1
|
Hung YA, Kuo TC, Tseng YJ, Shang CY, Gau SSF. Identifying novel metabolites in children with attention-deficit hyperactivity disorder through metabolome profiling. Transl Psychiatry 2025; 15:180. [PMID: 40413196 PMCID: PMC12103556 DOI: 10.1038/s41398-025-03393-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 04/30/2025] [Accepted: 05/12/2025] [Indexed: 05/27/2025] Open
Abstract
Metabolomics research offers promising potential for identifying key metabolites and exploring the pathophysiological underpinnings of attention-deficit hyperactivity disorder (ADHD). However, serum metabolomics in ADHD remains largely uncharted. Our study aimed to search for metabolomic biomarkers in children with ADHD. 70 drug-naïve children diagnosed with ADHD according to DSM-5 criteria and 70 sex-, age-, IQ-matched healthy controls were recruited from the National Taiwan University Hospital. All participants were assessed for clinical and ADHD symptoms using the Clinical Global Impression Severity (CGI-S) and ADHD Rating Scale-IV (ADHDRS-IV), respectively. Serum-based metabolomic profiles were obtained through liquid chromatography-mass spectrometry. We performed the Wilcoxon test for univariate analysis, the orthogonal partial least squares discriminant analysis (OPLS-DA) for multivariate analysis, and Spearman correlation analyses for the associations between identified metabolites and clinical and ADHD measures. In our study, 156 metabolites were identified in peripheral blood samples using an untargeted metabolomics approach, among which cholic acid, homoveratric acid, inosine, and nicotinuric acid were significantly different between ADHD and controls. Children with ADHD had upregulated cholic acid and homoveratric acid levels and downregulated inosine and nicotinuric acid levels compared to controls. Notably, the upregulated metabolites positively correlated, and the downregulated metabolites negatively correlated with CGI-S and ADHDRS-IV scores. These metabolites and their mechanisms suggested that the pathophysiology of ADHD might involve connections between the gut-brain axis, oxidative stress, dopaminergic pathway, and purine salvage pathway. Our findings of four novel metabolite-behavior relationships in children with ADHD enhanced our understanding of the potential pathways underlying the pathophysiological mechanisms of ADHD.
Collapse
Affiliation(s)
- Yi-An Hung
- Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan
| | - Tien-Chueh Kuo
- Graduate Institute of Biomedical Electronics and Bioinformatics, College of Electrical Engineering and Computer Science, National Taiwan University, Taipei, Taiwan
- The Metabolomics Core Laboratory, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| | - Yufeng Jane Tseng
- Graduate Institute of Biomedical Electronics and Bioinformatics, College of Electrical Engineering and Computer Science, National Taiwan University, Taipei, Taiwan
- The Metabolomics Core Laboratory, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
- Department of Computer Science and Information Engineering, College of Electrical Engineering and Computer Science, National Taiwan University, Taipei, Taiwan
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chi-Yung Shang
- Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan.
- Department of Psychiatry, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Susan Shur-Fen Gau
- Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan
- Department of Psychiatry, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Brain and Mind Sciences and Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
2
|
Antmen FM, Matpan E, Dongel Dayanc E, Savas EO, Eken Y, Acar D, Ak A, Ozefe B, Sakar D, Canozer U, Sancak SN, Ozdemir O, Sezerman OU, Baykal AT, Serteser M, Suyen G. Urinary Metabolic Profiling During Epileptogenesis in Rat Model of Lithium-Pilocarpine-Induced Temporal Lobe Epilepsy. Biomedicines 2025; 13:588. [PMID: 40149565 PMCID: PMC11940187 DOI: 10.3390/biomedicines13030588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/17/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Temporal lobe epilepsy (TLE) often develops following an initial brain injury, where specific triggers lead to epileptogenesis-a process transforming a healthy brain into one prone to spontaneous, recurrent seizures. Although electroencephalography (EEG) remains the primary diagnostic tool for epilepsy, it cannot predict the risk of epilepsy after brain injury. This limitation highlights the need for biomarkers, particularly those measurable in peripheral samples, to assess epilepsy risk. This study investigated urinary metabolites in a rat model of TLE to identify biomarkers that track epileptogenesis progression across the acute, latent, and chronic phases and elucidate the underlying mechanisms. Methods: Status epilepticus (SE) was induced in rats using repeated intraperitoneal injections of lithium chloride-pilocarpine hydrochloride. Urine samples were collected 48 h, 1 week, and 6 weeks after SE induction. Nuclear magnetic resonance spectrometry was used for metabolomic analysis, and statistical evaluations were performed using MetaboAnalyst 6.0. Differences between epileptic and control groups were represented using the orthogonal partial least squares discriminant analysis (OPLS-DA) model. Volcano plot analysis identified key metabolic changes, applying a fold-change threshold of 1.5 and a p-value < 0.05. Results: The acute phase exhibited elevated levels of acetic acid, dihydrothymine, thymol, and trimethylamine, whereas glycolysis and tricarboxylic acid cycle metabolites, including pyruvic and citric acids, were reduced. Both the acute and latent phases showed decreased theobromine, taurine, and allantoin levels, with elevated 1-methylhistidine in the latent phase. The chronic phase exhibited reductions in pimelic acid, tiglylglycine, D-lactose, and xanthurenic acid levels. Conclusions: These findings highlight stage-specific urinary metabolic changes in TLE, suggesting distinct metabolites as biomarkers for epileptogenesis and offering insights into the mechanisms underlying SE progression.
Collapse
Affiliation(s)
- Fatma Merve Antmen
- Department of Physiology, Graduate School of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye; (F.M.A.)
- Biobank Unit, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| | - Emir Matpan
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| | - Ekin Dongel Dayanc
- Department of Physiology, Graduate School of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye; (F.M.A.)
- Medical Laboratory Techniques, Vocational School of Health Services, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| | - Eylem Ozge Savas
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| | - Yunus Eken
- Department of Molecular Biology and Genetics, Inonu University, Malatya 44280, Türkiye
| | - Dilan Acar
- Department of Physiology, Graduate School of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye; (F.M.A.)
| | - Alara Ak
- School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| | - Begum Ozefe
- School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| | - Damla Sakar
- School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| | - Ufuk Canozer
- School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| | - Sehla Nurefsan Sancak
- School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| | - Ozkan Ozdemir
- Medical Biology, Department of Basic Medical Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| | - Osman Ugur Sezerman
- Biostatistics and Medical Informatics, Department of Basic Medical Sciences, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| | - Ahmet Tarık Baykal
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
- Acibadem Labmed Clinical Laboratories, Istanbul 34752, Türkiye
| | - Mustafa Serteser
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
- Acibadem Labmed Clinical Laboratories, Istanbul 34752, Türkiye
| | - Guldal Suyen
- Department of Physiology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| |
Collapse
|
3
|
Talebi M, Ayatollahi SA, As’Habi MA, Kobarfard F, Khoramjouy M, Boroujeni FN, Faizi M, Ghassempour A. Investigating the neuroprotective effects of Dracocephalum moldavica extract and its effect on metabolomic profile of rat model of sporadic Alzheimer's disease. Heliyon 2025; 11:e42412. [PMID: 39981356 PMCID: PMC11840490 DOI: 10.1016/j.heliyon.2025.e42412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 01/27/2025] [Accepted: 01/30/2025] [Indexed: 02/22/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive condition marked by multiple underlying mechanisms. Therefore, the investigation of natural products that can target multiple pathways presents a potential gate for the understanding and management of AD. This study aimed to assess the neuroprotective effects of the hydroalcoholic extract of Dracocephalum moldavica (DM) on cognitive impairment, biomarker changes, and putative metabolic pathways in a rat model of AD induced by intracerebroventricular streptozotocin (ICV-STZ). The DM extract was standardized and quantified based on examining total phenolic, total flavonoid, rosmarinic acid, and quercetin contents using colorimetry and high-performance liquid chromatography (HPLC) methods. The antioxidant potential of the extract was evaluated by 2,2-Diphenyl-1-picrylhydrazyl and nitric oxide radical scavenging assays. Male Wistar rats were injected with STZ (3 mg/kg, single dose, bilateral ICV) to induce a sporadic AD (sAD) model. Following model induction, rats were orally administered with DM extract (100, 200, and 400 mg/kg/day) or donepezil (5 mg/kg/day) for 21 days. Cognitive function was assessed using the radial arm water maze behavioral test. The histopathological evaluations were conducted in the cortex and hippocampus regions. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) was used to assess metabolite changes in various brain regions. DM extract significantly attenuated cognitive dysfunction induced by ICV-STZ according to behavioral and histopathological investigations. Thirty-two discriminating metabolites related to the amino acid metabolism; the glutamate/gamma-aminobutyric acid/glutamine cycle; nucleotide metabolism; lipid metabolism (glycerophospholipids, sphingomyelins, ceramides, phosphatidylserines, and prostaglandins), and glucose metabolic pathways were identified in the brains of rats with sAD simultaneously for the first time in this model. Polyphenols in DM extract may contribute to the regulation of these pathways. After treatment with DM extract, 10 metabolites from the 32 identified ones were altered in the brain tissue of a rat model of sAD, most commonly at doses of 200 and 400 mg/kg. In conclusion, this study demonstrates the neuroprotective potential of DM by upregulation/downregulation of various pathophysiological biomarkers such as adenine, glycerophosphoglycerol, inosine, prostaglandins, and sphingomyelin induced by ICV-STZ in sAD. These findings are consistent with cognitive behavioral results and histopathological outcomes.
Collapse
Affiliation(s)
- Marjan Talebi
- Student Research Committee, Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Abdulmajid Ayatollahi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali As’Habi
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G.C., Evin, Tehran, Iran
| | - Farzad Kobarfard
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mona Khoramjouy
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mehrdad Faizi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Ghassempour
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G.C., Evin, Tehran, Iran
| |
Collapse
|
4
|
Mi K, Xu R, Liu X. RFW captures species-level metagenomic functions by integrating genome annotation information. CELL REPORTS METHODS 2024; 4:100932. [PMID: 39662474 PMCID: PMC11704624 DOI: 10.1016/j.crmeth.2024.100932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 09/01/2024] [Accepted: 11/14/2024] [Indexed: 12/13/2024]
Abstract
Functional profiling of whole-metagenome shotgun sequencing (WMS) enables our understanding of microbe-host interactions. We demonstrate microbial functional information loss by current annotation methods at both the taxon and community levels, particularly at lower read depths. To address information loss, we develop a framework, RFW (reference-based functional profile inference on WMS), that utilizes information from genome functional annotations and taxonomic profiles to infer microbial function abundances from WMS. Furthermore, we provide an algorithm for absolute abundance change quantification between groups as part of the RFW framework. By applying RFW to several datasets related to autism spectrum disorder and colorectal cancer, we show that RFW augments downstream analyses, such as differential microbial function identification and association analysis between microbial function and host phenotype. RFW is open source and freely available at https://github.com/Xingyinliu-Lab/RFW.
Collapse
Affiliation(s)
- Kai Mi
- Department of Pathogen Biology-Microbiology Division, State Key Laboratory of Reproductive Medicine and Offspring Health, Key Laboratory of Pathogen of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Rui Xu
- Department of Pathogen Biology-Microbiology Division, State Key Laboratory of Reproductive Medicine and Offspring Health, Key Laboratory of Pathogen of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Xingyin Liu
- Department of Pathogen Biology-Microbiology Division, State Key Laboratory of Reproductive Medicine and Offspring Health, Key Laboratory of Pathogen of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing 211166, China; The Second Affiliated Hospital of Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
5
|
Xie P, Chen J, Xia Y, Lin Z, He Y, Cai Z. Spatial metabolomics reveal metabolic alternations in the injured mice kidneys induced by triclocarban treatment. J Pharm Anal 2024; 14:101024. [PMID: 39717194 PMCID: PMC11664399 DOI: 10.1016/j.jpha.2024.101024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/29/2024] [Accepted: 06/22/2024] [Indexed: 12/25/2024] Open
Abstract
Triclocarban (TCC) is a common antimicrobial agent that has been widely used in medical care. Given the close association between TCC treatment and metabolic disorders, we assessed whether long-term treatment to TCC at a human-relevant concentration could induce nephrotoxicity by disrupting the metabolic levels in a mouse model. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) was applied to investigate the alterations in the spatial distributions and abundances of TCC, endogenous and exogenous metabolites in the kidney after TCC treatment. The results showed that TCC treatment induced the changes in the organ weight, organ coefficient and histopathology of the mouse kidney. MSI data revealed that TCC accumulated in all regions of the kidney, while its five metabolites mainly distributed in the cortex regions. The abundances of 79 biomolecules associated with pathways of leukotriene E4 metabolism, biosynthesis and degradation of glycerophospholipids and glycerolipids, ceramide-to-sphingomyelin signaling were significantly altered in the kidney after TCC treatment. These biomolecules showed distinctive distributions in the kidney and displayed a favorable spatial correlation with the pathological damage. This work offers new insights into the related mechanisms of TCC-induced nephrotocicity and exhibits the potential of MALDI-MSI-based spatial metabolomics as a promising approach for the risk assessment of agents in medical care.
Collapse
Affiliation(s)
- Peisi Xie
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Jing Chen
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Yongjun Xia
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, 999077, China
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Yu He
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Zongwei Cai
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, 999077, China
| |
Collapse
|
6
|
Chong SG, Ismail IS, Chong CM, Mad Nasir N, Saleh Hodin NA. 1H NMR-metabolomics studies on acute toxicity effect of lead in adult zebrafish ( Danio rerio) model. Drug Chem Toxicol 2024; 47:573-586. [PMID: 38726945 DOI: 10.1080/01480545.2024.2346751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 09/04/2024]
Abstract
Zebrafish (Danio rerio) is ideal for studying the effects of toxins like lead or plumbum (Pb) which persist in the environment and harm body systems when absorbed. Increasing Pb concentration could result in a higher mortality rate and alteration of behavior and metabolism. The present study evaluates the acute toxicity effect of Pb on metabolome and behavior in adult zebrafish. The zebrafish were exposed to various Pb concentrations ranging from 0 to 30 mg/L for different periods (24, 48, and 72 h) before the fish samples were subjected to Nuclear Magnetic Resonance (NMR)-multivariate data analysis (MVDA) with additional support from behavioral assessment. The behavior of zebrafish was significantly altered after Pb inducement and the differential metabolites increased in low (5 mg/L) while decreased in high (10 mg/L) Pb concentrations. An ideal Pb induction could be achieved by 5 mg/L concentration in 24 h, which induced significant metabolite changes without irreversible damage. Continuing research on the effects of lead toxicity is crucial to develop effective prevention and treatment strategies.
Collapse
Affiliation(s)
- Siok-Geok Chong
- Natural Medicines and Products Research Laboratory (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang, Malaysia
| | - Intan Safinar Ismail
- Natural Medicines and Products Research Laboratory (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia (UPM), Serdang, Malaysia
| | - Chou-Min Chong
- Department of Aquaculture, Faculty of Agricultural Sciences, Universiti Putra Malaysia (UPM), Serdang, Malaysia
| | - Nadiah Mad Nasir
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia (UPM), Serdang, Malaysia
| | - Nur Atikah Saleh Hodin
- Natural Medicines and Products Research Laboratory (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang, Malaysia
| |
Collapse
|
7
|
Siciliano AM, Moro F, De Simone G, Pischiutta F, Morabito A, Pastorelli R, Brunelli L, Zanier ER, Davoli E. Mapping small metabolite changes after traumatic brain injury using AP-MALDI MSI. Anal Bioanal Chem 2024; 416:4941-4949. [PMID: 39090264 PMCID: PMC11330407 DOI: 10.1007/s00216-024-05422-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 08/04/2024]
Abstract
Traumatic brain injury (TBI) is an alteration of brain function caused by a sudden transmission of an external force to the head. The biomechanical impact induces acute and chronic metabolic changes that highly contribute to injury evolution and outcome. TBI heterogeneity calls for approaches allowing the mapping of regional molecular and metabolic changes underpinning disease progression, with mass spectrometry imaging (MSI) as an efficient tool to study the spatial distribution of small metabolites. In this study, we applied an innovative targeted atmospheric pressure-MALDI mass spectrometry imaging (AP-MALDI MSI) approach, starting from an extensive list of metabolites, representative of different metabolic pathways, individually validated on the tissue under analysis with original standards using 2,5-dihydroxybenzoic acid (DHB), to characterize the impact of TBI on regional changes to small metabolites in the brain. Brains from sham and TBI mice obtained 21 days post-injury were analyzed to examine the spatial metabolic profile of small metabolites belonging to different metabolic pathways. By a whole brain analysis, we identified four metabolites (alanine, lysine, histidine, and inosine) with higher abundance in TBI than sham mice. Within the TBI group, lysine, histidine, and inosine were higher in the hemisphere ipsilateral to the biomechanical impact vs. the contralateral one. Images showed a major involvement of the ipsilateral thalamus characterized by the increase of arginine, lysine, histidine, and inosine and a significant reduction of glutamic acid, and N-acetylaspartic acid compared to the contralateral thalamus. These findings indicate high-resolution imaging mass spectrometry as a powerful tool to identify region-specific changes after a TBI to understand the metabolic changes underlying brain injury evolution.
Collapse
Affiliation(s)
- Angela Marika Siciliano
- Mass Spectrometry Research Centre for Health and Environment and Laboratory of Mass Spectrometry, Environmental Health Sciences Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156, Milan, Italy
| | - Federico Moro
- Laboratory of Traumatic Brain Injury and Neuroprotection, Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Giulia De Simone
- Laboratory of Protein and Metabolites in Translational Research, Environmental Health Sciences Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156, Milan, Italy
| | - Francesca Pischiutta
- Laboratory of Traumatic Brain Injury and Neuroprotection, Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Aurelia Morabito
- Laboratory of Protein and Metabolites in Translational Research, Environmental Health Sciences Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156, Milan, Italy
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133, Milan, Italy
| | - Roberta Pastorelli
- Laboratory of Protein and Metabolites in Translational Research, Environmental Health Sciences Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156, Milan, Italy
| | - Laura Brunelli
- Laboratory of Protein and Metabolites in Translational Research, Environmental Health Sciences Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156, Milan, Italy
| | - Elisa R Zanier
- Laboratory of Traumatic Brain Injury and Neuroprotection, Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Enrico Davoli
- Mass Spectrometry Research Centre for Health and Environment and Laboratory of Mass Spectrometry, Environmental Health Sciences Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156, Milan, Italy.
| |
Collapse
|
8
|
Han Y, Sun J, Xiaojuan, Li MX, Ma Q. Inosine pretreatment of pregnant rats ameliorates maternal inflammation-mediated hypomyelination in pups via microglia polarization switch. Brain Res 2024; 1834:148844. [PMID: 38432260 DOI: 10.1016/j.brainres.2024.148844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/10/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Periventricular leukomalacia (PVL) is a neurological condition observed in premature infants, characterized by hypomyelination and activation of microglia. Maternal inflammation-induced brain injury in offspring significantly contributes to the development of PVL. Currently, there are no clinical pharmaceutical interventions available for pregnant women to prevent maternal inflammation-mediated brain injury in their offspring. Inosine has been shown to modulate the immune response in diverse stressful circumstances, such as injury, ischemia, and inflammation. The aim of this investigation was to examine the potential prophylactic impact of inosine on offspring PVL induced by maternal inflammation. This was accomplished by administering a 1 mg/ml inosine solution (40 ml daily) to pregnant Sprague-Dawley (SD) rats for 16 consecutive days prior to their intraperitoneal injection of lipopolysaccharide (350 µg/kg, once a day, for two days). The results showed that maternal inosine pretreatment significantly reversed the reduction in MBP and CNPase (myelin-related markers), CC-1 and Olig2 (oligodendrocyte-related markers) in their PVL pups (P7), suggesting that inosine administration during pregnancy could improve hypomyelination and enhance the differentiation of oligodendrocyte precursor cells (OPCs) in their PVL pups. Furthermore, the protective mechanism of inosine against PVL is closely associated with the activation and polarization of microglia. This is evidenced by a notable reduction in the quantity of IBA 1-positive microglia, a decrease in the level of CD86 (a marker for M1 microglia), an increase in the level of Arg 1 (a marker for M2 microglia), as well as a decrease in the level of pro-inflammatory factors TNF-α, IL-1β, and IL-6, and an increase in the level of anti-inflammatory factors IL-4 and IL-10 in the brain of PVL pups following maternal inosine pretreatment. Taken together, inosine pretreatment of pregnant rats can improve hypomyelination in their PVL offspring by triggering the M1/M2 switch of microglia.
Collapse
Affiliation(s)
- Yong Han
- Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia 750004, PR China
| | - Jinping Sun
- Department of Pathology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, PR China.
| | - Xiaojuan
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, PR China
| | - Ma Xin Li
- Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia 750004, PR China
| | - Quanrui Ma
- Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia 750004, PR China.
| |
Collapse
|
9
|
Kim DS, Santana Maldonado CM, Giulivi C, Rumbeiha WK. Metabolomic Signatures of Brainstem in Mice following Acute and Subchronic Hydrogen Sulfide Exposure. Metabolites 2024; 14:53. [PMID: 38248856 PMCID: PMC10819975 DOI: 10.3390/metabo14010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
Hydrogen sulfide (H2S) is an environmental toxicant of significant health concern. The brain is a major target in acute H2S poisoning. This study was conducted to test the hypothesis that acute and subchronic ambient H2S exposures alter the brain metabolome. Male 7-8-week-old C57BL/6J mice were exposed by whole-body inhalation to 1000 ppm H2S for 45 min and euthanized at 5 min or 72 h for acute exposure. For subchronic study, mice were exposed to 5 ppm H2S 2 h/day, 5 days/week for 5 weeks. Control mice were exposed to room air. The brainstem was removed for metabolomic analysis. Enrichment analysis showed that the metabolomic profiles in acute and subchronic H2S exposures matched with those of cerebral spinal fluid from patients with seizures or Alzheimer's disease. Acute H2S exposure decreased excitatory neurotransmitters, aspartate, and glutamate, while the inhibitory neurotransmitter, serotonin, was increased. Branched-chain amino acids and glucose were increased by acute H2S exposure. Subchronic H2S exposure within OSHA guidelines surprisingly decreased serotonin concentration. In subchronic H2S exposure, glucose was decreased, while polyunsaturated fatty acids, inosine, and hypoxanthine were increased. Collectively, these results provide important mechanistic clues for acute and subchronic ambient H2S poisoning and show that H2S alters brainstem metabolome.
Collapse
Affiliation(s)
- Dong-Suk Kim
- Department of Molecular Biosciences, School of Veterinary Medicine, UC Davis, Davis, CA 95616, USA; (D.-S.K.); (C.M.S.M.); (C.G.)
| | - Cristina M. Santana Maldonado
- Department of Molecular Biosciences, School of Veterinary Medicine, UC Davis, Davis, CA 95616, USA; (D.-S.K.); (C.M.S.M.); (C.G.)
- MRI Global, Kansas City, MO 64110, USA
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, UC Davis, Davis, CA 95616, USA; (D.-S.K.); (C.M.S.M.); (C.G.)
| | - Wilson Kiiza Rumbeiha
- Department of Molecular Biosciences, School of Veterinary Medicine, UC Davis, Davis, CA 95616, USA; (D.-S.K.); (C.M.S.M.); (C.G.)
| |
Collapse
|
10
|
Biringer RG. Migraine signaling pathways: purine metabolites that regulate migraine and predispose migraineurs to headache. Mol Cell Biochem 2023; 478:2813-2848. [PMID: 36947357 DOI: 10.1007/s11010-023-04701-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023]
Abstract
Migraine is a debilitating disorder that afflicts over 1 billion people worldwide, involving attacks that result in a throbbing and pulsating headache. Migraine is thought to be a neurovascular event associated with vasoconstriction, vasodilation, and neuronal activation. Understanding signaling in migraine pathology is central to the development of therapeutics for migraine prophylaxis and for mitigation of migraine in the prodrome phase before pain sets in. The fact that both vasoactivity and neural sensitization are involved in migraine indicates that agonists which promote these phenomena may very well be involved in migraine pathology. One such group of agonists is the purines, in particular, adenosine phosphates and their metabolites. This manuscript explores what is known about the relationship between these metabolites and migraine pathology and explores the potential for such relationships through their known signaling pathways. Reported receptor involvement in vasoaction and nociception.
Collapse
Affiliation(s)
- Roger Gregory Biringer
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| |
Collapse
|
11
|
Miller A, York EM, Stopka SA, Martínez-François JR, Hossain MA, Baquer G, Regan MS, Agar NYR, Yellen G. Spatially resolved metabolomics and isotope tracing reveal dynamic metabolic responses of dentate granule neurons with acute stimulation. Nat Metab 2023; 5:1820-1835. [PMID: 37798473 PMCID: PMC10626993 DOI: 10.1038/s42255-023-00890-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 08/09/2023] [Indexed: 10/07/2023]
Abstract
Neuronal activity creates an intense energy demand that must be met by rapid metabolic responses. To investigate metabolic adaptations in the neuron-enriched dentate granule cell (DGC) layer within its native tissue environment, we employed murine acute hippocampal brain slices, coupled with fast metabolite preservation and followed by mass spectrometry (MS) imaging, to generate spatially resolved metabolomics and isotope-tracing data. Here we show that membrane depolarization induces broad metabolic changes, including increased glycolytic activity in DGCs. Increased glucose metabolism in response to stimulation is accompanied by mobilization of endogenous inosine into pentose phosphates via the action of purine nucleotide phosphorylase (PNP). The PNP reaction is an integral part of the neuronal response to stimulation, because inhibition of PNP leaves DGCs energetically impaired during recovery from strong activation. Performing MS imaging on brain slices bridges the gap between live-cell physiology and the deep chemical analysis enabled by MS.
Collapse
Affiliation(s)
- Anne Miller
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Elisa M York
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Sylwia A Stopka
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Md Amin Hossain
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gerard Baquer
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael S Regan
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nathalie Y R Agar
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Gary Yellen
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
12
|
Miller A, York E, Stopka S, Martínez-François J, Hossain MA, Baquer G, Regan M, Agar N, Yellen G. Spatially resolved metabolomics and isotope tracing reveal dynamic metabolic responses of dentate granule neurons with acute stimulation. RESEARCH SQUARE 2023:rs.3.rs-2276903. [PMID: 37546759 PMCID: PMC10402263 DOI: 10.21203/rs.3.rs-2276903/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Neuronal activity creates an intense energy demand that must be met by rapid metabolic responses. To investigate metabolic adaptations in the neuron-enriched dentate granule cell (DGC) layer within its native tissue environment, we employed murine acute hippocampal brain slices coupled with fast metabolite preservation, followed by mass spectrometry imaging (MALDI-MSI) to generate spatially resolved metabolomics and isotope tracing data. Here we show that membrane depolarization induces broad metabolic changes, including increased glycolytic activity in DGCs. Increased glucose metabolism in response to stimulation is accompanied by mobilization of endogenous inosine into pentose phosphates, via the action of purine nucleotide phosphorylase (PNP). The PNP reaction is an integral part of the neuronal response to stimulation, as inhibiting PNP leaves DGCs energetically impaired during recovery from strong activation. Performing MSI on brain slices bridges the gap between live cell physiology and the deep chemical analysis enabled by mass spectrometry.
Collapse
|
13
|
Khanal S, Bok E, Kim J, Park GH, Choi DY. Dopaminergic neuroprotective effects of inosine in MPTP-induced parkinsonian mice via brain-derived neurotrophic factor upregulation. Neuropharmacology 2023:109652. [PMID: 37422180 DOI: 10.1016/j.neuropharm.2023.109652] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/10/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. However, no curative or modifying therapy is known. Inosine is a purine nucleoside that increases brain-derived neurotrophic factor (BDNF) expression in the brain through adenosine receptors. Herein, we investigated the neuroprotective effects of inosine and elucidated the mechanisms underlying its pharmacological action. Inosine rescued SH-SY5Y neuroblastoma cells from MPP+ injury in a dose-dependent manner. Inosine protection correlated with BDNF expression and the activation of its downstream signaling cascade, as the TrkB receptor inhibitor, K252a and siRNA against the BDNF gene remarkably reduced the protective effects of inosine. Blocking the A1 or A2A adenosine receptors diminished BDNF induction and the rescuing effect of inosine, indicating a critical role of adenosine A1 and A2A receptors in inosine-related BDNF elevation. We assessed whether the compound could protect dopaminergic neurons from MPTP-induced neuronal injury. Beam-walking and challenge beam tests revealed that inosine pretreatment for 3 weeks reduced the MPTP-induced motor function impairment. Inosine ameliorated dopaminergic neuronal loss and MPTP-mediated astrocytic and microglial activation in the substantia nigra and striatum. Inosine ameliorated the depletion of striatal dopamine and its metabolite following MPTP injection. BDNF upregulation and the activation of its downstream signaling pathway seemingly correlate with the neuroprotective effects of inosine. To our knowledge, this is the first study to demonstrate the neuroprotective effects of inosine against MPTP neurotoxicity via BDNF upregulation. These findings highlight the therapeutic potential of inosine in dopaminergic neurodegeneration in PD brains.
Collapse
Affiliation(s)
- Shristi Khanal
- College of Pharmacy, Yeungnam University, 280 Daehakro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Eugene Bok
- Dementia Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea.
| | - Jaekwang Kim
- Dementia Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea.
| | - Gyu Hwan Park
- College of Pharmacy, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Dong-Young Choi
- College of Pharmacy, Yeungnam University, 280 Daehakro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
14
|
Datta A, Suthar P, Sarmah D, Jadhav P, Shah J, Katamneni M, Bhosale N, Gupta V, Bohra M, Baidya F, Rana N, Ghosh B, Kaur H, Borah A, Rathod R, Sengupta P, Bhattacharya P. Inosine attenuates post-stroke neuroinflammation by modulating inflammasome mediated microglial activation and polarization. Biochim Biophys Acta Mol Basis Dis 2023:166771. [PMID: 37286144 DOI: 10.1016/j.bbadis.2023.166771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
To date, various agents and molecules have been developed to treat post-stroke neuroinflammation; however, none of them are clinically successful. Post-stroke neuroinflammation is primarily attributed to microglial polarization as the generation of inflammasome complexes shifts microglia to their M1 phenotype and regulate the downstream cascade. Inosine, an adenosine derivative reported to maintain cellular energy homeostasis in stressed condition. Although, the exact mechanism is still unexplored, various studies have reported that it can stimulate axonal sprouting in different neurodegenerative diseases. Hence, our present study aims to decipher the molecular mechanism of inosine mediated neuroprotection by modulating inflammasome signaling towards altered microglial polarization in ischemic stroke. Inosine was administered intraperitoneally to male Sprague Dawley rats at 1 h post ischemic stroke and were further evaluated for neurodeficit score, motor coordination and long-term neuroprotection. Brains were harvested for infarct size estimation, biochemical assays and molecular studies. Inosine administration at 1 h post ischemic stroke decreased infarct size, neurodeficit score, and improved motor co-ordination. Normalization of biochemical parameters were achieved in the treatment groups. Microglial polarization towards its anti-inflammatory phenotype and modulation of inflammation were evident by relevant gene and protein expression studies. The outcome provides preliminary evidence of inosine mediated alleviation of post-stroke neuroinflammation via modulation of microglial polarization towards its anti-inflammatory form through regulating the inflammasome activation.
Collapse
Affiliation(s)
- Aishika Datta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Pramod Suthar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Deepaneeta Sarmah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Poonam Jadhav
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Jinagna Shah
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Mounika Katamneni
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Nikhil Bhosale
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Vishal Gupta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Mariya Bohra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Falguni Baidya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Nikita Rana
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Bijoyani Ghosh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Harpreet Kaur
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar 788011, Assam, India
| | - Rajeshwari Rathod
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Pinaki Sengupta
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India.
| |
Collapse
|
15
|
Coelho M, Pacheco R. Anti-Hypercholesterolemia Effects of Edible Seaweed Extracts and Metabolomic Changes in Hep-G2 and Caco-2 Cell Lines. Life (Basel) 2023; 13:1325. [PMID: 37374108 PMCID: PMC10305398 DOI: 10.3390/life13061325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/22/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Hypercholesterolemia is a major risk for the development of cardiovascular diseases (CVDs), the main cause of mortality worldwide, and it is characterized by high levels of circulating cholesterol. The drugs currently available for hypercholesterolemia control have several side effects, so it is necessary to develop new effective and safer therapies. Seaweeds serve as sources of several bioactive compounds with claimed beneficial effects. Eisenia bicyclis (Aramé) and Porphyra tenera (Nori) are edible seaweeds that were previously recognized as rich in bioactive compounds. In the present study, we aim to evaluate the anti-hypercholesterolemia effect of these two seaweed extracts and their health potential. Both extracts, but more efficiently Aramé extract, have liver 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) inhibitory activity as well as the capability to reduce approximately 30% of cholesterol permeation through human Caco-2 cells by simulating the intestinal lining, which is a target for hypercholesterolemia treatments. An untargeted metabolomic assay on human intestinal Caco-2 and liver Hep-G2 cell lines exposed to Aramé and Nori extracts revealed changes in the cells' metabolism, indicating the extracts' health beneficial effects. The metabolic pathways affected by exposure to both extracts were associated with lipid metabolism, such as phospholipids, and fatty acid metabolism, amino acid pathways, cofactors, vitamins, and cellular respiration metabolism. The effects were more profound in Aramé-treated cells, but they were also observed in Nori-exposed cells. The metabolite modifications were associated with the protection against CVDs and other diseases and to the improvement of the cells' oxidative stress tolerance. The results obtained for the anti-hypercholesterolemia properties, in addition to the revelation of the positive impact on cell metabolism, offer an important contribution for further evaluation of these seaweed extracts as functional foods or for CVD prevention.
Collapse
Affiliation(s)
- Mariana Coelho
- Departamento de Engenharia Química, Instituto Superior de Engenharia de Lisboa (ISEL), Rua. Conselheiro Emídio Navarro 1, 1959-007 Lisboa, Portugal
| | - Rita Pacheco
- Departamento de Engenharia Química, Instituto Superior de Engenharia de Lisboa (ISEL), Rua. Conselheiro Emídio Navarro 1, 1959-007 Lisboa, Portugal
- Centro de Química Estrutural, Institute of Molecular Sciences, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
16
|
Du K, Zhai C, Li X, Gang H, Gao X. Feature-Based Molecular Networking Facilitates the Comprehensive Identification of Differential Metabolites in Diabetic Cognitive Dysfunction Rats. Metabolites 2023; 13:metabo13040538. [PMID: 37110195 PMCID: PMC10142102 DOI: 10.3390/metabo13040538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/18/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
Cognitive dysfunction is a frequent complication of type 2 diabetes mellitus (T2DM), usually accompanied by metabolic disorders. However, the metabolic changes in diabetic cognitive dysfunction (DCD) patients, especially compared to T2DM groups, are not fully understood. Due to the subtle differences in metabolic alterations between DCD groups and T2DM groups, the comprehensive detection of the untargeted metabolic profiles of hippocampus and urine samples of rats was conducted by LC-MS, considering the different ionization modes and polarities of the examined compounds, and feature-based molecular networking (FBMN) was performed to help identify differential metabolites from a comprehensive perspective in this study. In addition, an association analysis of the differential metabolites in hippocampus and urine was conducted by the O2PLS model. Finally, a total of 71 hippocampal tissue differential metabolites and 179 urine differential metabolites were identified. The pathway enrichment results showed that glutamine and glutamate metabolism, alanine, aspartate, and glutamate metabolism, glycerol phospholipid metabolism, TCA cycle, and arginine biosynthesis in the hippocampus of DCD animals were changed. Seven metabolites (AUC > 0.9) in urine appeared as key differential metabolites that might reflect metabolic changes in the target tissue of DCD rats. This study showed that FBMN facilitated the comprehensive identification of differential metabolites in DCD rats. The differential metabolites may suggest an underlying DCD and be considered as potential biomarkers for DCD. Large samples and clinical experiments are needed for the subsequent elucidation of the possible mechanisms leading to these alterations and the verification of potential biomarkers.
Collapse
Affiliation(s)
- Ke Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing102488, China
| | - Chuanjia Zhai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing102488, China
| | - Xuejiao Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing102488, China
| | - Hongchuan Gang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing102488, China
| | - Xiaoyan Gao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing102488, China
| |
Collapse
|
17
|
Kim IS, Jo EK. Inosine: A bioactive metabolite with multimodal actions in human diseases. Front Pharmacol 2022; 13:1043970. [PMID: 36467085 PMCID: PMC9708727 DOI: 10.3389/fphar.2022.1043970] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/02/2022] [Indexed: 08/04/2023] Open
Abstract
The nucleoside inosine is an essential metabolite for purine biosynthesis and degradation; it also acts as a bioactive molecule that regulates RNA editing, metabolic enzyme activity, and signaling pathways. As a result, inosine is emerging as a highly versatile bioactive compound and second messenger of signal transduction in cells with diverse functional abilities in different pathological states. Gut microbiota remodeling is closely associated with human disease pathogenesis and responses to dietary and medical supplementation. Recent studies have revealed a critical link between inosine and gut microbiota impacting anti-tumor, anti-inflammatory, and antimicrobial responses in a context-dependent manner. In this review, we summarize the latest progress in our understanding of the mechanistic function of inosine, to unravel its immunomodulatory actions in pathological settings such as cancer, infection, inflammation, and cardiovascular and neurological diseases. We also highlight the role of gut microbiota in connection with inosine metabolism in different pathophysiological conditions. A more thorough understanding of the mechanistic roles of inosine and how it regulates disease pathologies will pave the way for future development of therapeutic and preventive modalities for various human diseases.
Collapse
Affiliation(s)
- In Soo Kim
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, South Korea
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, South Korea
| | - Eun-Kyoung Jo
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, South Korea
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, South Korea
| |
Collapse
|
18
|
Carneiro TJ, Vojtek M, Gonçalves-Monteiro S, Batista de Carvalho ALM, Marques MPM, Diniz C, Gil AM. Effect of Pd 2Spermine on Mice Brain-Liver Axis Metabolism Assessed by NMR Metabolomics. Int J Mol Sci 2022; 23:13773. [PMID: 36430252 PMCID: PMC9693583 DOI: 10.3390/ijms232213773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
Cisplatin (cDDP)-based chemotherapy is often limited by severe deleterious effects (nephrotoxicity, hepatotoxicity and neurotoxicity). The polynuclear palladium(II) compound Pd2Spermine (Pd2Spm) has emerged as a potential alternative drug, with favorable pharmacokinetic/pharmacodynamic properties. This paper reports on a Nuclear Magnetic Resonance metabolomics study to (i) characterize the response of mice brain and liver to Pd2Spm, compared to cDDP, and (ii) correlate brain-liver metabolic variations. Multivariate and correlation analysis of the spectra of polar and lipophilic brain and liver extracts from an MDA-MB-231 cell-derived mouse model revealed a stronger impact of Pd2Spm on brain metabolome, compared to cDDP. This was expressed by changes in amino acids, inosine, cholate, pantothenate, fatty acids, phospholipids, among other compounds. Liver was less affected than brain, with cDDP inducing more metabolite changes. Results suggest that neither drug induces neuronal damage or inflammation, and that Pd2Spm seems to lead to enhanced brain anti-inflammatory and antioxidant mechanisms, regulation of brain bioactive metabolite pools and adaptability of cell membrane characteristics. The cDDP appears to induce higher extension of liver damage and an enhanced need for liver regeneration processes. This work demonstrates the usefulness of untargeted metabolomics in evaluating drug impact on multiple organs, while confirming Pd2Spm as a promising replacement of cDDP.
Collapse
Affiliation(s)
- Tatiana J. Carneiro
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Martin Vojtek
- LAQV/REQUIMTE—Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4150-755 Porto, Portugal
| | - Salomé Gonçalves-Monteiro
- LAQV/REQUIMTE—Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4150-755 Porto, Portugal
| | | | - Maria Paula M. Marques
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
- Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Carmen Diniz
- LAQV/REQUIMTE—Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4150-755 Porto, Portugal
| | - Ana M. Gil
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
19
|
Cai H, Zeng C, Zhang X, Liu Y, Wu R, Guo W, Wang J, Wu H, Tang H, Ge X, Yu Y, Zhang S, Cao T, Li N, Liang X, Yang P, Zhang B. Diminished treatment response in relapsed versus first-episode schizophrenia as revealed by a panel of blood-based biomarkers: A combined cross-sectional and longitudinal study. Psychiatry Res 2022; 316:114762. [PMID: 35940088 DOI: 10.1016/j.psychres.2022.114762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 12/19/2022]
Abstract
There is a paucity of biomarkers for the prediction of treatment response in schizophrenia. In this study, we aimed to investigate whether diminished antipsychotic treatment response in relapsed versus first-episode schizophrenia can be revealed and predicted by a panel of blood-based biomarkers. A cross-sectional cohort consisting of 655 schizophrenia patients at different episodes and 606 healthy controls, and a longitudinal cohort including 52 first-episode antipsychotic-naïve schizophrenia patients treated with the same antipsychotic drugs during the 5-year follow-up of their first three episodes were enrolled. Plasma biomarker changes and symptom improvement were compared between the drug-free phase of psychosis onset and after 4 weeks of atypical antipsychotic drug (AAPD) treatment. In response to treatment, the extent of changes in the biomarkers of bioenergetic, purinergic, phospholipid and neurosteroid metabolisms dwindled down as number of episode and illness duration increased in relapsed schizophrenia. The changes of creatine, inosine, progesterone, allopregnanolone, cortisol and PE(16:0/22:6) were significantly correlated with the improvement of symptomatology. Inosine and progesterone at baseline were shown to be strong predictive biomarkers of treatment response. The results suggest that AAPD treatment response is diminished in the context of relapse, and our findings open new avenues for understanding the pathophysiology of treatment-resistance schizophrenia.
Collapse
Affiliation(s)
- Hualin Cai
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Institute of Clinical Pharmacy, Central South University, 139# Renmin Road, Changsha, Hunan 410011, China; Institute of Clinical Pharmacy, Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China.
| | - Cuirong Zeng
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Institute of Clinical Pharmacy, Central South University, 139# Renmin Road, Changsha, Hunan 410011, China; Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Xiangyang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Bejing, China; Department of Psychology, University of Chinese Academy of Sciences, Bejing, China
| | - Yong Liu
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China; National Clinical Research Center on Mental Disorders, Changsha, China
| | - Renrong Wu
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China; National Clinical Research Center on Mental Disorders, Changsha, China
| | - Wenbin Guo
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China; National Clinical Research Center on Mental Disorders, Changsha, China
| | - Jianjian Wang
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China; National Clinical Research Center on Mental Disorders, Changsha, China
| | - Haishan Wu
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China; National Clinical Research Center on Mental Disorders, Changsha, China
| | - Hui Tang
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China; National Clinical Research Center on Mental Disorders, Changsha, China
| | - Xiaoping Ge
- Department of Psychiatry, Changsha Psychiatric Hospital, Changsha, China
| | - Yan Yu
- Department of Psychiatry, Changsha Psychiatric Hospital, Changsha, China
| | - Shuangyang Zhang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Institute of Clinical Pharmacy, Central South University, 139# Renmin Road, Changsha, Hunan 410011, China; Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Ting Cao
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Institute of Clinical Pharmacy, Central South University, 139# Renmin Road, Changsha, Hunan 410011, China; Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Nana Li
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Institute of Clinical Pharmacy, Central South University, 139# Renmin Road, Changsha, Hunan 410011, China; Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Xiaoli Liang
- Department of Psychiatry, Hunan Brain Hospital, 427# Furong Road, Changsha, Hunan 410000, China
| | - Ping Yang
- Department of Psychiatry, Hunan Brain Hospital, 427# Furong Road, Changsha, Hunan 410000, China.
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Institute of Clinical Pharmacy, Central South University, 139# Renmin Road, Changsha, Hunan 410011, China; Institute of Clinical Pharmacy, Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China.
| |
Collapse
|
20
|
Zhao YF, Verkhratsky A, Tang Y, Illes P. Astrocytes and major depression: The purinergic avenue. Neuropharmacology 2022; 220:109252. [PMID: 36122663 DOI: 10.1016/j.neuropharm.2022.109252] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/19/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
Abstract
Major depressive disorder (MDD) is one of the most prevalent psychiatric illnesses worldwide which impairs the social functioning of the afflicted patients. Astrocytes promote homeostasis of the CNS and provide defense against various types of harmful influences. Increasing evidence suggests that the number, morphology and function of astrocytes are deteriorated in the depressed brain and the malfunction of the astrocytic purinergic system appears to participate in the pathophysiology of MDD. Adenosine 5'-triphosphate (ATP) released from astrocytes modulates depressive-like behavior in animal models and probably also clinical depression in patients. Astrocytes possess purinergic receptors, such as adenosine A2A receptors (Rs), and P2X7, P2Y1, and P2Y11Rs, which mediate neuroinflammation, neuro(glio)transmission, and synaptic plasticity in depression-relevant areas of the brain (e.g. medial prefrontal cortex, hippocampus, amygdala nuclei). By contrast, astrocytic A1Rs are neuroprotective and immunosuppressive. In the present review, we shall discuss the release of purines from astrocytes, and the expression/function of astrocytic purinergic receptors. Subsequently, we shall review in more detail novel evidence indicating that the dysregulation of astrocytic purinergic signaling actively contributes to the pathophysiology of depression and shall discuss possible therapeutic options based on knowledge recently acquired in this field.
Collapse
Affiliation(s)
- Y F Zhao
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - A Verkhratsky
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Faculty of Life Sciences, The University of Manchester, Manchester, M13 9PL, UK; Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT, 01102, Vilnius, Lithuania
| | - Y Tang
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - P Illes
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04107, Leipzig, Germany.
| |
Collapse
|
21
|
Ahuja M, Kaidery NA, Dutta D, Attucks OC, Kazakov EH, Gazaryan I, Matsumoto M, Igarashi K, Sharma SM, Thomas B. Harnessing the Therapeutic Potential of the Nrf2/Bach1 Signaling Pathway in Parkinson's Disease. Antioxidants (Basel) 2022; 11:antiox11091780. [PMID: 36139853 PMCID: PMC9495572 DOI: 10.3390/antiox11091780] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative movement disorder characterized by a progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Although a complex interplay of multiple environmental and genetic factors has been implicated, the etiology of neuronal death in PD remains unresolved. Various mechanisms of neuronal degeneration in PD have been proposed, including oxidative stress, mitochondrial dysfunction, neuroinflammation, α-synuclein proteostasis, disruption of calcium homeostasis, and other cell death pathways. While many drugs individually targeting these pathways have shown promise in preclinical PD models, this promise has not yet translated into neuroprotective therapies in human PD. This has consequently spurred efforts to identify alternative targets with multipronged therapeutic approaches. A promising therapeutic target that could modulate multiple etiological pathways involves drug-induced activation of a coordinated genetic program regulated by the transcription factor, nuclear factor E2-related factor 2 (Nrf2). Nrf2 regulates the transcription of over 250 genes, creating a multifaceted network that integrates cellular activities by expressing cytoprotective genes, promoting the resolution of inflammation, restoring redox and protein homeostasis, stimulating energy metabolism, and facilitating repair. However, FDA-approved electrophilic Nrf2 activators cause irreversible alkylation of cysteine residues in various cellular proteins resulting in side effects. We propose that the transcriptional repressor of BTB and CNC homology 1 (Bach1), which antagonizes Nrf2, could serve as a promising complementary target for the activation of both Nrf2-dependent and Nrf2-independent neuroprotective pathways. This review presents the current knowledge on the Nrf2/Bach1 signaling pathway, its role in various cellular processes, and the benefits of simultaneously inhibiting Bach1 and stabilizing Nrf2 using non-electrophilic small molecules as a novel therapeutic approach for PD.
Collapse
Affiliation(s)
- Manuj Ahuja
- Darby Children’s Research Institute, Medical University of South Carolina, Charleston, SC 29406, USA
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29406, USA
| | - Navneet Ammal Kaidery
- Darby Children’s Research Institute, Medical University of South Carolina, Charleston, SC 29406, USA
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29406, USA
| | - Debashis Dutta
- Darby Children’s Research Institute, Medical University of South Carolina, Charleston, SC 29406, USA
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29406, USA
| | | | | | - Irina Gazaryan
- Pace University, White Plains, NY 10601, USA
- Department of Chemical Enzymology, School of Chemistry, M.V. Lomonosov Moscow State University, 111401 Moscow, Russia
- Faculty of Biology and Biotechnologies, Higher School of Economics, 111401 Moscow, Russia
| | - Mitsuyo Matsumoto
- Department of Biochemistry, Graduate School of Medicine, Tohoku University, Sendai 980-8576, Japan
| | - Kazuhiko Igarashi
- Department of Biochemistry, Graduate School of Medicine, Tohoku University, Sendai 980-8576, Japan
| | - Sudarshana M. Sharma
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC 29406, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29406, USA
| | - Bobby Thomas
- Darby Children’s Research Institute, Medical University of South Carolina, Charleston, SC 29406, USA
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29406, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29406, USA
- Department of Drug Discovery, Medical University of South Carolina, Charleston, SC 29406, USA
- Correspondence:
| |
Collapse
|
22
|
Basile MS, Bramanti P, Mazzon E. Inosine in Neurodegenerative Diseases: From the Bench to the Bedside. Molecules 2022; 27:molecules27144644. [PMID: 35889517 PMCID: PMC9316764 DOI: 10.3390/molecules27144644] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022] Open
Abstract
Neurodegenerative diseases, such as Alzheimer′s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS), currently represent major unmet medical needs. Therefore, novel therapeutic strategies are needed in order to improve patients’ quality of life and prognosis. Since oxidative stress can be strongly involved in neurodegenerative diseases, the potential use of inosine, known for its antioxidant properties, in this context deserves particular attention. The protective action of inosine treatment could be mediated by its metabolite urate. Here, we review the current preclinical and clinical studies investigating the use of inosine in AD, PD, ALS, and MS. The most important properties of inosine seem to be its antioxidant action and its ability to raise urate levels and to increase energetic resources by improving ATP availability. Inosine appears to be generally safe and well tolerated; however, the possible formation of kidney stones should be monitored, and data on its effectiveness should be further explored since, so far, they have been controversial. Overall, inosine could be a promising potential strategy in the management of neurodegenerative diseases, and additional studies are needed in order to further investigate its safety and efficacy and its use as a complementary therapy along with other approved drugs.
Collapse
|
23
|
Dutta N, Deb I, Sarzynska J, Lahiri A. Inosine and its methyl derivatives: Occurrence, biogenesis, and function in RNA. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 169-170:21-52. [PMID: 35065168 DOI: 10.1016/j.pbiomolbio.2022.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/11/2021] [Accepted: 01/11/2022] [Indexed: 05/21/2023]
Abstract
Inosine is one of the most common post-transcriptional modifications. Since its discovery, it has been noted for its ability to contribute to non-Watson-Crick interactions within RNA. Rapidly accumulating evidence points to the widespread generation of inosine through hydrolytic deamination of adenosine to inosine by different classes of adenosine deaminases. Three naturally occurring methyl derivatives of inosine, i.e., 1-methylinosine, 2'-O-methylinosine and 1,2'-O-dimethylinosine are currently reported in RNA modification databases. These modifications are expected to lead to changes in the structure, folding, dynamics, stability and functions of RNA. The importance of the modifications is indicated by the strong conservation of the modifying enzymes across organisms. The structure, binding and catalytic mechanism of the adenosine deaminases have been well-studied, but the underlying mechanism of the catalytic reaction is not very clear yet. Here we extensively review the existing data on the occurrence, biogenesis and functions of inosine and its methyl derivatives in RNA. We also included the structural and thermodynamic aspects of these modifications in our review to provide a detailed and integrated discussion on the consequences of A-to-I editing in RNA and the contribution of different structural and thermodynamic studies in understanding its role in RNA. We also highlight the importance of further studies for a better understanding of the mechanisms of the different classes of deamination reactions. Further investigation of the structural and thermodynamic consequences and functions of these modifications in RNA should provide more useful information about their role in different diseases.
Collapse
Affiliation(s)
- Nivedita Dutta
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, 700009, West Bengal, India
| | - Indrajit Deb
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, 700009, West Bengal, India
| | - Joanna Sarzynska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Ansuman Lahiri
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, 700009, West Bengal, India.
| |
Collapse
|
24
|
Gonçalves MCB, Andrejew R, Gubert C. The Purinergic System as a Target for the Development of Treatments for Bipolar Disorder. CNS Drugs 2022; 36:787-801. [PMID: 35829960 PMCID: PMC9345801 DOI: 10.1007/s40263-022-00934-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/15/2022] [Indexed: 11/27/2022]
Abstract
The neurobiological and neurochemical mechanisms underlying the pathophysiology of bipolar disorder are complex and not yet fully understood. From circadian disruption to neuroinflammation, many pathways and signaling molecules are important contributors to bipolar disorder development, some specific to a disease subtype or a cycling episode. Pharmacological agents for bipolar disorder have shown only partial efficacy, including mood stabilizers and antipsychotics. The purinergic hypothesis for bipolar disorder emerges in this scenario as a promising target for further research and drug development, given its role in neurotransmission and neuroinflammation that results in behavioral and mood regulation. Here, we review the basic concepts of purinergic signaling in the central nervous system and its contribution to bipolar disorder pathophysiology. Allopurinol and novel P2X7 receptor antagonists are promising candidates for treating bipolar disorder. We further explore currently available pharmacotherapies and the emerging new purinergic targets for drug development in bipolar disorder.
Collapse
Affiliation(s)
| | - Roberta Andrejew
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Carolina Gubert
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, 30 Royal Parade, Parkville, VIC, 3032, Australia.
| |
Collapse
|
25
|
Abdelkader NF, Ibrahim SM, Moustafa PE, Elbaset MA. Inosine mitigated diabetic peripheral neuropathy via modulating GLO1/AGEs/RAGE/NF-κB/Nrf2 and TGF-β/PKC/TRPV1 signaling pathways. Biomed Pharmacother 2021; 145:112395. [PMID: 34775239 DOI: 10.1016/j.biopha.2021.112395] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/20/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
Inosine is a dietary supplement that is widely used for managing numerous central neurological disorders. Interestingly, recent experimental investigation of inosine revealed its potential to promote peripheral neuroprotection after sciatic nerve injury. Such investigation has guided the focus of the current study to expose the potential of inosine in mitigating diabetic peripheral neuropathy (DPN) in rats and to study the possible underlying signaling pathways. Adult male Wistar rats were arbitrarily distributed into four groups. In the first group, animals received saline daily for 15 days whereas rats of the remaining groups received a single injection of both nicotinamide (50 mg/Kg/i.p.) and streptozotocin (52.5 mg/Kg/i.p.) for DPN induction. Afterward, inosine (10 mg/Kg/p.o.) was administered to two groups, either alone or in combination with caffeine (3.75 mg/Kg/p.o.), an adenosine receptor antagonist. As a result, inosine showed a hypoglycemic effect, restored the sciatic nerve histological structure, enhanced myelination, modulated conduction velocities and maintained behavioral responses. Furthermore, inosine increased GLO1, reduced AGE/RAGE axis and oxidative stress which in turn, downregulated NF-κB p65 and its phosphorylated form in the sciatic nerves. Inosine enhanced Nrf2 expression and its downstream molecule HO-1, resulting in increased CAT and SOD along with lowered MDA. Moreover, pain was relieved due to suppression of PKC and TRPV1 expression, which ultimately lead to reduced SP and TGF-β. The potential effects of inosine were nearly blocked by caffeine administration; this emphasizes the role of adenosine receptors in inosine-mediated neuroprotective effects. In conclusion, inosine alleviated hyperglycemia-induced DPN via modulating GLO1/AGE/RAGE/NF-κB p65/Nrf2 and TGF-β/PKC/TRPV1/SP pathways.
Collapse
Affiliation(s)
- Noha F Abdelkader
- Cairo University, Faculty of Pharmacy, Department of Pharmacology and Toxicology, Cairo, Egypt.
| | - Sherehan M Ibrahim
- Cairo University, Faculty of Pharmacy, Department of Pharmacology and Toxicology, Cairo, Egypt
| | - Passant E Moustafa
- National Research center, Medical Division, Department of Pharmacology, Cairo, Egypt
| | - Marawan A Elbaset
- National Research center, Medical Division, Department of Pharmacology, Cairo, Egypt
| |
Collapse
|