1
|
Yang C, Song Y, Luo M, Wang Q, Zhang Y, Cen J, Du G, Shi J. Exosomes-encapsulated biomimetic polydopamine carbon dots with dual-targeting effect alleviate motor and non-motor symptoms of Parkinson's disease via anti-neuroinflammation. Int J Biol Macromol 2025; 296:139724. [PMID: 39809402 DOI: 10.1016/j.ijbiomac.2025.139724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/22/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025]
Abstract
Currently, the clinical drugs for Parkinson's disease (PD) only focus on motor symptoms, while non-motor symptoms like depression are usually neglected. Even though, the efficacy of existing neurotherapeutic drugs is extremely poor which is due to the blood brain barrier (BBB). Therefore, a biomimetic polydopamine carbon dots (PDA C-dots) at 2-4 nm was synthesized, while exosomes from macrophages were applied to encapsulate PDA C-dots for improving their BBB-crossing ability and inflammation-targeting effect. Importantly, the prepared PDA C-dots@Exosomes (PEs) significantly alleviated both motor and non-motor symptoms of PD mice. Further mechanism research revealed that PEs eliminated oxidant stress and alleviated neuroinflammation to restore the injured neurons. The content of α-syn was markedly reduced, and the neural viability was dramatically improved on the areas of substantia nigra, striata, and prefrontal cortex. In summary, this work reported a mild synthetic approach to produce a kind of PDA C-dots, which had a fantastic neuroprotective effect. After being encapsulated with exosomes of macrophages, the obtained PEs could be utilized as a neuroprotective drug with great penetration ability of BBB and targeting ability into inflammatory zone. The great therapeutic effect on both motor and non-motor symptoms of PD indicates that PEs could become a promising drug for PD treatment.
Collapse
Affiliation(s)
- Chen Yang
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan 475004, China; State Key Laboratory of Antiviral Drugs Henan University, Henan University, Kaifeng, Henan 475004, China
| | - Yanhao Song
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan 475004, China; State Key Laboratory of Antiviral Drugs Henan University, Henan University, Kaifeng, Henan 475004, China
| | - Mingkai Luo
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan 475004, China; State Key Laboratory of Antiviral Drugs Henan University, Henan University, Kaifeng, Henan 475004, China
| | - Qiuli Wang
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan 475004, China; State Key Laboratory of Antiviral Drugs Henan University, Henan University, Kaifeng, Henan 475004, China
| | - Yumei Zhang
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan 475004, China; State Key Laboratory of Antiviral Drugs Henan University, Henan University, Kaifeng, Henan 475004, China
| | - Juan Cen
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan 475004, China; State Key Laboratory of Antiviral Drugs Henan University, Henan University, Kaifeng, Henan 475004, China.
| | - Guanhua Du
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan 475004, China; State Key Laboratory of Antiviral Drugs Henan University, Henan University, Kaifeng, Henan 475004, China.
| | - Jiahua Shi
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan 475004, China; State Key Laboratory of Antiviral Drugs Henan University, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
2
|
DeAngelo V, Gehan A, Paliwal S, Ho K, Hilliard JD, Chiang CH, Viventi J, McConnell GC. Cerebellar activity in hemi-parkinsonian rats during volitional gait and freezing. Brain Commun 2024; 6:fcae246. [PMID: 39464215 PMCID: PMC11503953 DOI: 10.1093/braincomms/fcae246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/02/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024] Open
Abstract
Parkinson's disease is a neurodegenerative disease characterized by gait dysfunction in the advanced stages of the disease. The unilateral 6-hydroxydopamine toxin-induced model is the most studied animal model of Parkinson's disease, which reproduces gait dysfunction after >68% dopamine loss in the substantia nigra pars compacta. The extent to which the neural activity in hemi-parkinsonian rats correlates to gait dysfunction and dopaminergic cell loss is not clear. In this article, we report the effects of unilateral dopamine depletion on cerebellar vermis activity using micro-electrocorticography during walking and freezing on a runway. Gait and neural activity were measured in 6-hydroxydopamine- and sham-lesioned rats aged between 4 and 5 months at 14, 21 and 28 days after infusion of 6-hydroxydopamine or control vehicle into the medial forebrain bundle (n = 20). Gait deficits in 6-hydroxydopamine rats were different from sham rats at 14 days (P < 0.05). Gait deficits in 6-hydroxydopamine rats improved at 21 and 28 days except for run speed, which decreased at 28 days (P = 0.018). No differences in gait deficits were observed in sham-lesioned rats at any time points. Hemi-parkinsonian rats showed hyperactivity in the cerebellar vermis at 21 days (P < 0.05), but not at 14 and 28 days, and the activity was reduced during freezing epochs in Lobules VIa, VIb and VIc (P < 0.05). These results suggest that dopaminergic cell loss causes pathological cerebellar activity at 21 days post-lesion and suggest that compensatory mechanisms from the intact hemisphere contribute to normalized cerebellar activity at 28 days. The decrease in cerebellar oscillatory activity during freezing may be indicative of neurological changes during freezing of gait in patients with Parkinson's disease making this region a potential location for biomarker detection. Although the unilateral 6-hydroxydopamine model presents gait deficits that parallel clinical presentations of Parkinson's disease, further studies in animal models of bilateral dopamine loss are needed to understand the role of the cerebellar vermis in Parkinson's disease.
Collapse
Affiliation(s)
- Valerie DeAngelo
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Arianna Gehan
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Siya Paliwal
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Katherine Ho
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Justin D Hilliard
- Department of Neurosurgery, University of Florida, Gainesville, FL 32611, USA
| | - Chia-Han Chiang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Jonathan Viventi
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Department of Neurosurgery, Duke School of Medicine, Durham, NC 27710, USA
- Department of Neurobiology, Duke School of Medicine, Durham, NC 27710, USA
- Duke Comprehensive Epilepsy Center, Duke School of Medicine, Durham, NC 27710, USA
| | - George C McConnell
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| |
Collapse
|
3
|
Wang X, Chen M, Shen Y, Li Y, Li S, Xu Y, Liu Y, Su F, Xin T. A longitudinal electrophysiological and behavior dataset for PD rat in response to deep brain stimulation. Sci Data 2024; 11:500. [PMID: 38750096 PMCID: PMC11096386 DOI: 10.1038/s41597-024-03356-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024] Open
Abstract
Here we presented an electrophysiological dataset collected from layer V of the primary motor cortex (M1) and the corresponding behavior dataset from normal and hemi-parkinson rats over 5 consecutive weeks. The electrophysiological dataset was constituted by the raw wideband signal, neuronal spikes, and local field potential (LFP) signal. The open-field test was done and recorded to evaluate the behavior variation of rats among the entire experimental cycle. We conducted technical validation of this dataset through sorting the spike data to form action potential waveforms and analyzing the spectral power of LFP data, then based on these findings a closed-loop DBS protocol was developed by the oscillation activity response of M1 LFP signal. Additionally, this protocol was applied to the hemi-parkinson rat for five consecutive days while simultaneously recording the electrophysiological data. This dataset is currently the only publicly available dataset that includes longitudinal closed-loop DBS recordings, which can be utilized to investigate variations of neuronal activity within the M1 following long-term closed-loop DBS, and explore additional reliable biomarkers.
Collapse
Affiliation(s)
- Xiaofeng Wang
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Min Chen
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China
| | - Yin Shen
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Yuming Li
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
| | - Shengjie Li
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
| | - Yuanhao Xu
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Hong Kong, 999077, China
| | - Yu Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
- Division of Nuclear Technology and Applications, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei Su
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China.
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Taian, China.
| | - Tao Xin
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China.
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China.
- Shandong Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China.
| |
Collapse
|
4
|
Abdulbaki A, Doll T, Helgers S, Heissler HE, Voges J, Krauss JK, Schwabe K, Alam M. Subthalamic Nucleus Deep Brain Stimulation Restores Motor and Sensorimotor Cortical Neuronal Oscillatory Activity in the Free-Moving 6-Hydroxydopamine Lesion Rat Parkinson Model. Neuromodulation 2024; 27:489-499. [PMID: 37002052 DOI: 10.1016/j.neurom.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 03/31/2023]
Abstract
OBJECTIVES Enhanced beta oscillations in cortical-basal ganglia (BG) thalamic circuitries have been linked to clinical symptoms of Parkinson's disease. Deep brain stimulation (DBS) of the subthalamic nucleus (STN) reduces beta band activity in BG regions, whereas little is known about activity in cortical regions. In this study, we investigated the effect of STN DBS on the spectral power of oscillatory activity in the motor cortex (MCtx) and sensorimotor cortex (SMCtx) by recording via an electrocorticogram (ECoG) array in free-moving 6-hydroxydopamine (6-OHDA) lesioned rats and sham-lesioned controls. MATERIALS AND METHODS Male Sprague-Dawley rats (250-350 g) were injected either with 6-OHDA or with saline in the right medial forebrain bundle, under general anesthesia. A stimulation electrode was then implanted in the ipsilateral STN, and an ECoG array was placed subdurally above the MCtx and SMCtx areas. Six days after the second surgery, the free-moving rats were individually recorded in three conditions: 1) basal activity, 2) during STN DBS, and 3) directly after STN DBS. RESULTS In 6-OHDA-lesioned rats (N = 8), the relative power of theta band activity was reduced, whereas activity of broad-range beta band (12-30 Hz) along with two different subbeta bands, that is, low (12-30 Hz) and high (20-30 Hz) beta band and gamma band, was higher in MCtx and SMCtx than in sham-lesioned controls (N = 7). This was, to some extent, reverted toward control level by STN DBS during and after stimulation. No major differences were found between contacts of the electrode grid or between MCtx and SMCtx. CONCLUSION Loss of nigrostriatal dopamine leads to abnormal oscillatory activity in both MCtx and SMCtx, which is compensated by STN stimulation, suggesting that parkinsonism-related oscillations in the cortex and BG are linked through their anatomic connections.
Collapse
Affiliation(s)
- Arif Abdulbaki
- Hannover Medical School, Department of Neurosurgery, Hannover, Germany.
| | - Theodor Doll
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Simeon Helgers
- Hannover Medical School, Department of Neurosurgery, Hannover, Germany
| | - Hans E Heissler
- Hannover Medical School, Department of Neurosurgery, Hannover, Germany
| | - Jürgen Voges
- Department of Stereotactic Neurosurgery, University Hospital Magdeburg, Magdeburg, Germany
| | - Joachim K Krauss
- Hannover Medical School, Department of Neurosurgery, Hannover, Germany
| | - Kerstin Schwabe
- Hannover Medical School, Department of Neurosurgery, Hannover, Germany
| | - Mesbah Alam
- Hannover Medical School, Department of Neurosurgery, Hannover, Germany
| |
Collapse
|
5
|
Shen Y, Huai B, Wang X, Chen M, Shen X, Han M, Su F, Xin T. Automatic sleep-wake classification and Parkinson's disease recognition using multifeature fusion with support vector machine. CNS Neurosci Ther 2024; 30:e14708. [PMID: 38600857 PMCID: PMC11007385 DOI: 10.1111/cns.14708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/29/2024] [Accepted: 02/12/2024] [Indexed: 04/12/2024] Open
Abstract
AIMS Sleep disturbance is a prevalent nonmotor symptom of Parkinson's disease (PD), however, assessing sleep conditions is always time-consuming and labor-intensive. In this study, we performed an automatic sleep-wake state classification and early diagnosis of PD by analyzing the electrocorticography (ECoG) and electromyogram (EMG) signals of both normal and PD rats. METHODS The study utilized ECoG power, EMG amplitude, and corticomuscular coherence values extracted from normal and PD rats to construct sleep-wake scoring models based on the support vector machine algorithm. Subsequently, we incorporated feature values that could act as diagnostic markers for PD and then retrained the models, which could encompass the identification of vigilance states and the diagnosis of PD. RESULTS Features extracted from occipital ECoG signals were more suitable for constructing sleep-wake scoring models than those from frontal ECoG (average Cohen's kappa: 0.73 vs. 0.71). Additionally, after retraining, the new models demonstrated increased sensitivity to PD and accurately determined the sleep-wake states of rats (average Cohen's kappa: 0.79). CONCLUSION This study accomplished the precise detection of substantia nigra lesions and the monitoring of sleep-wake states. The integration of circadian rhythm monitoring and disease state assessment has the potential to improve the efficacy of therapeutic strategies considerably.
Collapse
Affiliation(s)
- Yin Shen
- Department of NeurosurgeryThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinanShandongP. R. China
- Medical Science and Technology Innovation CenterShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongP. R. China
| | - Baogeng Huai
- First Clinical Medical College, Shandong University of Traditional Chinese MedicineJinanP. R. China
| | - Xiaofeng Wang
- Department of NeurosurgeryThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinanShandongP. R. China
- Medical Science and Technology Innovation CenterShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongP. R. China
| | - Min Chen
- Department of NeurosurgeryThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinanShandongP. R. China
- Department of RadiologyShandong First Medical University & Shandong Academy of Medical SciencesTaianP. R. China
| | - Xiaoyue Shen
- First Clinical Medical College, Shandong University of Traditional Chinese MedicineJinanP. R. China
| | - Min Han
- Department of NeurosurgeryThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinanShandongP. R. China
- Medical Science and Technology Innovation CenterShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongP. R. China
| | - Fei Su
- Department of NeurosurgeryThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinanShandongP. R. China
- Department of RadiologyShandong First Medical University & Shandong Academy of Medical SciencesTaianP. R. China
| | - Tao Xin
- Department of NeurosurgeryThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinanShandongP. R. China
- Medical Science and Technology Innovation CenterShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongP. R. China
- Institute of Brain Science and Brain‐inspired Research, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongP. R. China
- Shandong Institute of Brain Science and Brain‐inspired ResearchJinanShandongP. R. China
| |
Collapse
|
6
|
Evers J, Orłowski J, Jahns H, Lowery MM. On-Off and Proportional Closed-Loop Adaptive Deep Brain Stimulation Reduces Motor Symptoms in Freely Moving Hemiparkinsonian Rats. Neuromodulation 2024; 27:476-488. [PMID: 37245140 DOI: 10.1016/j.neurom.2023.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/16/2023] [Accepted: 03/29/2023] [Indexed: 05/29/2023]
Abstract
OBJECTIVES Closed-loop adaptive deep brain stimulation (aDBS) continuously adjusts stimulation parameters, with the potential to improve efficacy and reduce side effects of deep brain stimulation (DBS) for Parkinson's disease (PD). Rodent models can provide an effective platform for testing aDBS algorithms and establishing efficacy before clinical investigation. In this study, we compare two aDBS algorithms, on-off and proportional modulation of DBS amplitude, with conventional DBS in hemiparkinsonian rats. MATERIALS AND METHODS DBS of the subthalamic nucleus (STN) was delivered wirelessly in freely moving male and female hemiparkinsonian (N = 7) and sham (N = 3) Wistar rats. On-off and proportional aDBS, based on STN local field potential beta power, were compared with conventional DBS and three control stimulation algorithms. Behavior was assessed during cylinder tests (CT) and stepping tests (ST). Successful model creation was confirmed via apomorphine-induced rotation test and Tyrosine Hydroxylase-immunocytochemistry. Electrode location was histologically confirmed. Data were analyzed using linear mixed models. RESULTS Contralateral paw use in parkinsonian rats was reduced to 20% and 25% in CT and ST, respectively. Conventional, on-off, and proportional aDBS significantly improved motor function, restoring contralateral paw use to approximately 45% in both tests. No improvement in motor behavior was observed with either randomly applied on-off or low-amplitude continuous stimulation. Relative STN beta power was suppressed during DBS. Relative power in the alpha and gamma bands decreased and increased, respectively. Therapeutically effective adaptive DBS used approximately 40% less energy than did conventional DBS. CONCLUSIONS Adaptive DBS, using both on-off and proportional control schemes, is as effective as conventional DBS in reducing motor symptoms of PD in parkinsonian rats. Both aDBS algorithms yield substantial reductions in stimulation power. These findings support using hemiparkinsonian rats as a viable model for testing aDBS based on beta power and provide a path to investigate more complex closed-loop algorithms in freely behaving animals.
Collapse
Affiliation(s)
- Judith Evers
- Neuromuscular Systems Lab, School of Electrical and Electronic Engineering, University College Dublin Belfield, Belfield, Dublin, Ireland.
| | - Jakub Orłowski
- Neuromuscular Systems Lab, School of Electrical and Electronic Engineering, University College Dublin Belfield, Belfield, Dublin, Ireland
| | - Hanne Jahns
- Department of Pathology, School of Veterinary Medicine, University College Dublin Belfield, Dublin, Ireland
| | - Madeleine M Lowery
- Neuromuscular Systems Lab, School of Electrical and Electronic Engineering, University College Dublin Belfield, Belfield, Dublin, Ireland
| |
Collapse
|
7
|
Cui J, Zhao D, Xu M, Li Z, Qian J, Song N, Wang J, Xie J. Characterization of graded 6-Hydroxydopamine unilateral lesion in medial forebrain bundle of mice. Sci Rep 2024; 14:3721. [PMID: 38355892 PMCID: PMC10866897 DOI: 10.1038/s41598-024-54066-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 02/08/2024] [Indexed: 02/16/2024] Open
Abstract
Parkinson's disease (PD) is the second most common age-related neurodegenerative disease, with a progressive loss of dopaminergic cells and fibers. The purpose of this study was to use different doses of 6-hydroxydopamine (6-OHDA) injection into the medial forebrain bundle (MFB) of mice to mimic the different stages of the disease and to characterize in detail their motor and non-motor behavior, as well as neuropathological features in the nigrostriatal pathway. MFB were injected with 0.5 μg, 1 μg, 2 μg of 6-OHDA using a brain stereotaxic technique. 6-OHDA induced mitochondrial damage dose-dependently, as well as substantia nigra pars compacta (SNpc) tyrosine hydroxylase-positive (TH+) cell loss and striatal TH fiber loss. Activation of astrocytes and microglia in the SNpc and striatum were consistently observed at 7 weeks, suggesting a long-term glial response in the nigrostriatal system. Even with a partial or complete denervation of the nigrostriatal pathway, 6-OHDA did not cause anxiety, although depression-like behavior appeared. Certain gait disturbances were observed in 0.5 μg 6-OHDA lesioned mice, and more extensive in 1 μg group. Despite the loss of more neurons from 2 μg 6-OHDA, there was no further impairment in behaviors compared to 1 μg 6-OHDA. Our data have implications that 1 μg 6-OHDA was necessary and sufficient to induce motor and non-motor symptoms in mice, thus a valuable mouse tool to explore disease progression and new treatment in PD.
Collapse
Affiliation(s)
- Juntao Cui
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Di Zhao
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China
| | - Manman Xu
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Zheheng Li
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Junliang Qian
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Ning Song
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China.
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China.
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| | - Jun Wang
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China.
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China.
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| | - Junxia Xie
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China.
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|