1
|
Muniyandi A, Hartman GD, Sishtla K, Rai R, Gomes C, Day K, Song Y, Masters AR, Quinney SK, Qi X, Woods H, Boulton ME, Meyer JS, Vilseck JZ, Georgiadis MM, Kelley MR, Corson TW. Ref-1 is overexpressed in neovascular eye disease and targetable with a novel inhibitor. Angiogenesis 2025; 28:11. [PMID: 39756006 PMCID: PMC12019292 DOI: 10.1007/s10456-024-09966-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/16/2024] [Indexed: 01/07/2025]
Abstract
Reduction-oxidation factor-1 or apurinic/apyrimidinic endonuclease 1 (Ref-1/APE1) is a crucial redox-sensitive activator of transcription factors such as NF-κB, HIF-1α, STAT-3 and others. It could contribute to key features of ocular neovascularization including inflammation and angiogenesis; these underlie diseases like neovascular age-related macular degeneration (nAMD). We previously revealed a role for Ref-1 in the growth of ocular endothelial cells and in choroidal neovascularization (CNV). Here, we set out to further explore Ref-1 in neovascular eye disease. Ref-1 was highly expressed in human nAMD, murine laser-induced CNV and Vldlr-/- mouse subretinal neovascularization (SRN). Ref-1's interaction with a redox-specific small molecule inhibitor, APX2009, was shown by NMR and docking. This compound blocks crucial angiogenic features in multiple endothelial cell types. APX2009 also ameliorated murine laser-induced choroidal neovascularization (L-CNV) when delivered intravitreally. Moreover, systemic APX2009 reduced murine SRN and downregulated the expression of Ref-1 redox regulated HIF-1α target carbonic anhydrase 9 (CA9) in the Vldlr-/- mouse model. Our data validate the redox function of Ref-1 as a critical regulator of ocular angiogenesis, indicating that inhibition of Ref-1 holds therapeutic potential for treating nAMD.
Collapse
Affiliation(s)
- Anbukkarasi Muniyandi
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gabriella D Hartman
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA
| | - Kamakshi Sishtla
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, M5S 3M2, Canada
| | - Ratan Rai
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Cátia Gomes
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kristina Day
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yang Song
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andi R Masters
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sara K Quinney
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA
| | - Xiaoping Qi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hailey Woods
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Michael E Boulton
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jason S Meyer
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jonah Z Vilseck
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Millie M Georgiadis
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA
| | - Mark R Kelley
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA
| | - Timothy W Corson
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA.
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, M5S 3M2, Canada.
- Department of Ophthalmology and Vision Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Ma X, Wu W, Hara M, Zhou J, Panzarin C, Schafer CM, Griffin CT, Cai J, Ma JX, Takahashi Y. Deficient RPE mitochondrial energetics leads to subretinal fibrosis in age-related neovascular macular degeneration. Commun Biol 2024; 7:1075. [PMID: 39223298 PMCID: PMC11369096 DOI: 10.1038/s42003-024-06773-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Subretinal fibrosis permanently impairs the vision of patients with neovascular age-related macular degeneration. Despite emerging evidence revealing the association between disturbed metabolism in retinal pigment epithelium (RPE) and subretinal fibrosis, the underlying mechanism remains unclear. In the present study, single-cell RNA sequencing revealed, prior to subretinal fibrosis, genes in mitochondrial fatty acid oxidation are downregulated in the RPE lacking very low-density lipoprotein receptor (VLDLR), especially the rate-limiting enzyme carnitine palmitoyltransferase 1A (CPT1A). We found that overexpression of CPT1A in the RPE of Vldlr-/- mice suppresses epithelial-to-mesenchymal transition and fibrosis. Mechanistically, TGFβ2 induces fibrosis by activating a Warburg-like effect, i.e. increased glycolysis and decreased mitochondrial respiration through ERK-dependent CPT1A degradation. Moreover, VLDLR blocks the formation of the TGFβ receptor I/II complex by interacting with unglycosylated TGFβ receptor II. In conclusion, VLDLR suppresses fibrosis by attenuating TGFβ2-induced metabolic reprogramming, and CPT1A is a potential target for treating subretinal fibrosis.
Collapse
Affiliation(s)
- Xiang Ma
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Wenjing Wu
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Miwa Hara
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Junwen Zhou
- Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Carolina Panzarin
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas-UNICAMP, Limeira, Brazil
| | - Christopher M Schafer
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Courtney T Griffin
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Jiyang Cai
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jian-Xing Ma
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Yusuke Takahashi
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
3
|
Haj Najeeb B, Schmidt-Erfurth U. The potential key role of choroidal non-perfusion and rod degeneration in the pathogenesis of macular neovascularization type 3. Eye (Lond) 2024; 38:1836-1839. [PMID: 38499856 PMCID: PMC11226597 DOI: 10.1038/s41433-024-03034-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/12/2024] [Accepted: 03/08/2024] [Indexed: 03/20/2024] Open
Abstract
Macular neovascularization type 3 (MNV3) is a multifactorial disease with distinct epidemiological, clinical, pathomorphological and topographical characteristics. This review of the literature discusses the latest experimental and clinical outcomes that could explain the pathogenesis of retinal neovascularization. Although patients with MNV3 are usually older than those with MNV1 or 2, their lesions do not coexist with, precede, or follow other types in the same eye. The regional distribution of MNV3 lesions is characterized as confined to the parafoveal macula without any involvement of the rod-free foveal area. Focal outer retinal atrophy and choroidal non-perfusion are the main structural features that occur prior to the development of retinal neovascularization. Also, histological and experimental studies of MNV3 and other non-neovascular age-related macular degeneration diseases complicated with MNV3-like lesions strongly suggest rod degeneration contributes to the pathogenesis. Therefore, the retinal neovascularization in MNV3 has a different pathogenesis from the choroidal neovascularization in MNV1 and 2 and emerging evidence indicates that choroidal non-prefusion and rod degeneration play a key role in the pathogenesis of MNV3. Accordingly, we suggest a sequence of pathological events that start with choroidal non-perfusion due to advanced age followed by hypoxia of the outer retina at the parafoveal area. This induces a remarkable degeneration of rods that triggers the growth of retinal neovascularization due to the imbalance of the angiogenic factors in the outer retina.
Collapse
Affiliation(s)
- Bilal Haj Najeeb
- Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria.
| | - Ursula Schmidt-Erfurth
- Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Clemens CR, Eter N, Alten F. Current Perspectives on Type 3 Macular Neovascularization due to Age-Related Macular Degeneration. Ophthalmologica 2024; 247:73-84. [PMID: 38266500 PMCID: PMC11160428 DOI: 10.1159/000536278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 01/11/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND The aim of this review was to systematically summarize the current knowledge on type 3 macular neovascularization (MNV3) in age-related macular degeneration (AMD). SUMMARY Recent histopathologic and multimodal imaging findings led to the consensus definition of the new term "type 3 macular neovascularization" in AMD. MNV3 originates in the deep vascular plexus as a neovascular process without connection with the retinal pigment epithelium in the initial stages. This type has numerous clinical and pathomorphologic features that separate it from the other two types of MNV in AMD. Besides, its frequency appears to be higher than previously thought. In optical coherence tomography (OCT), MNV3 can be classified into stages 1-3. Hyperreflective foci in the outer retina possibly represent a precursor lesion. In addition, MNV3 is characterized by a strong association with reticular pseudodrusen, a high rate of bilaterality, close associations with advanced age and arterial hypertension, decreased choroidal thickness, and decreased choriocapillaris flow signals. Data from latest anti-vascular endothelial growth factor studies in MNV3 suggest that the OCT biomarkers in intraretinal and subretinal fluids should be interpreted differently than in the other types. Additionally, data from MNV3 eyes should be analyzed separately, allowing optimal type-specific treatment strategies in the future. KEY MESSAGES This review highlights the need for accurate characterization of neovascular AMD lesions and an MNV type-specific approach, particularly for MNV3.
Collapse
Affiliation(s)
- Christoph R Clemens
- Department of Ophthalmology, University of Muenster Medical Center, Muenster, Germany
| | - Nicole Eter
- Department of Ophthalmology, University of Muenster Medical Center, Muenster, Germany
| | - Florian Alten
- Department of Ophthalmology, University of Muenster Medical Center, Muenster, Germany
| |
Collapse
|
5
|
Navneet S, Brandon C, Simpson K, Rohrer B. Exploring the Therapeutic Potential of Elastase Inhibition in Age-Related Macular Degeneration in Mouse and Human. Cells 2023; 12:1308. [PMID: 37174708 PMCID: PMC10177483 DOI: 10.3390/cells12091308] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Abnormal turnover of the extracellular matrix (ECM) protein elastin has been linked to AMD pathology. Elastin is a critical component of Bruch's membrane (BrM), an ECM layer that separates the retinal pigment epithelium (RPE) from the underlying choriocapillaris. Reduced integrity of BrM's elastin layer corresponds to areas of choroidal neovascularization (CNV) in wet AMD. Serum levels of elastin-derived peptides and anti-elastin antibodies are significantly elevated in AMD patients along with the prevalence of polymorphisms of genes regulating elastin turnover. Despite these results indicating significant associations between abnormal elastin turnover and AMD, very little is known about its exact role in AMD pathogenesis. Here we report on results that suggest that elastase enzymes could play a direct role in the pathogenesis of AMD. We found significantly increased elastase activity in the retinas and RPE cells of AMD mouse models, and AMD patient-iPSC-derived RPE cells. A1AT, a protease inhibitor that inactivates elastase, reduced CNV lesion sizes in mouse models. A1AT completely inhibited elastase-induced VEGFA expression and secretion, and restored RPE monolayer integrity in ARPE-19 monolayers. A1AT also mitigated RPE thickening, an early AMD phenotype, in HTRA1 overexpressing mice, HTRA1 being a serine protease with elastase activity. Finally, in an exploratory study, examining archival records from large patient data sets, we identified an association between A1AT use, age and AMD risk. Our results suggest that repurposing A1AT may have therapeutic potential in modifying the progression to AMD.
Collapse
Affiliation(s)
- Soumya Navneet
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Carlene Brandon
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Kit Simpson
- Department of Healthcare Leadership and Management, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Bärbel Rohrer
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Johnson VA Medical Center, Division of Research, Charleston, SC 29425, USA
| |
Collapse
|
6
|
Mijit M, Liu S, Sishtla K, Hartman GD, Wan J, Corson TW, Kelley MR. Identification of Novel Pathways Regulated by APE1/Ref-1 in Human Retinal Endothelial Cells. Int J Mol Sci 2023; 24:1101. [PMID: 36674619 PMCID: PMC9865623 DOI: 10.3390/ijms24021101] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/26/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
APE1/Ref-1 (apurinic/apyrimidinic endonuclease 1, APE1 or APEX1; redox factor-1, Ref-1) is a dual-functional enzyme with crucial roles in DNA repair, reduction/oxidation (redox) signaling, and RNA processing and metabolism. The redox function of Ref-1 regulates several transcription factors, such as NF-κB, STAT3, HIF-1α, and others, which have been implicated in multiple human diseases, including ocular angiogenesis, inflammation, and multiple cancers. To better understand how APE1 influences these disease processes, we investigated the effects of APEX1 knockdown (KD) on gene expression in human retinal endothelial cells. This abolishes both DNA repair and redox signaling functions, as well as RNA interactions. Using RNA-seq analysis, we identified the crucial signaling pathways affected following APEX1 KD, with subsequent validation by qRT-PCR. Gene expression data revealed that multiple genes involved in DNA base excision repair, other DNA repair pathways, purine or pyrimidine metabolism signaling, and histidine/one carbon metabolism pathways were downregulated by APEX1 KD. This is in contrast with the alteration of pathways by APEX1 KD in human cancer lines, such as pancreatic ductal adenocarcinoma, lung, HeLa, and malignant peripheral nerve sheath tumors. These results highlight the unique role of APE1/Ref-1 and the clinical therapeutic potential of targeting APE1 and pathways regulated by APE1 in the eye. These findings provide novel avenues for ocular neovascularization treatment.
Collapse
Affiliation(s)
- Mahmut Mijit
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kamakshi Sishtla
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Gabriella D. Hartman
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Timothy W. Corson
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mark R. Kelley
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
7
|
Lee SC, Rusakevich AM, Amin A, Tran S, Emami-Naeini P, Moshiri A, Park SS, Yiu G. Long-Term Retinal Vascular Changes in Age-Related Macular Degeneration Measured Using Optical Coherence Tomography Angiography. Ophthalmic Surg Lasers Imaging Retina 2022; 53:529-536. [DOI: 10.3928/23258160-20220919-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Collin GB, Shi L, Yu M, Akturk N, Charette JR, Hyde LF, Weatherly SM, Pera MF, Naggert JK, Peachey NS, Nishina PM, Krebs MP. A Splicing Mutation in Slc4a5 Results in Retinal Detachment and Retinal Pigment Epithelium Dysfunction. Int J Mol Sci 2022; 23:2220. [PMID: 35216333 PMCID: PMC8875008 DOI: 10.3390/ijms23042220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 12/29/2022] Open
Abstract
Fluid and solute transporters of the retinal pigment epithelium (RPE) are core components of the outer blood-retinal barrier. Characterizing these transporters and their role in retinal homeostasis may provide insights into ocular function and disease. Here, we describe RPE defects in tvrm77 mice, which exhibit hypopigmented patches in the central retina. Mapping and nucleotide sequencing of tvrm77 mice revealed a disrupted 5' splice donor sequence in Slc4a5, a sodium bicarbonate cotransporter gene. Slc4a5 expression was reduced 19.7-fold in tvrm77 RPE relative to controls, and alternative splice variants were detected. SLC4A5 was localized to the Golgi apparatus of cultured human RPE cells and in apical and basal membranes. Fundus imaging, optical coherence tomography, microscopy, and electroretinography (ERG) of tvrm77 mice revealed retinal detachment, hypopigmented patches corresponding to neovascular lesions, and retinal folds. Detachment worsened and outer nuclear layer thickness decreased with age. ERG a- and b-wave response amplitudes were initially normal but declined in older mice. The direct current ERG fast oscillation and light peak were reduced in amplitude at all ages, whereas other RPE-associated responses were unaffected. These results link a new Slc4a5 mutation to subretinal fluid accumulation and altered light-evoked RPE electrophysiological responses, suggesting that SLC4A5 functions at the outer blood-retinal barrier.
Collapse
Affiliation(s)
- Gayle B. Collin
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA; (G.B.C.); (L.S.); (N.A.); (J.R.C.); (L.F.H.); (S.M.W.); (M.F.P.); (J.K.N.)
| | - Lanying Shi
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA; (G.B.C.); (L.S.); (N.A.); (J.R.C.); (L.F.H.); (S.M.W.); (M.F.P.); (J.K.N.)
| | - Minzhong Yu
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA; (M.Y.); (N.S.P.)
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Nurten Akturk
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA; (G.B.C.); (L.S.); (N.A.); (J.R.C.); (L.F.H.); (S.M.W.); (M.F.P.); (J.K.N.)
| | - Jeremy R. Charette
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA; (G.B.C.); (L.S.); (N.A.); (J.R.C.); (L.F.H.); (S.M.W.); (M.F.P.); (J.K.N.)
| | - Lillian F. Hyde
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA; (G.B.C.); (L.S.); (N.A.); (J.R.C.); (L.F.H.); (S.M.W.); (M.F.P.); (J.K.N.)
| | - Sonia M. Weatherly
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA; (G.B.C.); (L.S.); (N.A.); (J.R.C.); (L.F.H.); (S.M.W.); (M.F.P.); (J.K.N.)
| | - Martin F. Pera
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA; (G.B.C.); (L.S.); (N.A.); (J.R.C.); (L.F.H.); (S.M.W.); (M.F.P.); (J.K.N.)
| | - Jürgen K. Naggert
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA; (G.B.C.); (L.S.); (N.A.); (J.R.C.); (L.F.H.); (S.M.W.); (M.F.P.); (J.K.N.)
| | - Neal S. Peachey
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA; (M.Y.); (N.S.P.)
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, 9500 Euclid Avenue, Cleveland, OH 44195, USA
- Research Service, Louis Stokes Cleveland VA Medical Center, 10701 East Boulevard, Cleveland, OH 44106, USA
| | - Patsy M. Nishina
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA; (G.B.C.); (L.S.); (N.A.); (J.R.C.); (L.F.H.); (S.M.W.); (M.F.P.); (J.K.N.)
| | - Mark P. Krebs
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA; (G.B.C.); (L.S.); (N.A.); (J.R.C.); (L.F.H.); (S.M.W.); (M.F.P.); (J.K.N.)
| |
Collapse
|