1
|
Niemeyer JE, Luo P, Pons C, Wu S, Ma H, Liou JY, Surinach D, Kodandaramaiah SB, Schwartz TH. Seizure network characterization by functional connectivity mapping and manipulation. NEUROPHOTONICS 2025; 12:S14605. [PMID: 39822587 PMCID: PMC11737237 DOI: 10.1117/1.nph.12.s1.s14605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 01/19/2025]
Abstract
Significance Despite the availability of various anti-seizure medications, nearly 1/3 of epilepsy patients experience drug-resistant seizures. These patients are left with invasive surgical options that do not guarantee seizure remission. The development of novel treatment options depends on elucidating the complex biology of seizures and brain networks. Aim We aimed to develop an experimental paradigm that uses anatomical network information, functional connectivity, and in vivo seizure models to determine how brain networks, and their manipulation, affect seizure propagation. Approach Guided by a known anatomical network, we applied widefield calcium imaging to determine how neural activity and seizures spread through the network regions, focusing on the primary somatosensory cortex and secondary motor cortex. We used in vivo microstimulation to induce suprathreshold excitatory activation and compared this reproducible stimulus with acute pharmacologically induced spontaneous seizure propagation. In a proof-of-concept experiment, we ablated a single node within this bilateral network and measured the effect on propagation and recruitment. Similar preliminary experiments were repeated in a chronic seizure model. Results The microstimulation of the somatosensory cortex propagated in a distinct pattern throughout the bilateral network with sequential reproducible node recruitment. Seizures recapitulated this same pattern, indicating a hijacking of existing pathways. Ablation of a key node in the network in the secondary motor cortex changed contralateral spread. Early chronic cobalt seizure data are presented. Conclusion Here, we demonstrate a paradigm for combining widefield calcium imaging with microstimulation, cortical ablation, and seizure mapping to determine how anatomical networks inform the propagation patterns of cortical seizures. These experiments can be extended to long-term tracking of epilepsy to study epileptogenesis in other cortical networks. Our proof-of-concept findings suggest that this paradigm may be useful in the development of novel therapies for drug-resistant epilepsy patients and can be extended to the study of other disorders involving brain networks.
Collapse
Affiliation(s)
- James E. Niemeyer
- Weill Cornell Medicine, Department of Neurological Surgery, New York, United States
| | - Peijuan Luo
- The First Hospital of Jilin University, Department of Neurology, Changchun, China
| | - Carmen Pons
- Weill Cornell Medicine, Department of Neurological Surgery, New York, United States
- University of Chicago Medicine, Department of Neurosurgery, Chicago, Illinois, United States
| | - Shiqiang Wu
- Weill Cornell Medicine, Department of Neurological Surgery, New York, United States
- Tongji Hospital, Tongji Medical College, Hua Zhong University of Science and Technology, China
| | - Hongtao Ma
- Weill Cornell Medicine, Department of Neurological Surgery, New York, United States
| | - Jyun-you Liou
- Weill Cornell Medicine, Department of Anesthesiology, New York, United States
| | - Daniel Surinach
- University of Minnesota, Department of Mechanical Engineering, Minneapolis, Minnesota, United States
| | - Suhasa B. Kodandaramaiah
- University of Minnesota, Department of Mechanical Engineering, Minneapolis, Minnesota, United States
- University of Minnesota, Department of Biomedical Engineering, Minneapolis, Minnesota, United States
- University of Minnesota, Department of Neuroscience, Minneapolis, Minnesota, United States
| | - Theodore H. Schwartz
- Weill Cornell Medicine, Department of Neurological Surgery, New York, United States
| |
Collapse
|
2
|
Stern MA, Dingledine R, Gross RE, Berglund K. Epilepsy insights revealed by intravital functional optical imaging. Front Neurol 2024; 15:1465232. [PMID: 39268067 PMCID: PMC11390408 DOI: 10.3389/fneur.2024.1465232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/13/2024] [Indexed: 09/15/2024] Open
Abstract
Despite an abundance of pharmacologic and surgical epilepsy treatments, there remain millions of patients suffering from poorly controlled seizures. One approach to closing this treatment gap may be found through a deeper mechanistic understanding of the network alterations that underly this aberrant activity. Functional optical imaging in vertebrate models provides powerful advantages to this end, enabling the spatiotemporal acquisition of individual neuron activity patterns across multiple seizures. This coupled with the advent of genetically encoded indicators, be them for specific ions, neurotransmitters or voltage, grants researchers unparalleled access to the intact nervous system. Here, we will review how in vivo functional optical imaging in various vertebrate seizure models has advanced our knowledge of seizure dynamics, principally seizure initiation, propagation and termination.
Collapse
Affiliation(s)
- Matthew A Stern
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Raymond Dingledine
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Robert E Gross
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neurological Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Ken Berglund
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
3
|
Li J, Yang F, Zhan F, Estin J, Iyer A, Zhao M, Niemeyer JE, Luo P, Li D, Lin W, Liou JY, Ma H, Schwartz TH. Mesoscopic mapping of hemodynamic responses and neuronal activity during pharmacologically induced interictal spikes in awake and anesthetized mice. J Cereb Blood Flow Metab 2024; 44:911-924. [PMID: 38230631 PMCID: PMC11318398 DOI: 10.1177/0271678x241226742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/18/2024]
Abstract
Imaging hemodynamic responses to interictal spikes holds promise for presurgical epilepsy evaluations. Understanding the hemodynamic response function is crucial for accurate interpretation. Prior interictal neurovascular coupling data primarily come from anesthetized animals, impacting reliability. We simultaneously monitored calcium fluctuations in excitatory neurons, hemodynamics, and local field potentials (LFP) during bicuculline-induced interictal events in both isoflurane-anesthetized and awake mice. Isoflurane significantly affected LFP amplitude but had little impact on the amplitude and area of the calcium signal. Anesthesia also dramatically blunted the amplitude and latency of the hemodynamic response, although not its area of spread. Cerebral blood volume change provided the best spatial estimation of excitatory neuronal activity in both states. Targeted silencing of the thalamus in awake mice failed to recapitulate the impact of anesthesia on hemodynamic responses suggesting that isoflurane's interruption of the thalamocortical loop did not contribute either to the dissociation between the LFP and the calcium signal nor to the alterations in interictal neurovascular coupling. The blood volume increase associated with interictal spikes represents a promising mapping signal in both the awake and anesthetized states.
Collapse
Affiliation(s)
- Jing Li
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
- Department of Neurological Surgery and Brain and Mind Research Institute, Weill Cornell Medicine of Cornell University, New York Presbyterian Hospital, New York, USA
| | - Fan Yang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
- Department of Neurological Surgery and Brain and Mind Research Institute, Weill Cornell Medicine of Cornell University, New York Presbyterian Hospital, New York, USA
| | - Fengrui Zhan
- Department of Neurological Surgery and Brain and Mind Research Institute, Weill Cornell Medicine of Cornell University, New York Presbyterian Hospital, New York, USA
| | - Joshua Estin
- Department of Neurological Surgery and Brain and Mind Research Institute, Weill Cornell Medicine of Cornell University, New York Presbyterian Hospital, New York, USA
| | - Aditya Iyer
- Department of Anesthesiology, Weill Cornell Medicine, New York, USA
| | - Mingrui Zhao
- Department of Neurological Surgery and Brain and Mind Research Institute, Weill Cornell Medicine of Cornell University, New York Presbyterian Hospital, New York, USA
| | - James E Niemeyer
- Department of Neurological Surgery and Brain and Mind Research Institute, Weill Cornell Medicine of Cornell University, New York Presbyterian Hospital, New York, USA
| | - Peijuan Luo
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
- Department of Neurological Surgery and Brain and Mind Research Institute, Weill Cornell Medicine of Cornell University, New York Presbyterian Hospital, New York, USA
| | - Dan Li
- Department of Radiology, The First Hospital of Jilin University, Changchun, China
| | - Weihong Lin
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Jyun-you Liou
- Department of Anesthesiology, Weill Cornell Medicine, New York, USA
| | - Hongtao Ma
- Department of Neurological Surgery and Brain and Mind Research Institute, Weill Cornell Medicine of Cornell University, New York Presbyterian Hospital, New York, USA
| | - Theodore H Schwartz
- Department of Neurological Surgery and Brain and Mind Research Institute, Weill Cornell Medicine of Cornell University, New York Presbyterian Hospital, New York, USA
| |
Collapse
|
4
|
Tsytsarev V, Sopova JV, Leonova EI, Inyushin M, Markina AA, Chirinskaite AV, Volnova AB. Neurophotonic methods in approach to in vivo animal epileptic models: Advantages and limitations. Epilepsia 2024; 65:600-614. [PMID: 38115808 PMCID: PMC10948300 DOI: 10.1111/epi.17870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Neurophotonic technology is a rapidly growing group of techniques that are based on the interactions of light with natural or genetically modified cells of the neural system. New optical technologies make it possible to considerably extend the tools of neurophysiological research, from the visualization of functional activity changes to control of brain tissue excitability. This opens new perspectives for studying the mechanisms underlying the development of human neurological diseases. Epilepsy is one of the most common brain disorders; it is characterized by recurrent seizures and affects >1% of the world's population. However, how seizures occur, spread, and terminate in a healthy brain is still unclear. Therefore, it is extremely important to develop appropriate models to accurately explore the causal relationship of epileptic activity. The use of neurophotonic technologies in epilepsy research falls into two broad categories: the visualization of neural epileptic activity, and the direct optical influence on neurons to induce or suppress epileptic activity. An optogenetic variant of the classical kindling model of epileptic seizures, in which activatable cells are genetically defined, is called optokindling. Research is also underway concerning the application of neurophotonic techniques for suppressing epileptic activity, aiming to bring these methods into clinical practice. This review aims to systematize and describe new approaches that use combinations of different neurophotonic methods to work with in vivo models of epilepsy. These approaches overcome many of the shortcomings associated with classical animal models of epilepsy and thus increase the effectiveness of developing new diagnostic methods and antiepileptic therapy.
Collapse
Affiliation(s)
- Vassiliy Tsytsarev
- University of Maryland School of Medicine, Department of Neurobiology 20 Penn St, HSF-2, 21201 MD, Baltimore, United States
| | - Julia V. Sopova
- Center of Transgenesis and Genome Editing, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Elena I. Leonova
- Center of Transgenesis and Genome Editing, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Mikhail Inyushin
- School of Medicine, Universidad Central del Caribe, Bayamon, PR 00956, USA
| | - Alisa A. Markina
- Institute of Translational Biomedicine, Saint Petersburg State University, St. Petersburg 199034, Russia
| | - Angelina V. Chirinskaite
- Center of Transgenesis and Genome Editing, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anna B. Volnova
- Institute of Translational Biomedicine, Saint Petersburg State University, St. Petersburg 199034, Russia
| |
Collapse
|
5
|
Babij R, Ferrer C, Donatelle A, Wacks S, Buch AM, Niemeyer JE, Ma H, Duan ZRS, Fetcho RN, Che A, Otsuka T, Schwartz TH, Huang BS, Liston C, De Marco García NV. Gabrb3 is required for the functional integration of pyramidal neuron subtypes in the somatosensory cortex. Neuron 2023; 111:256-274.e10. [PMID: 36446382 PMCID: PMC9852093 DOI: 10.1016/j.neuron.2022.10.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 08/30/2022] [Accepted: 10/27/2022] [Indexed: 11/29/2022]
Abstract
Dysfunction of gamma-aminobutyric acid (GABA)ergic circuits is strongly associated with neurodevelopmental disorders. However, it is unclear how genetic predispositions impact circuit assembly. Using in vivo two-photon and widefield calcium imaging in developing mice, we show that Gabrb3, a gene strongly associated with autism spectrum disorder (ASD) and Angelman syndrome (AS), is enriched in contralaterally projecting pyramidal neurons and is required for inhibitory function. We report that Gabrb3 ablation leads to a developmental decrease in GABAergic synapses, increased local network synchrony, and long-lasting enhancement in functional connectivity of contralateral-but not ipsilateral-pyramidal neuron subtypes. In addition, Gabrb3 deletion leads to increased cortical response to tactile stimulation at neonatal stages. Using human transcriptomics and neuroimaging datasets from ASD subjects, we show that the spatial distribution of GABRB3 expression correlates with atypical connectivity in these subjects. Our studies reveal a requirement for Gabrb3 during the emergence of interhemispheric circuits for sensory processing.
Collapse
Affiliation(s)
- Rachel Babij
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA.,Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA
| | - Camilo Ferrer
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Alexander Donatelle
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Sam Wacks
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Amanda M Buch
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - James E Niemeyer
- Department of Neurological Surgery, Weill Cornell Medicine, New-York Presbyterian Hospital, New York, NY 10021, USA
| | - Hongtao Ma
- Department of Neurological Surgery, Weill Cornell Medicine, New-York Presbyterian Hospital, New York, NY 10021, USA
| | - Zhe Ran S Duan
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA.,Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA
| | - Robert N Fetcho
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA.,Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA
| | - Alicia Che
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA.,Current affiliation: Department of Psychiatry, Yale School of Medicine, New Haven, CT 06519, USA
| | - Takumi Otsuka
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Theodore H Schwartz
- Department of Neurological Surgery, Weill Cornell Medicine, New-York Presbyterian Hospital, New York, NY 10021, USA
| | - Ben S Huang
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Conor Liston
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Natalia V De Marco García
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA.,Lead Contact,Correspondence to
| |
Collapse
|
6
|
Lillis KP. Putting the Neuro in Neurovascular Coupling. Epilepsy Curr 2022; 22:184-186. [PMID: 36474829 PMCID: PMC9684592 DOI: 10.1177/15357597221084810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|