1
|
Gomes LF, Vasconcelos ICD, Taveira KVM, Balen SA, Brazorotto JS. Functional near-infrared spectrometry for auditory speech stimuli in cochlear implant users: a systematic literature review. Cochlear Implants Int 2024; 25:445-458. [PMID: 39570907 DOI: 10.1080/14670100.2024.2427506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
OBJECTIVE This study aims to identify the acquisition features of functional near-infrared spectroscopy (fNIRS) in cochlear implant users. METHODS A systematic literature review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. PubMed, EMBASE, LILACS, Web of Science, Scopus, PsycINFO, IEEE Xplore, Google Scholar, and ProQuest Dissertations & Theses Global were searched using the PECOS acronym. Inclusion criteria encompassed studies involving fNIRS with speech stimuli in cochlear implant users of any age, with information on acquisition parameters and features. Risk of bias assessment was performed using the Joanna Briggs Institute tool. RESULTS Nineteen studies were included, with thirteen exhibiting a low risk of bias. Noteworthy uniformity was observed in certain fNIRS acquisition features among cochlear implant users, including the waking state (awake), auditory stimuli of words or phrases presented in a free field, visual stimuli displayed during data collection as a secondary task, recording of responses in the bilateral temporal lobe, and a three-centimeter distance between optodes. Variations in acquisition were attributed to differing study purposes. CONCLUSION This review identifies common acquisition characteristics for fNIRS in cochlear implant users. Multicenter research efforts are advocated to further advance the utility of fNIRS in this population.
Collapse
Affiliation(s)
- Larissa Fernandes Gomes
- Laboratory of Technological Innovation in Health (LAIS), Graduate Program in Speech, Language and Hearing Sciences (PPGFON), Department of Speech, Language and Hearing Sciences, Health Sciences Center, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | - Isabelle Costa de Vasconcelos
- Laboratory of Technological Innovation in Health (LAIS), Graduate Program in Speech, Language and Hearing Sciences (PPGFON), Department of Speech, Language and Hearing Sciences, Health Sciences Center, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | - Karinna Veríssimo Meira Taveira
- Department of Morphology, Biosciences Center, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
- Center for Advanced Studies in Systematic Review and Meta-Analysis (NARSM) and UFRN, Natal, Brazil
| | - Sheila Andreoli Balen
- Laboratory of Technological Innovation in Health (LAIS), Graduate Program in Speech, Language and Hearing Sciences (PPGFON), Department of Speech, Language and Hearing Sciences, Health Sciences Center, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | - Joseli Soares Brazorotto
- Laboratory of Technological Innovation in Health (LAIS), Graduate Program in Speech, Language and Hearing Sciences (PPGFON), Department of Speech, Language and Hearing Sciences, Health Sciences Center, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| |
Collapse
|
2
|
Cartocci G, Inguscio BMS, Giorgi A, Rossi D, Di Nardo W, Di Cesare T, Leone CA, Grassia R, Galletti F, Ciodaro F, Galletti C, Albera R, Canale A, Babiloni F. Investigation of Deficits in Auditory Emotional Content Recognition by Adult Cochlear Implant Users through the Study of Electroencephalographic Gamma and Alpha Asymmetry and Alexithymia Assessment. Brain Sci 2024; 14:927. [PMID: 39335422 PMCID: PMC11430703 DOI: 10.3390/brainsci14090927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND/OBJECTIVES Given the importance of emotion recognition for communication purposes, and the impairment for such skill in CI users despite impressive language performances, the aim of the present study was to investigate the neural correlates of emotion recognition skills, apart from language, in adult unilateral CI (UCI) users during a music in noise (happy/sad) recognition task. Furthermore, asymmetry was investigated through electroencephalographic (EEG) rhythm, given the traditional concept of hemispheric lateralization for emotional processing, and the intrinsic asymmetry due to the clinical UCI condition. METHODS Twenty adult UCI users and eight normal hearing (NH) controls were recruited. EEG gamma and alpha band power was assessed as there is evidence of a relationship between gamma and emotional response and between alpha asymmetry and tendency to approach or withdraw from stimuli. The TAS-20 questionnaire (alexithymia) was completed by the participants. RESULTS The results showed no effect of background noise, while supporting that gamma activity related to emotion processing shows alterations in the UCI group compared to the NH group, and that these alterations are also modulated by the etiology of deafness. In particular, relative higher gamma activity in the CI side corresponds to positive processes, correlated with higher emotion recognition abilities, whereas gamma activity in the non-CI side may be related to positive processes inversely correlated with alexithymia and also inversely correlated with age; a correlation between TAS-20 scores and age was found only in the NH group. CONCLUSIONS EEG gamma activity appears to be fundamental to the processing of the emotional aspect of music and also to the psychocognitive emotion-related component in adults with CI.
Collapse
Affiliation(s)
- Giulia Cartocci
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy
- BrainSigns Ltd., Via Tirso 14, 00198 Rome, Italy
| | - Bianca Maria Serena Inguscio
- BrainSigns Ltd., Via Tirso 14, 00198 Rome, Italy
- Department of Computer, Control, and Management Engineering "Antonio Ruberti", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Andrea Giorgi
- BrainSigns Ltd., Via Tirso 14, 00198 Rome, Italy
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Dario Rossi
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy
- BrainSigns Ltd., Via Tirso 14, 00198 Rome, Italy
| | - Walter Di Nardo
- Institute of Otorhinolaryngology, Catholic University of Sacred Heart, Fondazione Policlinico "A Gemelli", IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Tiziana Di Cesare
- Institute of Otorhinolaryngology, Catholic University of Sacred Heart, Fondazione Policlinico "A Gemelli", IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Carlo Antonio Leone
- Department of Otolaringology Head-Neck Surgery, Monaldi Hospital, Via Leonardo Bianchi, 80131 Naples, Italy
| | - Rosa Grassia
- Department of Otolaringology Head-Neck Surgery, Monaldi Hospital, Via Leonardo Bianchi, 80131 Naples, Italy
| | - Francesco Galletti
- Department of Otorhinolaryngology, University of Messina, Piazza Pugliatti 1, 98122 Messina, Italy
| | - Francesco Ciodaro
- Department of Otorhinolaryngology, University of Messina, Piazza Pugliatti 1, 98122 Messina, Italy
| | - Cosimo Galletti
- Department of Otorhinolaryngology, University of Messina, Piazza Pugliatti 1, 98122 Messina, Italy
| | - Roberto Albera
- Department of Surgical Sciences, University of Turin, Via Genova 3, 10126 Turin, Italy
| | - Andrea Canale
- Department of Surgical Sciences, University of Turin, Via Genova 3, 10126 Turin, Italy
| | - Fabio Babiloni
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy
- BrainSigns Ltd., Via Tirso 14, 00198 Rome, Italy
- Department of Computer Science, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
3
|
Gallagher A, Wallois F, Obrig H. Functional near-infrared spectroscopy in pediatric clinical research: Different pathophysiologies and promising clinical applications. NEUROPHOTONICS 2023; 10:023517. [PMID: 36873247 PMCID: PMC9982436 DOI: 10.1117/1.nph.10.2.023517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Over its 30 years of existence, functional near-infrared spectroscopy (fNIRS) has matured into a highly versatile tool to study brain function in infants and young children. Its advantages, amongst others, include its ease of application and portability, the option to combine it with electrophysiology, and its relatively good tolerance to movement. As shown by the impressive body of fNIRS literature in the field of cognitive developmental neuroscience, the method's strengths become even more relevant for (very) young individuals who suffer from neurological, behavioral, and/or cognitive impairment. Although a number of studies have been conducted with a clinical perspective, fNIRS cannot yet be considered as a truly clinical tool. The first step has been taken in this direction by studies exploring options in populations with well-defined clinical profiles. To foster further progress, here, we review several of these clinical approaches to identify the challenges and perspectives of fNIRS in the field of developmental disorders. We first outline the contributions of fNIRS in selected areas of pediatric clinical research: epilepsy, communicative and language disorders, and attention-deficit/hyperactivity disorder. We provide a scoping review as a framework to allow the highlighting of specific and general challenges of using fNIRS in pediatric research. We also discuss potential solutions and perspectives on the broader use of fNIRS in the clinical setting. This may be of use to future research, targeting clinical applications of fNIRS in children and adolescents.
Collapse
Affiliation(s)
- Anne Gallagher
- CHU Sainte-Justine University Hospital, Université de Montréal, LIONLab, Cerebrum, Department of Psychology, Montréal, Quebec, Canada
| | - Fabrice Wallois
- Université de Picardie Jules Verne, Inserm U1105, GRAMFC, Amiens, France
| | - Hellmuth Obrig
- University Hospital and Faculty of Medicine Leipzig/Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, Clinic for Cognitive Neurology, Leipzig, Germany
| |
Collapse
|
4
|
Wang Y, Yu N, Lu J, Zhang X, Wang J, Shu Z, Cheng Y, Zhu Z, Yu Y, Liu P, Han J, Wu J. Increased Effective Connectivity of the Left Parietal Lobe During Walking Tasks in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2023; 13:165-178. [PMID: 36872789 PMCID: PMC10041419 DOI: 10.3233/jpd-223564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
BACKGROUND In Parkinson's disease (PD), walking may depend on the activation of the cerebral cortex. Understanding the patterns of interaction between cortical regions during walking tasks is of great importance. OBJECTIVE This study investigated differences in the effective connectivity (EC) of the cerebral cortex during walking tasks in individuals with PD and healthy controls. METHODS We evaluated 30 individuals with PD (62.4±7.2 years) and 22 age-matched healthy controls (61.0±6.4 years). A mobile functional near-infrared spectroscopy (fNIRS) was used to record cerebral oxygenation signals in the left prefrontal cortex (LPFC), right prefrontal cortex (RPFC), left parietal lobe (LPL), and right parietal lobe (RPL) and analyze the EC of the cerebral cortex. A wireless movement monitor was used to measure the gait parameters. RESULTS Individuals with PD demonstrated a primary coupling direction from LPL to LPFC during walking tasks, whereas healthy controls did not demonstrate any main coupling direction. Compared with healthy controls, individuals with PD showed statistically significantly increased EC coupling strength from LPL to LPFC, from LPL to RPFC, and from LPL to RPL. Individuals with PD showed decreased gait speed and stride length and increased variability in speed and stride length. The EC coupling strength from LPL to RPFC negatively correlated with speed and positively correlated with speed variability in individuals with PD. CONCLUSION In individuals with PD, the left prefrontal cortex may be regulated by the left parietal lobe during walking. This may be the result of functional compensation in the left parietal lobe.
Collapse
Affiliation(s)
- Yue Wang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Ningbo Yu
- College of Artificial Intelligence, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin, China
| | - Jiewei Lu
- College of Artificial Intelligence, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin, China
| | - Xinyuan Zhang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Jin Wang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Zhilin Shu
- College of Artificial Intelligence, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin, China
| | - Yuanyuan Cheng
- Department of Rehabilitation Medicine, Tianjin Huanhu Hospital, Tianjin, China
| | - Zhizhong Zhu
- Department of Rehabilitation Medicine, Tianjin Huanhu Hospital, Tianjin, China
| | - Yang Yu
- Department of Rehabilitation Medicine, Tianjin Huanhu Hospital, Tianjin, China
| | - Peipei Liu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Jianda Han
- College of Artificial Intelligence, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin, China
| | - Jialing Wu
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- Department of Rehabilitation Medicine, Tianjin Huanhu Hospital, Tianjin, China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin, China
| |
Collapse
|
5
|
Huber M, Lee HJ, Langereis M, Vermeulen A. Editorial: Quality of life in young cochlear implant recipients: Are there controlling factors and regional differences? Front Psychol 2022; 13:1109242. [PMID: 36591102 PMCID: PMC9798845 DOI: 10.3389/fpsyg.2022.1109242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Affiliation(s)
- Maria Huber
- Department of Otorhinolaryngology, Paracelsus Medical University, Salzburg, Austria
| | - Hyo-Jeong Lee
- Department of Otolaryngology, Hallym University Medical Center, Chuncheon, South Korea
| | - Margreet Langereis
- Research Department, Pento Speech and Hearing Centres, Nijmegen, Netherlands
| | - Anneke Vermeulen
- Research Department, Pento Speech and Hearing Centres, Nijmegen, Netherlands
| |
Collapse
|
6
|
Huber M. Cochlear implant-specific risks should be considered, when assessing the quality of life of children and adolescents with hearing loss and cochlear implants-not just cochlear implant-specific benefits-Perspective. Front Neurosci 2022; 16:985230. [PMID: 36425475 PMCID: PMC9679369 DOI: 10.3389/fnins.2022.985230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 10/14/2022] [Indexed: 09/09/2024] Open
Abstract
Cochlear implants (CIs) are electronic medical devices that enable hearing in cases where traditional hearing aids are of minimal or no use. Quality of life (QoL) studies of children and adolescents with a CI have so far focused on the CI-specific benefits. However, the CI-specific risks listed by the U.S. Food and Drug Administration have not yet been considered. From this list, medical and device-related complications, lifelong dependency on the implanted device, and neurosecurity risks (CI technology is an interface technology) may be particularly relevant for young CI users. Medical and device-related complications can cause physical discomfort (e.g., fever, pain), as well as functioning problems (e.g., in speech discrimination, social behavior, and mood). In the worst case, reimplantation is required. Clinical experience shows that these complications are perceived as a burden for young CI users. Furthermore, many young patients are worried about possible complications. Additionally, CIs can be at least a temporary burden when children, typically at the age of 8-9 years, realize that they need the CI for life, or when they become peer victims because of their CI. Concerning neurosecurity risks, it is still unknown how young CI recipients perceive them. In summary, CI-specific risks can be perceived as a burden by young CI users that impairs their QoL. Therefore, they should not be ignored. There is an urgent need for studies on this topic, which would not only be important for professionals and parents, but also for the design of CI-specific QoL instruments.
Collapse
Affiliation(s)
- Maria Huber
- Department of Otorhinolaryngology, Head and Neck Surgery, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
7
|
Lu J, Wang Y, Shu Z, Zhang X, Wang J, Cheng Y, Zhu Z, Yu Y, Wu J, Han J, Yu N. fNIRS-based brain state transition features to signify functional degeneration after Parkinson's disease. J Neural Eng 2022; 19. [PMID: 35917809 DOI: 10.1088/1741-2552/ac861e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/01/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Parkinson's disease (PD) is a common neurodegenerative brain disorder, and early diagnosis is of vital importance for treatment. Existing methods are mainly focused on behavior examination, while the functional neurodegeneration after PD has not been well explored. This paper aims to investigate the brain functional variation of PD patients in comparison with healthy controls. APPROACH In this work, we propose brain hemodynamic states and state transition features to signify functional degeneration after PD. Firstly, a functional near-infrared spectroscopy (fNIRS)-based experimental paradigm was designed to capture brain activation during dual-task walking from PD patients and healthy controls. Then, three brain states, named expansion, contraction, and intermediate states, were defined with respect to the oxyhemoglobin and deoxyhemoglobin responses. After that, two features were designed from a constructed transition factor and concurrent variations of oxy- and deoxy-hemoglobin over time, to quantify the transitions of brain states. Further, a support vector machine classifier was trained with the proposed features to distinguish PD patients and healthy controls. RESULTS Experimental results showed that our method with the proposed brain state transition features achieved classification accuracy of 0:8200 and F score of 0:9091, and outperformed existing fNIRS-based methods. Compared with healthy controls, PD patients had significantly smaller transition acceleration and transition angle. SIGNIFICANCE The proposed brain state transition features well signify functional degeneration of PD patients and may serve as promising functional biomarkers for PD diagnosis.
Collapse
Affiliation(s)
- Jiewei Lu
- College of Artificial Intelligence, Nankai University, Haihe Education Park, Tongyan Road No.38, Tianjin, 300350, CHINA
| | - Yue Wang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, No22.Qixiangtai Rd.,Heping Dist, Tianjin, Tianjin, 300070, CHINA
| | - Zhilin Shu
- College of Artificial Intelligence, Nankai University, Haihe Education Park, Tongyan Road No.38, Tianjin, 300350, CHINA
| | - Xinyuan Zhang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, No22.Qixiangtai Rd.,Heping Dist, Tianjin, 300070, CHINA
| | - Jin Wang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, No22.Qixiangtai Rd.,Heping Dist, Tianjin, 300070, CHINA
| | - Yuanyuan Cheng
- Department of Rehabilitation Medicine, Tianjin Huanhu Hospital, No.122, Qixiangtai Road, Hexi District, Tianjin, 300060, CHINA
| | - Zhizhong Zhu
- Department of Rehabilitation Medicine, Tianjin Huanhu Hospital, Tianjin Huanhu Hospital, No.122, Qixiangtai Road, Hexi District, Tianjin, 300060, CHINA
| | - Yang Yu
- Department of Rehabilitation Medicine, Tianjin Huanhu Hospital, Tianjin Huanhu Hospital, No.122, Qixiangtai Road, Hexi District, Tianjin, 300060, CHINA
| | - Jialing Wu
- Department of Neurology, Tianjin Huanhu Hospital, No.122, Qixiangtai Road, Hexi District, Tianjin, 300060, CHINA
| | - Jianda Han
- College of Artificial Intelligence, Nankai University, Haihe Education Park, Tongyan Road No.38, Tianjin, 300350, CHINA
| | - Ningbo Yu
- College of Artificial Intelligence, Nankai University, Haihe Education Park, Tongyan Road No.38, Tianjin, 300350, CHINA
| |
Collapse
|
8
|
Guo Z, Gong Y, Lu H, Qiu R, Wang X, Zhu X, You X. Multitarget high-definition transcranial direct current stimulation improves response inhibition more than single-target high-definition transcranial direct current stimulation in healthy participants. Front Neurosci 2022; 16:905247. [PMID: 35968393 PMCID: PMC9372262 DOI: 10.3389/fnins.2022.905247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022] Open
Abstract
Prior studies have focused on single-target anodal transcranial direct current stimulation (tDCS) over the right inferior frontal gyrus (rIFG) or pre-supplementary motor area (pre-SMA) to improve response inhibition in healthy individuals. However, the results are contradictory and the effect of multitarget anodal stimulation over both brain regions has never been investigated. The present study aimed to investigate the behavioral and neurophysiological effects of different forms of anodal high-definition tDCS (HD-tDCS) on improving response inhibition, including HD-tDCS over the rIFG or pre-SMA and multitarget HD-tDCS over both areas. Ninety-two healthy participants were randomly assigned to receive single-session (20 min) anodal HD-tDCS over rIFG + pre-SMA, rIFG, pre-SMA, or sham stimulation. Before and immediately after tDCS intervention, participants completed a stop-signal task (SST) and a go/nogo task (GNG). Their cortical activity was recorded using functional near-infrared spectroscopy (fNIRS) during the go/nogo task. The results showed multitarget stimulation produced a significant reduction in stop-signal reaction time (SSRT) relative to baseline. The pre-to-post SSRT change was not significant for rIFG, pre-SMA, or sham stimulation. Further analyses revealed multitarget HD-tDCS significantly decreased SSRT in both the high-performance and low-performance subgroups compared with the rIFG condition which decreased SSRT only in the low-performance subgroup. Only the multitarget condition significantly improved neural efficiency as indexed by lower △oxy-Hb after stimulation. In conclusion, the present study provides important preliminary evidence that multitarget HD-tDCS is a promising avenue to improve stimulation efficacy, establishing a more effective montage to enhance response inhibition relative to the commonly used single-target stimulation.
Collapse
Affiliation(s)
- Zhihua Guo
- Department of Military Medical Psychology, Air Force Medical University, Xi’an, China
| | - Yue Gong
- School of Psychology, Shaanxi Normal University, Xi’an, China
| | - Hongliang Lu
- Department of Military Medical Psychology, Air Force Medical University, Xi’an, China
| | - Rui Qiu
- Department of Military Medical Psychology, Air Force Medical University, Xi’an, China
| | - Xinlu Wang
- Department of Military Medical Psychology, Air Force Medical University, Xi’an, China
| | - Xia Zhu
- Department of Military Medical Psychology, Air Force Medical University, Xi’an, China
- *Correspondence: Xia Zhu,
| | - Xuqun You
- School of Psychology, Shaanxi Normal University, Xi’an, China
- Xuqun You,
| |
Collapse
|