dysfunctional activity of α-Syn. Differences in microglia and astrocyte activation have also been observed when in vivo the presence of α-Syn oligomers has been combined with a lasting peripheral inflammatory effect. The reactivity of microglia was amplified, while astrocytes were damaged by the double stimulus, opening new perspectives for the control of inflammation in synucleinopathies. Starting from our studies in experimental models, we extended the perspective to find useful pointers to orient future research and potential therapeutic strategies in neurodegenerative disorders.
Collapse
Affiliation(s)
- Gianluigi Forloni
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy
| |
Collapse
|
21
|
Somavarapu AK, Kleijwegt G, Nagaraj M, Alam P, Nielsen J, Otzen DE. Drug repurposing screens identify compounds that inhibit α-synuclein oligomers' membrane disruption and block antibody interactions. Chem Sci 2023; 14:3030-3047. [PMID: 36937574 PMCID: PMC10016340 DOI: 10.1039/d2sc05534a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Small soluble oligomers of the protein α-synuclein (αSO) have been linked to disruptions in neuronal homeostasis, contributing to the development of Parkinson's Disease (PD). While this makes αSO an obvious drug target, the development of effective therapeutics against αSO is challenged by its low abundance and structural and morphological complexity. Here, we employ two different approaches to neutralize toxic interactions made by αSOs with different cellular components. First, we use available data to identify four neuronal proteins as likely candidates for αSO interactions, namely Cfl1, Uchl1, Sirt2 and SerRS. However, despite promising results when immobilized, all 4 proteins only bind weakly to αSO in solution in microfluidic assays, making them inappropriate for screening. In contrast, the formation of stable contacts formed between αSO and vesicles consisting of anionic lipids not only mimics a likely biological role of αSO but also provided a platform to screen two small molecule libraries for disruptors of these contacts. Of the 7 best leads obtained in this way, 2 significantly impaired αSO contacts with other proteins in a sandwich ELISA assay using αSO-binding monoclonal antibodies and nanobodies. In addition, 5 of these leads suppressed α-synuclein amyloid formation. Thus, a repurposing screening that directly targets a key culprit in PD pathogenesis shows therapeutic potential.
Collapse
Affiliation(s)
- Arun Kumar Somavarapu
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University Gustav Wieds Vej 14, 8000 Aarhus C Denmark
| | - Giulia Kleijwegt
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University Gustav Wieds Vej 14, 8000 Aarhus C Denmark
| | - Madhu Nagaraj
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University Gustav Wieds Vej 14, 8000 Aarhus C Denmark
| | - Parvez Alam
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University Gustav Wieds Vej 14, 8000 Aarhus C Denmark
| | - Janni Nielsen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University Gustav Wieds Vej 14, 8000 Aarhus C Denmark
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University Gustav Wieds Vej 14, 8000 Aarhus C Denmark
| |
Collapse
|
22
|
Peña-Díaz S, García-Pardo J, Ventura S. Development of Small Molecules Targeting α-Synuclein Aggregation: A Promising Strategy to Treat Parkinson's Disease. Pharmaceutics 2023; 15:839. [PMID: 36986700 PMCID: PMC10059018 DOI: 10.3390/pharmaceutics15030839] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Parkinson's disease, the second most common neurodegenerative disorder worldwide, is characterized by the accumulation of protein deposits in the dopaminergic neurons. These deposits are primarily composed of aggregated forms of α-Synuclein (α-Syn). Despite the extensive research on this disease, only symptomatic treatments are currently available. However, in recent years, several compounds, mainly of an aromatic character, targeting α-Syn self-assembly and amyloid formation have been identified. These compounds, discovered by different approaches, are chemically diverse and exhibit a plethora of mechanisms of action. This work aims to provide a historical overview of the physiopathology and molecular aspects associated with Parkinson's disease and the current trends in small compound development to target α-Syn aggregation. Although these molecules are still under development, they constitute an important step toward discovering effective anti-aggregational therapies for Parkinson's disease.
Collapse
Affiliation(s)
- Samuel Peña-Díaz
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Javier García-Pardo
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
23
|
Ma L, Li X, Petersen RB, Peng A, Huang K. Probing the interactions between amyloidogenic proteins and bio-membranes. Biophys Chem 2023; 296:106984. [PMID: 36889133 DOI: 10.1016/j.bpc.2023.106984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/11/2023] [Accepted: 02/22/2023] [Indexed: 03/01/2023]
Abstract
Protein misfolding diseases (PMDs) in humans are characterized by the deposition of protein aggregates in tissues, including Alzheimer's disease, Parkinson's disease, type 2 diabetes, and amyotrophic lateral sclerosis. Misfolding and aggregation of amyloidogenic proteins play a central role in the onset and progression of PMDs, and these processes are regulated by multiple factors, especially the interaction between proteins and bio-membranes. Bio-membranes induce conformational changes in amyloidogenic proteins and affect their aggregation; on the other hand, the aggregates of amyloidogenic proteins may cause membrane damage or dysfunction leading to cytotoxicity. In this review, we summarize the factors that affect the binding of amyloidogenic proteins and membranes, the effects of bio-membranes on the aggregation of amyloidogenic proteins, mechanisms of membrane disruption by amyloidogenic aggregates, technical approaches for detecting these interactions, and finally therapeutic strategies targeting membrane damage caused by amyloidogenic proteins.
Collapse
Affiliation(s)
- Liang Ma
- Department of Pharmacy, Wuhan Mental Health Center, Wuhan, China; Department of Pharmacy, Wuhan Hospital for Psychotherapy, Wuhan, China
| | - Xi Li
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Robert B Petersen
- Foundational Sciences, Central Michigan University College of Medicine, Mount Pleasant, MI, USA
| | - Anlin Peng
- Department of Pharmacy, The Third Hospital of Wuhan, Tongren Hospital of Wuhan University, Wuhan, China.
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
24
|
Gabriel JM, Tan T, Rinauro DJ, Hsu CM, Buettner CJ, Gilmer M, Kaur A, McKenzie TL, Park M, Cohen S, Errico S, Wright AK, Chiti F, Vendruscolo M, Limbocker R. EGCG inactivates a pore-forming toxin by promoting its oligomerization and decreasing its solvent-exposed hydrophobicity. Chem Biol Interact 2023; 371:110307. [PMID: 36535315 DOI: 10.1016/j.cbi.2022.110307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/02/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Natural proteinaceous pore-forming agents can bind and permeabilize cell membranes, leading to ion dyshomeostasis and cell death. In the search for antidotes that can protect cells from peptide toxins, we discovered that the polyphenol epigallocatechin gallate (EGCG) interacts directly with melittin from honeybee venom, resulting in the elimination of its binding to the cell membrane and toxicity by markedly lowering the extent of its solvent-exposed hydrophobicity and promoting its oligomerization into larger species. These physicochemical parameters have also been shown to play a key role in the binding to cells of misfolded protein oligomers in a host of neurodegenerative diseases, where oligomer-membrane binding and associated toxicity have been shown to correlate negatively with oligomer size and positively with solvent-exposed hydrophobicity. For melittin, which is not an amyloid-forming protein and has a very distinct mechanism of toxicity compared to misfolded oligomers, we find that the size-hydrophobicity-toxicity relationship also rationalizes the pharmacological attenuation of melittin toxicity by EGCG. These results highlight the importance of the physicochemical properties of pore forming agents in mediating their interactions with cell membranes and suggest a possible therapeutic approach based on compounds with a similar mechanism of action as EGCG.
Collapse
Affiliation(s)
- Justus M Gabriel
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Thomas Tan
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Dillon J Rinauro
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Claire M Hsu
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Caleb J Buettner
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Marshall Gilmer
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Amrita Kaur
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Tristan L McKenzie
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Martin Park
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Sophie Cohen
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Silvia Errico
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK; Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence, Italy
| | - Aidan K Wright
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence, Italy
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Ryan Limbocker
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA.
| |
Collapse
|
25
|
Gao V, Briano JA, Komer LE, Burré J. Functional and Pathological Effects of α-Synuclein on Synaptic SNARE Complexes. J Mol Biol 2023; 435:167714. [PMID: 35787839 PMCID: PMC10472340 DOI: 10.1016/j.jmb.2022.167714] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 02/07/2023]
Abstract
α-Synuclein is an abundant protein at the neuronal synapse that has been implicated in Parkinson's disease for over 25 years and characterizes the hallmark pathology of a group of neurodegenerative diseases now known as the synucleinopathies. Physiologically, α-synuclein exists in an equilibrium between a synaptic vesicle membrane-bound α-helical multimer and a cytosolic largely unstructured monomer. Through its membrane-bound state, α-synuclein functions in neurotransmitter release by modulating several steps in the synaptic vesicle cycle, including synaptic vesicle clustering and docking, SNARE complex assembly, and homeostasis of synaptic vesicle pools. These functions have been ascribed to α-synuclein's interactions with the synaptic vesicle SNARE protein VAMP2/synaptobrevin-2, the synaptic vesicle-attached synapsins, and the synaptic vesicle membrane itself. How α-synuclein affects these processes, and whether disease is due to loss-of-function or gain-of-toxic-function of α-synuclein remains unclear. In this review, we provide an in-depth summary of the existing literature, discuss possible reasons for the discrepancies in the field, and propose a working model that reconciles the findings in the literature.
Collapse
Affiliation(s)
- Virginia Gao
- Appel Alzheimer's Disease Research Institute & Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA; Department of Neurology, New York Presbyterian/Weill Cornell Medicine, New York, NY, USA.
| | - Juan A Briano
- Appel Alzheimer's Disease Research Institute & Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Lauren E Komer
- Appel Alzheimer's Disease Research Institute & Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA. https://www.twitter.com/lauren_komer
| | - Jacqueline Burré
- Appel Alzheimer's Disease Research Institute & Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
26
|
Bigi A, Cascella R, Fani G, Bernacchioni C, Cencetti F, Bruni P, Chiti F, Donati C, Cecchi C. Sphingosine 1-phosphate attenuates neuronal dysfunction induced by amyloid-β oligomers through endocytic internalization of NMDA receptors. FEBS J 2023; 290:112-133. [PMID: 35851748 PMCID: PMC10087929 DOI: 10.1111/febs.16579] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/24/2022] [Accepted: 07/18/2022] [Indexed: 01/14/2023]
Abstract
Soluble oligomers arising from the aggregation of the amyloid beta peptide (Aβ) have been identified as the main pathogenic agents in Alzheimer's disease (AD). Prefibrillar oligomers of the 42-residue form of Aβ (Aβ42 O) show membrane-binding capacity and trigger the disruption of Ca2+ homeostasis, a causative event in neuron degeneration. Since bioactive lipids have been recently proposed as potent protective agents against Aβ toxicity, we investigated the involvement of sphingosine 1-phosphate (S1P) signalling pathway in Ca2+ homeostasis in living neurons exposed to Aβ42 O. We show that both exogenous and endogenous S1P rescued neuronal Ca2+ dyshomeostasis induced by toxic Aβ42 O in primary rat cortical neurons and human neuroblastoma SH-SY5Y cells. Further analysis revealed a strong neuroprotective effect of S1P1 and S1P4 receptors, and to a lower extent of S1P3 and S1P5 receptors, which activate the Gi -dependent signalling pathways, thus resulting in the endocytic internalization of the extrasynaptic GluN2B-containing N-methyl-D-aspartate receptors (NMDARs). Notably, the S1P beneficial effect can be sustained over time by sphingosine kinase-1 overexpression, thus counteracting the down-regulation of the S1P signalling induced by Aβ42 O. Our findings disclose underlying mechanisms of S1P neuronal protection against harmful Aβ42 O, suggesting that S1P and its signalling axis can be considered promising targets for therapeutic approaches for AD.
Collapse
Affiliation(s)
- Alessandra Bigi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Italy
| | - Roberta Cascella
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Italy
| | - Giulia Fani
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Italy
| | - Caterina Bernacchioni
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Italy
| | - Francesca Cencetti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Italy
| | - Paola Bruni
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Italy
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Italy
| | - Chiara Donati
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Italy
| | - Cristina Cecchi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Italy
| |
Collapse
|
27
|
Capitini C, Pesce L, Fani G, Mazzamuto G, Genovese M, Franceschini A, Paoli P, Pieraccini G, Zasloff M, Chiti F, Pavone FS, Calamai M. Studying the trafficking of labeled trodusquemine and its application as nerve marker for light-sheet and expansion microscopy. FASEB J 2022; 36:e22655. [PMID: 36421008 PMCID: PMC9827910 DOI: 10.1096/fj.202201276r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/25/2022]
Abstract
Trodusquemine is an aminosterol with a variety of biological and pharmacological functions, such as acting as an antimicrobial, stimulating body weight loss and interfering with the toxicity of proteins involved in the development of Alzheimer's and Parkinson's diseases. The mechanisms of interaction of aminosterols with cells are, however, still largely uncharacterized. Here, by using fluorescently labeled trodusquemine (TRO-A594 and TRO-ATTO565), we show that trodusquemine binds initially to the plasma membrane of living cells, that the binding affinity is dependent on cholesterol, and that trodusquemine is then internalized and mainly targeted to lysosomes after internalization. We also found that TRO-A594 is able to strongly and selectively bind to myelinated fibers in fixed mouse brain slices, and that it is a marker compatible with tissue clearing and light-sheet fluorescence microscopy or expansion microscopy. In conclusion, this work contributes to further characterize the biology of aminosterols and provides a new tool for nerve labeling suitable for the most advanced microscopy techniques.
Collapse
Affiliation(s)
- Claudia Capitini
- European Laboratory for Non‐Linear Spectroscopy (LENS)University of FlorenceSesto FiorentinoItaly,Department of PhysicsUniversity of FlorenceSesto FiorentinoItaly
| | - Luca Pesce
- European Laboratory for Non‐Linear Spectroscopy (LENS)University of FlorenceSesto FiorentinoItaly,Department of PhysicsUniversity of FlorenceSesto FiorentinoItaly
| | - Giulia Fani
- Department of Experimental and Clinical Biomedical Sciences, Section of BiochemistryUniversity of FlorenceFlorenceItaly
| | - Giacomo Mazzamuto
- European Laboratory for Non‐Linear Spectroscopy (LENS)University of FlorenceSesto FiorentinoItaly,Department of PhysicsUniversity of FlorenceSesto FiorentinoItaly,National Institute of Optics – National Research Council (CNR‐INO)Sesto FiorentinoItaly
| | - Massimo Genovese
- Department of Experimental and Clinical Biomedical Sciences, Section of BiochemistryUniversity of FlorenceFlorenceItaly
| | - Alessandra Franceschini
- European Laboratory for Non‐Linear Spectroscopy (LENS)University of FlorenceSesto FiorentinoItaly,Department of PhysicsUniversity of FlorenceSesto FiorentinoItaly
| | - Paolo Paoli
- Department of Experimental and Clinical Biomedical Sciences, Section of BiochemistryUniversity of FlorenceFlorenceItaly
| | | | - Michael Zasloff
- Enterin Inc.PhiladelphiaPennsylvaniaUSA,MedStar‐Georgetown Transplant InstituteGeorgetown University School of MedicineWashingtonDCUSA
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences, Section of BiochemistryUniversity of FlorenceFlorenceItaly
| | - Francesco S. Pavone
- European Laboratory for Non‐Linear Spectroscopy (LENS)University of FlorenceSesto FiorentinoItaly,Department of PhysicsUniversity of FlorenceSesto FiorentinoItaly,National Institute of Optics – National Research Council (CNR‐INO)Sesto FiorentinoItaly
| | - Martino Calamai
- European Laboratory for Non‐Linear Spectroscopy (LENS)University of FlorenceSesto FiorentinoItaly,National Institute of Optics – National Research Council (CNR‐INO)Sesto FiorentinoItaly
| |
Collapse
|
28
|
Sedov I, Khaibrakhmanova D. Molecular Mechanisms of Inhibition of Protein Amyloid Fibril Formation: Evidence and Perspectives Based on Kinetic Models. Int J Mol Sci 2022; 23:13428. [PMID: 36362217 PMCID: PMC9657184 DOI: 10.3390/ijms232113428] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Inhibition of fibril formation is considered a possible treatment strategy for amyloid-related diseases. Understanding the molecular nature of inhibitor action is crucial for the design of drug candidates. In the present review, we describe the common kinetic models of fibril formation and classify known inhibitors by the mechanism of their interactions with the aggregating protein and its oligomers. This mechanism determines the step or steps of the aggregation process that become inhibited and the observed changes in kinetics and equilibrium of fibril formation. The results of numerous studies indicate that possible approaches to antiamyloid inhibitor discovery include the search for the strong binders of protein monomers, cappers blocking the ends of the growing fibril, or the species absorbing on the surface of oligomers preventing nucleation. Strongly binding inhibitors stabilizing the native state can be promising for the structured proteins while designing the drug candidates targeting disordered proteins is challenging.
Collapse
Affiliation(s)
- Igor Sedov
- Chemical Institute, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 420111 Kazan, Russia
- Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
| | | |
Collapse
|
29
|
Sterling C, Márquez-Garbán D, Vadgama JV, Pietras RJ. Squalamines in Blockade of Tumor-Associated Angiogenesis and Cancer Progression. Cancers (Basel) 2022; 14:5154. [PMID: 36291938 PMCID: PMC9601113 DOI: 10.3390/cancers14205154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 12/30/2022] Open
Abstract
Mechanisms of action of squalamine in human vascular endothelial cells indicate that this compound attaches to cell membranes, potentially interacting with calmodulin, Na+/H+ exchanger isoform NHE3 and other signaling pathways involved in the angiogenic process. Thus, squalamine elicits blockade of VEGF-induced endothelial tube-like formation in vitro. Further, squalamine reduces growth of several preclinical models of human cancers in vivo and acts to stop metastatic tumor spread, actions due largely to blockade of angiogenesis induced by the tumor and tumor microenvironment. Squalamine in Phase I/II trials, alone or combined with standard care, shows promising antitumor activity with limited side-effects in patients with advanced solid cancers. Increased attention on squalamine regulation of signaling pathways with or without combination treatments in solid malignancies deserves further study.
Collapse
Affiliation(s)
- Colin Sterling
- Division of Cancer Research and Training, Charles Drew University School of Medicine and Science, Los Angeles, CA 90059, USA
| | - Diana Márquez-Garbán
- Division of Hematology-Oncology, Department of Medicine, UCLA David Geffen School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
| | - Jaydutt V. Vadgama
- Division of Cancer Research and Training, Charles Drew University School of Medicine and Science, Los Angeles, CA 90059, USA
- Division of Hematology-Oncology, Department of Medicine, UCLA David Geffen School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
| | - Richard J. Pietras
- Division of Cancer Research and Training, Charles Drew University School of Medicine and Science, Los Angeles, CA 90059, USA
- Division of Hematology-Oncology, Department of Medicine, UCLA David Geffen School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
| |
Collapse
|
30
|
Proteinopathies: Deciphering Physiology and Mechanisms to Develop Effective Therapies for Neurodegenerative Diseases. Mol Neurobiol 2022; 59:7513-7540. [PMID: 36205914 DOI: 10.1007/s12035-022-03042-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/13/2022] [Indexed: 10/10/2022]
Abstract
Neurodegenerative diseases (NDs) are a cluster of diseases marked by progressive neuronal loss, axonal transport blockage, mitochondrial dysfunction, oxidative stress, neuroinflammation, and aggregation of misfolded proteins. NDs are more prevalent beyond the age of 50, and their symptoms often include motor and cognitive impairment. Even though various proteins are involved in different NDs, the mechanisms of protein misfolding and aggregation are very similar. Recently, several studies have discovered that, like prions, these misfolded proteins have the inherent capability of translocation from one neuron to another, thus having far-reaching implications for understanding the processes involved in the onset and progression of NDs, as well as the development of innovative therapy and diagnostic options. These misfolded proteins can also influence the transcription of other proteins and form aggregates, tangles, plaques, and inclusion bodies, which then accumulate in the CNS, leading to neuronal dysfunction and neurodegeneration. This review demonstrates protein misfolding and aggregation in NDs, and similarities and differences between different protein aggregates have been discussed. Furthermore, we have also reviewed the disposal of protein aggregates, the various molecular machinery involved in the process, their regulation, and how these molecular mechanisms are targeted to build innovative therapeutic and diagnostic procedures. In addition, the landscape of various therapeutic interventions for targeting protein aggregation for the effective prevention or treatment of NDs has also been discussed.
Collapse
|
31
|
Natale C, Barzago MM, Colnaghi L, De Luigi A, Orsini F, Fioriti L, Diomede L. A Combined Cell-Worm Approach to Search for Compounds Counteracting the Toxicity of Tau Oligomers In Vivo. Int J Mol Sci 2022; 23:11277. [PMID: 36232578 PMCID: PMC9569484 DOI: 10.3390/ijms231911277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
A clear relationship between the tau assemblies and toxicity has still to be established. To correlate the tau conformation with its proteotoxic effect in vivo, we developed an innovative cell-worm-based approach. HEK293 cells expressing tau P301L under a tetracycline-inducible system (HEK T-Rex) were employed to produce different tau assemblies whose proteotoxic potential was evaluated using C. elegans. Lysates from cells induced for five days significantly reduced the worm's locomotor activity. This toxic effect was not related to the total amount of tau produced by cells or to its phosphorylation state but was related to the formation of multimeric tau assemblies, particularly tetrameric ones. We investigated the applicability of this approach for testing compounds acting against oligomeric tau toxicity, using doxycycline (Doxy) as a prototype drug. Doxy affected tau solubility and promoted the disassembly of already formed toxic aggregates in lysates of cells induced for five days. These effects translated into a dose-dependent protective action in C. elegans. These findings confirm the validity of the combined HEK T-Rex cells and the C. elegans-based approach as a platform for pharmacological screening.
Collapse
Affiliation(s)
- Carmina Natale
- Department of Molecular Biochemistry and Pharmacology, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Maria Monica Barzago
- Department of Molecular Biochemistry and Pharmacology, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Luca Colnaghi
- Department of Molecular Biochemistry and Pharmacology, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Ada De Luigi
- Department of Molecular Biochemistry and Pharmacology, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Franca Orsini
- Dulbecco Telethon Institute and Department of Neuroscience, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Luana Fioriti
- Dulbecco Telethon Institute and Department of Neuroscience, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Luisa Diomede
- Department of Molecular Biochemistry and Pharmacology, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| |
Collapse
|
32
|
Protein tyrosine phosphatase 1B (PTP1B) as a potential therapeutic target for neurological disorders. Biomed Pharmacother 2022; 155:113709. [PMID: 36126456 DOI: 10.1016/j.biopha.2022.113709] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/23/2022] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a typical member of the PTP family, considered a direct negative regulator of several receptor and receptor-associated tyrosine kinases. This widely localized enzyme has been involved in the pathophysiology of several diseases. More recently, PTP1B has attracted attention in the field of neuroscience, since its activation in brain cells can lead to schizophrenia-like behaviour deficits, anxiety-like effects, neurodegeneration, neuroinflammation and depression. Conversely, PTP1B inhibition has been shown to prevent microglial activation, thus exerting a potent anti-inflammatory effect and has also shown potential to increase the cognitive process through the stimulation of hippocampal insulin, leptin and BDNF/TrkB receptors. Notwithstanding, most research on the clinical efficacy of targeting PTP1B has been developed in the field of obesity and type 2 diabetes mellitus (TD2M). However, despite the link existing between these metabolic alterations and neurodegeneration, no clinical trials assessing the neurological advantages of PTP1B inhibition have been performed yet. Preclinical studies, though, have provided strong evidence that targeting PTP1B could allow to reach different pathophysiological mechanisms at once. herefore, specific interventions or trials should be designed to modulate PTP1B activity in brain, since it is a promising strategy to decelerate or prevent neurodegeneration in aged individuals, among other neurological diseases. The present paper fails to include all neurological conditions in which PTP1B could have a role; instead, it focuses on those which have been related to metabolic alterations and neurodegenerative processes. Moreover, only preclinical data is discussed, since clinical studies on the potential of PTP1B inhibition for treating neurological diseases are still required.
Collapse
|
33
|
Bigi A, Cascella R, Chiti F, Cecchi C. Amyloid fibrils act as a reservoir of soluble oligomers, the main culprits in protein deposition diseases. Bioessays 2022; 44:e2200086. [DOI: 10.1002/bies.202200086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/25/2021] [Accepted: 08/30/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Alessandra Bigi
- Department of Experimental and Clinical Biomedical Sciences Section of Biochemistry University of Florence Florence Italy
| | - Roberta Cascella
- Department of Experimental and Clinical Biomedical Sciences Section of Biochemistry University of Florence Florence Italy
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences Section of Biochemistry University of Florence Florence Italy
| | - Cristina Cecchi
- Department of Experimental and Clinical Biomedical Sciences Section of Biochemistry University of Florence Florence Italy
| |
Collapse
|
34
|
Yoo JM, Lin Y, Heo Y, Lee YH. Polymorphism in alpha-synuclein oligomers and its implications in toxicity under disease conditions. Front Mol Biosci 2022; 9:959425. [PMID: 36032665 PMCID: PMC9412080 DOI: 10.3389/fmolb.2022.959425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/11/2022] [Indexed: 11/26/2022] Open
Abstract
The major hallmark of Parkinson’s disease (PD) is represented by the formation of pathological protein plaques largely consisting of α-synuclein (αSN) amyloid fibrils. Nevertheless, the implications of αSN oligomers in neuronal impairments and disease progression are more importantly highlighted than mature fibrils, as they provoke more detrimental damages in neuronal cells and thereby exacerbate α-synucleinopathy. Interestingly, although generation of oligomeric species under disease conditions is likely correlated to cytotoxicity and different cellular damages, αSN oligomers manifest varying toxicity profiles dependent on the specific environments as well as the shapes and conformations the oligomers adopt. As such, this minireview discusses polymorphism in αSN oligomers and the association of the underlying heterogeneity in regard to toxicity under pathological conditions.
Collapse
Affiliation(s)
- Je Min Yoo
- BioGraphene Inc, Los Angeles, CA, United States
| | - Yuxi Lin
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, South Korea
| | - Yunseok Heo
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, South Korea
| | - Young-Ho Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, South Korea
- Department of Bio-Analytical Science, University of Science and Technology, Daejeon, South Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, South Korea
- Research Headquarters, Korea Brain Research Institute, Daegu, South Korea
- *Correspondence: Young-Ho Lee,
| |
Collapse
|
35
|
Ahmad W. Glucose enrichment impair neurotransmission and induce Aβ oligomerization that cannot be reversed by manipulating O-β-GlcNAcylation in the C. elegans model of Alzheimer's disease. J Nutr Biochem 2022; 108:109100. [PMID: 35779795 DOI: 10.1016/j.jnutbio.2022.109100] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/27/2022] [Accepted: 06/08/2022] [Indexed: 01/17/2023]
Abstract
Amyloid beta (Aβ) plaques formation and impaired neurotransmission and neuronal behaviors are primary hallmarks of Alzheimer's disease (AD) that are further associated with impaired glucose metabolism in elderly AD's patients. However, the exact role of glucose metabolism on disease progression has not been elucidated yet. In this study, the effect of glucose on Aβ-mediated toxicity, neurotransmission and neuronal behaviors has been investigated using a C. elegans model system expressing human Aβ. In addition to regular diet, worms expressing Aβ were supplemented with different concentrations of glucose and glycerol and 5 mM 2-deoxyglucose to draw any conclusions. Addition of glucose to the growth medium delayed Aβ-associated paralysis, promoted abnormal body shapes and movement, unable to restore impaired acetylcholine neurotransmission, inhibited egg laying and hatching in pre-existing Aβ-mediated pathology. The harmful effects of glucose may associate with an increase in toxic Aβ oligomers and impaired neurotransmission. O-β-GlcNAcylation (O-GlcNAc), a well-known post-translational modification is directly associated with glucose metabolism and has been found to ameliorates the Aβ- toxicity. We reasoned that glucose addition might induce O-GlcNAc, thereby protect against Aβ. Contrary to our expectations, induced glucose levels were not protective. Increasing O-GlcNAc, either with Thiamet-G (TMG) or by suppressing the O-GlcNAcase (oga-1) gene does interfere with and, therefore, reduce Aβ- toxicity but not in the presence of high glucose. The effects of glucose cannot be effectively managed by manipulating O-GlcNAc in AD models of C. elegans. Our observations suggest that glucose enrichment is unlikely to be an appropriate therapy to minimize AD progression.
Collapse
Affiliation(s)
- Waqar Ahmad
- School of Biological Sciences, the University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|
36
|
MCC950 ameliorates the dementia symptom at the early age of line M83 mouse and reduces hippocampal α-synuclein accumulation. Biochem Biophys Res Commun 2022; 611:23-30. [DOI: 10.1016/j.bbrc.2022.04.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/17/2022] [Indexed: 11/19/2022]
|
37
|
Vidović M, Rikalovic MG. Alpha-Synuclein Aggregation Pathway in Parkinson's Disease: Current Status and Novel Therapeutic Approaches. Cells 2022; 11:cells11111732. [PMID: 35681426 PMCID: PMC9179656 DOI: 10.3390/cells11111732] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 01/27/2023] Open
Abstract
Following Alzheimer’s, Parkinson’s disease (PD) is the second-most common neurodegenerative disorder, sharing an unclear pathophysiology, a multifactorial profile, and massive social costs worldwide. Despite this, no disease-modifying therapy is available. PD is tightly associated with α-synuclein (α-Syn) deposits, which become organised into insoluble, amyloid fibrils. As a typical intrinsically disordered protein, α-Syn adopts a monomeric, random coil conformation in an aqueous solution, while its interaction with lipid membranes drives the transition of the molecule part into an α-helical structure. The central unstructured region of α-Syn is involved in fibril formation by converting to well-defined, β-sheet rich secondary structures. Presently, most therapeutic strategies against PD are focused on designing small molecules, peptides, and peptidomimetics that can directly target α-Syn and its aggregation pathway. Other approaches include gene silencing, cell transplantation, stimulation of intracellular clearance with autophagy promoters, and degradation pathways based on immunotherapy of amyloid fibrils. In the present review, we sum marise the current advances related to α-Syn aggregation/neurotoxicity. These findings present a valuable arsenal for the further development of efficient, nontoxic, and non-invasive therapeutic protocols for disease-modifying therapy that tackles disease onset and progression in the future.
Collapse
Affiliation(s)
- Marija Vidović
- Laboratory for Plant Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
- Correspondence: ; Tel.: +38-16-4276-3221
| | - Milena G. Rikalovic
- Environment and Sustainable Development, Singidunum Univeristy, Danijelova 32, 11010 Belgrade, Serbia;
| |
Collapse
|
38
|
Kreiser RP, Wright AK, Sasser LR, Rinauro DJ, Gabriel JM, Hsu CM, Hurtado JA, McKenzie TL, Errico S, Albright JA, Richardson L, Jaffett VA, Riegner DE, Nguyen LT, LeForte K, Zasloff M, Hollows JE, Chiti F, Vendruscolo M, Limbocker R. A Brain-Permeable Aminosterol Regulates Cell Membranes to Mitigate the Toxicity of Diverse Pore-Forming Agents. ACS Chem Neurosci 2022; 13:1219-1231. [PMID: 35404569 PMCID: PMC9026273 DOI: 10.1021/acschemneuro.1c00840] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
![]()
The molecular composition
of the plasma membrane plays a key role
in mediating the susceptibility of cells to perturbations induced
by toxic molecules. The pharmacological regulation of the properties
of the cell membrane has therefore the potential to enhance cellular
resilience to a wide variety of chemical and biological compounds.
In this study, we investigate the ability of claramine, a blood–brain
barrier permeable small molecule in the aminosterol class, to neutralize
the toxicity of acute biological threat agents, including melittin
from honeybee venom and α-hemolysin from Staphylococcus
aureus. Our results show that claramine neutralizes
the toxicity of these pore-forming agents by preventing their interactions
with cell membranes without perturbing their structures in a detectable
manner. We thus demonstrate that the exogenous administration of an
aminosterol can tune the properties of lipid membranes and protect
cells from diverse biotoxins, including not just misfolded protein
oligomers as previously shown but also biological protein-based toxins.
Our results indicate that the investigation of regulators of the physicochemical
properties of cell membranes offers novel opportunities to develop
countermeasures against an extensive set of cytotoxic effects associated
with cell membrane disruption.
Collapse
Affiliation(s)
- Ryan P. Kreiser
- Department of Chemistry and Life Science, United States Military Academy, West Point, New York 10996, United States
| | - Aidan K. Wright
- Department of Chemistry and Life Science, United States Military Academy, West Point, New York 10996, United States
| | - Liam R. Sasser
- Department of Chemistry and Life Science, United States Military Academy, West Point, New York 10996, United States
| | - Dillon J. Rinauro
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Justus M. Gabriel
- Department of Chemistry and Life Science, United States Military Academy, West Point, New York 10996, United States
| | - Claire M. Hsu
- Department of Chemistry and Life Science, United States Military Academy, West Point, New York 10996, United States
| | - Jorge A. Hurtado
- Department of Chemistry and Life Science, United States Military Academy, West Point, New York 10996, United States
| | - Tristan L. McKenzie
- Department of Chemistry and Life Science, United States Military Academy, West Point, New York 10996, United States
| | - Silvia Errico
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence 50134, Italy
| | - J. Alex Albright
- Department of Chemistry and Life Science, United States Military Academy, West Point, New York 10996, United States
| | - Lance Richardson
- Department of Chemistry and Life Science, United States Military Academy, West Point, New York 10996, United States
| | - Victor A. Jaffett
- Department of Chemistry and Life Science, United States Military Academy, West Point, New York 10996, United States
| | - Dawn E. Riegner
- Department of Chemistry and Life Science, United States Military Academy, West Point, New York 10996, United States
| | - Lam T. Nguyen
- Department of Chemistry and Life Science, United States Military Academy, West Point, New York 10996, United States
| | - Kathleen LeForte
- Department of Chemistry and Life Science, United States Military Academy, West Point, New York 10996, United States
| | - Michael Zasloff
- MedStar-Georgetown Transplant Institute, Georgetown University School of Medicine, Washington, District of Columbia 20010, United States
| | - Jared E. Hollows
- Department of Chemistry and Life Science, United States Military Academy, West Point, New York 10996, United States
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence 50134, Italy
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Ryan Limbocker
- Department of Chemistry and Life Science, United States Military Academy, West Point, New York 10996, United States
| |
Collapse
|
39
|
Peña-Díaz S, Pujols J, Vasili E, Pinheiro F, Santos J, Manglano-Artuñedo Z, Outeiro TF, Ventura S. The small aromatic compound SynuClean-D inhibits the aggregation and seeded polymerization of multiple α-synuclein strains. J Biol Chem 2022; 298:101902. [PMID: 35390347 PMCID: PMC9079179 DOI: 10.1016/j.jbc.2022.101902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 12/25/2022] Open
Abstract
Parkinson’s disease is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra, as well as the accumulation of intraneuronal proteinaceous inclusions known as Lewy bodies and Lewy neurites. The major protein component of Lewy inclusions is the intrinsically disordered protein α-synuclein (α-Syn), which can adopt diverse amyloid structures. Different conformational strains of α-Syn have been proposed to be related to the onset of distinct synucleinopathies; however, how specific amyloid fibrils cause distinctive pathological traits is not clear. Here, we generated three different α-Syn amyloid conformations at different pH and salt concentrations and analyzed the activity of SynuClean-D (SC-D), a small aromatic molecule, on these strains. We show that incubation of α-Syn with SC-D reduced the formation of aggregates and the seeded polymerization of α-Syn in all cases. Moreover, we found that SC-D exhibited a general fibril disaggregation activity. Finally, we demonstrate that treatment with SC-D also reduced strain-specific intracellular accumulation of phosphorylated α-Syn inclusions. Taken together, we conclude that SC-D may be a promising hit compound to inhibit polymorphic α-Syn aggregation.
Collapse
Affiliation(s)
- Samuel Peña-Díaz
- Institut de Biotecnologia i Biomedicina. Universitat Autonoma de Barcelona, Bellaterra, Spain; Departament de Bioquimica i Biologia Molecular. Universitat Autonoma de Barcelona, Bellaterra, Spain
| | - Jordi Pujols
- Institut de Biotecnologia i Biomedicina. Universitat Autonoma de Barcelona, Bellaterra, Spain; Departament de Bioquimica i Biologia Molecular. Universitat Autonoma de Barcelona, Bellaterra, Spain
| | - Eftychia Vasili
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany; Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Francisca Pinheiro
- Institut de Biotecnologia i Biomedicina. Universitat Autonoma de Barcelona, Bellaterra, Spain; Departament de Bioquimica i Biologia Molecular. Universitat Autonoma de Barcelona, Bellaterra, Spain
| | - Jaime Santos
- Institut de Biotecnologia i Biomedicina. Universitat Autonoma de Barcelona, Bellaterra, Spain; Departament de Bioquimica i Biologia Molecular. Universitat Autonoma de Barcelona, Bellaterra, Spain
| | - Zoe Manglano-Artuñedo
- Institut de Biotecnologia i Biomedicina. Universitat Autonoma de Barcelona, Bellaterra, Spain; Departament de Bioquimica i Biologia Molecular. Universitat Autonoma de Barcelona, Bellaterra, Spain
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany; Max Planck Institute for Experimental Medicine, Göttingen, Germany; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, Newcastle, United Kingdom; Scientific Employee With a Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina. Universitat Autonoma de Barcelona, Bellaterra, Spain; Departament de Bioquimica i Biologia Molecular. Universitat Autonoma de Barcelona, Bellaterra, Spain; ICREA, Passeig Lluis Companys 23, Barcelona, Spain.
| |
Collapse
|
40
|
Effects of oligomer toxicity, fibril toxicity and fibril spreading in synucleinopathies. Cell Mol Life Sci 2022; 79:174. [PMID: 35244787 PMCID: PMC8897347 DOI: 10.1007/s00018-022-04166-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/17/2022] [Accepted: 01/22/2022] [Indexed: 12/18/2022]
Abstract
Protein misfolding is a general hallmark of protein deposition diseases, such as Alzheimer’s disease or Parkinson’s disease, in which different types of aggregated species (oligomers, protofibrils and fibrils) are generated by the cells. Despite widespread interest, the relationship between oligomers and fibrils in the aggregation process and spreading remains elusive. A large variety of experimental evidences supported the idea that soluble oligomeric species of different proteins might be more toxic than the larger fibrillar forms. Furthermore, the lack of correlation between the presence of the typical pathological inclusions and disease sustained this debate. However, recent data show that the β-sheet core of the α-Synuclein (αSyn) fibrils is unable to establish persistent interactions with the lipid bilayers, but they can release oligomeric species responsible for an immediate dysfunction of the recipient neurons. Reversibly, such oligomeric species could also contribute to pathogenesis via neuron-to-neuron spreading by their direct cell-to-cell transfer or by generating new fibrils, following their neuronal uptake. In this Review, we discuss the various mechanisms of cellular dysfunction caused by αSyn, including oligomer toxicity, fibril toxicity and fibril spreading.
Collapse
|
41
|
Kazakova O, Giniyatullina G, Babkov D, Wimmer Z. From Marine Metabolites to the Drugs of the Future: Squalamine, Trodusquemine, Their Steroid and Triterpene Analogues. Int J Mol Sci 2022; 23:ijms23031075. [PMID: 35162998 PMCID: PMC8834734 DOI: 10.3390/ijms23031075] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 12/13/2022] Open
Abstract
This review comprehensively describes the recent advances in the synthesis and pharmacological evaluation of steroid polyamines squalamine, trodusquemine, ceragenins, claramine, and their diverse analogs and derivatives, with a special focus on their complete synthesis from cholic acids, as well as an antibacterial and antiviral, neuroprotective, antiangiogenic, antitumor, antiobesity and weight-loss activity, antiatherogenic, regenerative, and anxiolytic properties. Trodusquemine is the most-studied small-molecule allosteric PTP1B inhibitor. The discovery of squalamine as the first representative of a previously unknown class of natural antibiotics of animal origin stimulated extensive research of terpenoids (especially triterpenoids) comprising polyamine fragments. During the last decade, this new class of biologically active semisynthetic natural product derivatives demonstrated the possibility to form supramolecular networks, which opens up many possibilities for the use of such structures for drug delivery systems in serum or other body fluids.
Collapse
Affiliation(s)
- Oxana Kazakova
- Ufa Institute of Chemistry, UFA Federal Research Centre of the Russian Academy of Sciences, Pr. Oktyabrya, 450054 Ufa, Russia;
- Correspondence:
| | - Gulnara Giniyatullina
- Ufa Institute of Chemistry, UFA Federal Research Centre of the Russian Academy of Sciences, Pr. Oktyabrya, 450054 Ufa, Russia;
| | - Denis Babkov
- Laboratory of Metabotropic Drugs, Scientific Center for Innovative Drugs, Volgograd State Medical University, Novorossiyskaya St. 39, 400087 Volgograd, Russia;
| | - Zdenek Wimmer
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology in Prague, Technicka’ 5, Prague 6, 16628 Prague, Czech Republic;
| |
Collapse
|
42
|
Gadhe L, Sakunthala A, Mukherjee S, Gahlot N, Bera R, Sawner AS, Kadu P, Maji SK. Intermediates of α-synuclein aggregation: Implications in Parkinson's disease pathogenesis. Biophys Chem 2021; 281:106736. [PMID: 34923391 DOI: 10.1016/j.bpc.2021.106736] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/27/2021] [Accepted: 11/27/2021] [Indexed: 12/11/2022]
Abstract
Cytoplasmic deposition of aberrantly misfolded α-synuclein (α-Syn) is a common feature of synucleinopathies, including Parkinson's disease (PD). However, the precise pathogenic mechanism of α-Syn in synucleinopathies remains elusive. Emerging evidence has suggested that α-Syn may contribute to PD pathogenesis in several ways; wherein the contribution of fibrillar species, for exerting toxicity and disease transmission, cannot be neglected. Further, the oligomeric species could be the most plausible neurotoxic species causing neuronal cell death. However, understanding the structural and molecular insights of these oligomers are very challenging due to the heterogeneity and transient nature of the species. In this review, we discuss the recent advancements in understanding the formation and role of α-Syn oligomers in PD pathogenesis. We also summarize the different types of α-Syn oligomeric species and potential mechanisms to exert neurotoxicity. Finally, we address the possible ways to target α-Syn as a promising approach against PD and the possible future directions.
Collapse
Affiliation(s)
- Laxmikant Gadhe
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Arunima Sakunthala
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Semanti Mukherjee
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Nitisha Gahlot
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Riya Bera
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Ajay Singh Sawner
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Pradeep Kadu
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Samir K Maji
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
43
|
Limbocker R, Errico S, Barbut D, Knowles TPJ, Vendruscolo M, Chiti F, Zasloff M. Squalamine and trodusquemine: two natural products for neurodegenerative diseases, from physical chemistry to the clinic. Nat Prod Rep 2021; 39:742-753. [PMID: 34698757 DOI: 10.1039/d1np00042j] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: 1993 to 2021 (mainly 2017-2021)Alzheimer's and Parkinson's diseases are neurodegenerative conditions affecting over 50 million people worldwide. Since these disorders are still largely intractable pharmacologically, discovering effective treatments is of great urgency and importance. These conditions are characteristically associated with the aberrant deposition of proteinaceous aggregates in the brain, and with the formation of metastable intermediates known as protein misfolded oligomers that play a central role in their aetiology. In this Highlight article, we review the evidence at the physicochemical, cellular, animal model and clinical levels on how the natural products squalamine and trodusquemine offer promising opportunities for chronic treatments for these progressive conditions by preventing both the formation of neurotoxic oligomers and their interaction with cell membranes.
Collapse
Affiliation(s)
- Ryan Limbocker
- Department of Chemistry and Life Science, United States Military Academy, West Point, New York 10996, USA
| | - Silvia Errico
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence 50134, Italy. .,Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK.
| | - Denise Barbut
- Enterin Inc., 3624 Market Street, Philadelphia, Pennsylvania 19104, USA
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK. .,Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK.
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence 50134, Italy.
| | - Michael Zasloff
- Enterin Inc., 3624 Market Street, Philadelphia, Pennsylvania 19104, USA.,MedStar-Georgetown Transplant Institute, Georgetown University School of Medicine, Washington, DC 20010, USA.
| |
Collapse
|