1
|
Sánchez SV, Otavalo GN, Gazeau F, Silva AKA, Morales JO. Intranasal delivery of extracellular vesicles: A promising new approach for treating neurological and respiratory disorders. J Control Release 2025; 379:489-523. [PMID: 39800240 DOI: 10.1016/j.jconrel.2025.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
BACKGROUND Extracellular vesicles (EVs) are membrane vesicles secreted by all types of cells, including bacteria, animals, and plants. These vesicles contain proteins, nucleic acids, and lipids from their parent cells and can transfer these components between cells. EVs have attracted attention for their potential use in diagnosis and therapy due to their natural properties, such as low immunogenicity, high biocompatibility, and ability to cross the blood-brain barrier. They can also be engineered to carry therapeutic molecules. EVs can be delivered via various routes. The intranasal route is particularly advantageous for delivering them to the central nervous system, making it a promising approach for treating neurological disorders. SCOPE OF REVIEW This review delves into the promising potential of intranasally administered EVs-based therapies for various medical conditions, with a particular focus on those affecting the brain and central nervous system. Additionally, the potential use of these therapies for pulmonary conditions, cancer, and allergies is examined, offering a hopeful outlook for the future of medical treatments. MAJOR CONCLUSIONS The intranasal administration of EVs offers significant advantages over other delivery methods. By directly delivering EVs to the brain, specifically targeting areas that have been injured, this administration proves to be highly efficient and effective, providing reassurance about the progress in medical treatments. Intranasal delivery is not limited to brain-related conditions. It can also benefit other organs like the lungs and stimulate a mucosal immune response against various pathogens due to the highly vascularized nature of the nasal cavity and airways. Moreover, it has the added benefit of minimizing toxicity to non-targeted organs and allows the EVs to remain longer in the body. As a result, there is a growing emphasis on conducting clinical trials for intranasal administration of EVs, particularly in treating respiratory tract pathologies such as coronavirus disease.
Collapse
Affiliation(s)
- Sofía V Sánchez
- Drug Delivery Laboratory, Departamento de Ciencias y Tecnología Farmacéuticas, Universidad de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile; Center of New Drugs for Hypertension and Heart Failure (CENDHY), Santiago, Chile
| | - Gabriela N Otavalo
- Drug Delivery Laboratory, Departamento de Ciencias y Tecnología Farmacéuticas, Universidad de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile; Center of New Drugs for Hypertension and Heart Failure (CENDHY), Santiago, Chile
| | - Florence Gazeau
- Université Paris Cité, CNRS UMR8175, INSERM U1334, Laboratory NABI (Nanomédecine, Biologie Extracellulaire, Intégratome et Innovations en santé), Paris, France
| | - Amanda K A Silva
- Université Paris Cité, CNRS UMR8175, INSERM U1334, Laboratory NABI (Nanomédecine, Biologie Extracellulaire, Intégratome et Innovations en santé), Paris, France
| | - Javier O Morales
- Drug Delivery Laboratory, Departamento de Ciencias y Tecnología Farmacéuticas, Universidad de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile; Center of New Drugs for Hypertension and Heart Failure (CENDHY), Santiago, Chile.
| |
Collapse
|
2
|
Chen W, Kongsomros S, Thorman A, Esfandiari L, Morrow AL, Chutipongtanate S, Newburg DS. Extracellular vesicles and preterm infant diseases. Front Pediatr 2025; 13:1550115. [PMID: 40034714 PMCID: PMC11873092 DOI: 10.3389/fped.2025.1550115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 02/06/2025] [Indexed: 03/05/2025] Open
Abstract
With the continuous improvement in perinatal care, the number of viable preterm infants is gradually increasing, along with the rise in preterm-related diseases such as necrotizing enterocolitis, bronchopulmonary dysplasia, perinatal brain injury, retinopathy of prematurity, and sepsis. Due to the unique pathophysiology of preterm infants, diagnosing and treating these diseases has become particularly challenging, significantly affecting their survival rate and long-term quality of life. Extracellular vesicles (EVs), as key mediators of intercellular communication, play an important regulatory role in the pathophysiology of these diseases. Because of their biological characteristics, EVs could serve as biomarkers and potential therapeutic agents for preterm-related diseases. This review summarizes the biological properties of EVs, their relationship with preterm-related diseases, and their prospects for diagnosis and treatment. EVs face unique challenges and opportunities for clinical applications.
Collapse
Affiliation(s)
- Wenqain Chen
- Department of Neonatology, Fujian Maternity and Child Health Hospital; College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- MILCH and Novel Therapeutics Lab, Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Supasek Kongsomros
- MILCH and Novel Therapeutics Lab, Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Alexander Thorman
- MILCH and Novel Therapeutics Lab, Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Leyla Esfandiari
- Department of Biomedical Engineering, University of Cincinnati College of Engineering, Cincinnati, OH, United States
- Extracellular Vesicle Working Group, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Ardythe L. Morrow
- MILCH and Novel Therapeutics Lab, Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Extracellular Vesicle Working Group, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Department of Infectious Disease, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Somchai Chutipongtanate
- MILCH and Novel Therapeutics Lab, Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Extracellular Vesicle Working Group, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - David S. Newburg
- MILCH and Novel Therapeutics Lab, Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
3
|
Gomes-de-Pontes L, Barreiros LA, Gomes LN, Salgado RC, da Silva Napoleão SM, Soeiro-Pereira PV, Passos SD, Condino-Neto A. Congenital Zika Syndrome: Insights from Integrated Proteomic and Metabolomic Analysis. Biomolecules 2024; 15:32. [PMID: 39858427 PMCID: PMC11762526 DOI: 10.3390/biom15010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 01/27/2025] Open
Abstract
Background: In this study, we investigated the role of extracellular vesicles (EVs) in the pathogenesis of Congenital Zika Syndrome (CZS). Previous studies have highlighted the role of EVs in intercellular communication and the modulation of biological processes during viral infections, motivating our in-depth analysis. Our objective was to identify specific molecular signatures in the EVs of patients with CZS, focusing on their potential as biomarkers and on cellular pathways affected by the infection. Methods: We conducted advanced proteomic and metabolomic analyses using mass spectrometry for protein and metabolite identification. EVs were isolated from CZS patient samples and control groups using Izon qEV size-exclusion chromatography columns. Results: The analyzed EVs presented distinct molecular profiles in patients with CZS. Proteomic analysis revealed significant alterations in specific proteins, suggesting involvement in the PI3K-AKT-mTOR pathway, while metabolomics highlighted metabolites related to critical processes in Zika virus pathogenesis. These findings suggest a key role for the PI3K-AKT-mTOR pathway in regulating cellular processes during infection and indicate the involvement of EVs in intercellular communication. Additionally, the results identified potential biomarkers capable of aiding early diagnosis and assessing disease progression. Conclusions: This study demonstrates that EVs play a crucial role in intercellular communication during Zika virus infection. The identification of specific alterations in the PI3K-AKT-mTOR pathway highlights a possible therapeutic target, providing new opportunities for the development of more effective treatment strategies for CZS. Our findings significantly advance the understanding of CZS and underscore the need for further investigations using advanced techniques to validate and explore these potential molecular targets.
Collapse
Affiliation(s)
- Leticia Gomes-de-Pontes
- Department of Immunology (LIH), Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 2415-Butantã, São Paulo 05508-000, SP, Brazil; (L.A.B.); (L.N.G.); (R.C.S.); (S.M.d.S.N.)
| | - Lucila Akune Barreiros
- Department of Immunology (LIH), Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 2415-Butantã, São Paulo 05508-000, SP, Brazil; (L.A.B.); (L.N.G.); (R.C.S.); (S.M.d.S.N.)
| | - Lillian Nunes Gomes
- Department of Immunology (LIH), Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 2415-Butantã, São Paulo 05508-000, SP, Brazil; (L.A.B.); (L.N.G.); (R.C.S.); (S.M.d.S.N.)
| | - Ranieri Coelho Salgado
- Department of Immunology (LIH), Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 2415-Butantã, São Paulo 05508-000, SP, Brazil; (L.A.B.); (L.N.G.); (R.C.S.); (S.M.d.S.N.)
| | - Sarah Maria da Silva Napoleão
- Department of Immunology (LIH), Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 2415-Butantã, São Paulo 05508-000, SP, Brazil; (L.A.B.); (L.N.G.); (R.C.S.); (S.M.d.S.N.)
| | | | - Saulo Duarte Passos
- Infectious Pediatric Laboratory, Medicine School of Jundiaí, Jundiaí 13202-550, SP, Brazil;
| | - Antonio Condino-Neto
- Department of Immunology (LIH), Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 2415-Butantã, São Paulo 05508-000, SP, Brazil; (L.A.B.); (L.N.G.); (R.C.S.); (S.M.d.S.N.)
| |
Collapse
|
4
|
van Griensven M, Balmayor ER. Extracellular vesicles are key players in mesenchymal stem cells' dual potential to regenerate and modulate the immune system. Adv Drug Deliv Rev 2024; 207:115203. [PMID: 38342242 DOI: 10.1016/j.addr.2024.115203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/15/2023] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
MSCs are used for treatment of inflammatory conditions or for regenerative purposes. MSCs are complete cells and allogenic transplantation is in principle possible, but mostly autologous use is preferred. In recent years, it was discovered that cells secrete extracellular vesicles. These are active budded off vesicles that carry a cargo. The cargo can be miRNA, protein, lipids etc. The extracellular vesicles can be transported through the body and fuse with target cells. Thereby, they influence the phenotype and modulate the disease. The extracellular vesicles have, like the MSCs, immunomodulatory or regenerative capacities. This review will focus on those features of extracellular vesicles and discuss their dual role. Besides the immunomodulation, the regeneration will concentrate on bone, cartilage, tendon, vessels and nerves. Current clinical trials with extracellular vesicles for immunomodulation and regeneration that started in the last five years are highlighted as well. In summary, extracellular vesicles have a great potential as disease modulating entity and treatment. Their dual characteristics need to be taken into account and often are both important for having the best effect.
Collapse
Affiliation(s)
- Martijn van Griensven
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, 6229 ER Maastricht, the Netherlands; Musculoskeletal Gene Therapy Laboratory, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN 55905, USA.
| | - Elizabeth R Balmayor
- Musculoskeletal Gene Therapy Laboratory, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN 55905, USA; Experimental Orthopaedics and Trauma Surgery, Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH Aachen University Hospital, 52074 Aachen, Germany
| |
Collapse
|
5
|
Ashique S, Pal R, Sharma H, Mishra N, Garg A. Unraveling the Emerging Niche Role of Extracellular Vesicles (EVs) in Traumatic Brain Injury (TBI). CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:1357-1370. [PMID: 38351688 DOI: 10.2174/0118715273288155240201065041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 09/12/2024]
Abstract
Extracellular vesicles or exosomes, often known as EVs, have acquired significant attention in the investigations of traumatic brain injury (TBI) and have a distinct advantage in actively researching the fundamental mechanisms underlying various clinical symptoms and diagnosing the wide range of traumatic brain injury cases. The mesenchymal stem cells (MSCs) can produce and release exosomes, which offer therapeutic benefits. Exosomes are tiny membranous vesicles produced by various cellular entities originating from endosomes. Several studies have reported that administering MSC-derived exosomes through intravenous infusions improves neurological recovery and promotes neuroplasticity in rats with traumatic brain damage. The therapeutic advantages of exosomes can be attributed to the microRNAs (miRNAs), which are small non-coding regulatory RNAs that significantly impact the regulation of posttranscriptional genes. Exosome-based therapies, which do not involve cells, have lately gained interest as a potential breakthrough in enhancing neuroplasticity and accelerating neurological recovery for various brain injuries and neurodegenerative diseases. This article explores the benefits and drawbacks of exosome treatment for traumatic brain injury while emphasizing the latest advancements in this field with clinical significance.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutical Science, Pandaveswar School of Pharmacy, Pandaveswar, West Bengal 713378, India
| | - Radheshyam Pal
- Department of Pharmaceutical Science, Pandaveswar School of Pharmacy, Pandaveswar, West Bengal 713378, India
| | - Himanshu Sharma
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad (UP) 244001, India
| | - Neeraj Mishra
- Amity Institute of Pharmacy, Amity University Gwalior 474005, Madhya Pradesh, India
| | - Ashish Garg
- Guru Ramdas Khalsa Institute of Science and Technology, Pharmacy, Jabalpur, M.P. 483001, India
| |
Collapse
|
6
|
Blundell M, Doktor F, Figueira RL, Khalaj K, Biouss G, Antounians L, Zani A. Anti-inflammatory effects of antenatal administration of stem cell derived extracellular vesicles in the brain of rat fetuses with congenital diaphragmatic hernia. Pediatr Surg Int 2023; 39:291. [PMID: 37955723 DOI: 10.1007/s00383-023-05578-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/22/2023] [Indexed: 11/14/2023]
Abstract
PURPOSE Congenital diaphragmatic hernia (CDH) survivors may experience neurodevelopmental impairment, whose etiology remains elusive. Preclinical evidence indicates that amniotic fluid stem cell extracellular vesicle (AFSC-EV) administration promotes lung development but their effects on other organs are unknown. Herein, we investigated the brain of rat fetuses with CDH for signs of inflammation and response to AFSC-EVs. METHODS CDH was induced by maternal nitrofen administration at E9.5. At E18.5, fetuses were injected intra-amniotically with saline or AFSC-EVs (isolated by ultracentrifugation, characterized as per MISEV guidelines). Fetuses from vehicle-gavaged dams served as controls. Groups were compared for: lung hypoplasia, TNFa and IL-1B brain expression, and activated microglia (Iba1) density in the subgranular zone (SGZ). RESULTS CDH lungs had fewer airspaces compared to controls, whereas AFSC-EV-treated lungs had rescued branching morphogenesis. Fluorescently labeled AFSC-EVs injected intra-amniotically into CDH fetuses had fluorescent signal in the brain. Compared to controls, the brain of CDH fetuses had higher TNFa and IL-1B levels, and increased activated microglia density. Conversely, the brain of AFSC-EV treated fetuses had inflammatory marker expression levels and microglia density similar to controls. CONCLUSION This study shows that the brain of rat fetuses with CDH has signs of inflammation that are abated by the intra-amniotic administration of AFSC-EVs.
Collapse
Affiliation(s)
- Matisse Blundell
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, M5G 1X8, Canada
| | - Fabian Doktor
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, M5G 1X8, Canada
| | - Rebeca L Figueira
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, M5G 1X8, Canada
| | - Kasra Khalaj
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, M5G 1X8, Canada
| | - George Biouss
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, M5G 1X8, Canada
| | - Lina Antounians
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, M5G 1X8, Canada
| | - Augusto Zani
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, M5G 0A4, Canada.
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, M5G 1X8, Canada.
- Department of Surgery, University of Toronto, Toronto, M5T 1P5, Canada.
| |
Collapse
|
7
|
Díaz M, Casano P, Quesada T, López-Bermejo A, de Zegher F, Villarroya F, Ibáñez L. Circulating exosomes decrease in size and increase in number between birth and age 7: relations to fetal growth and liver fat. Front Endocrinol (Lausanne) 2023; 14:1257768. [PMID: 38027180 PMCID: PMC10653443 DOI: 10.3389/fendo.2023.1257768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose Exosomes play a key role in cell-to-cell communication by transferring their cargo to target tissues. Little is known on the course of exosome size and number in infants and children. Methods Longitudinally, we assessed the size and number of circulating exosomes at birth and at ages 2 and 7 yr in 75 infants/children born appropriate-for-gestational-age (AGA; n=40) or small-for-gestational-age (SGA; n=35 with spontaneous catch-up), and related those results to concomitantly assessed measures of endocrine-metabolic health (HOMA-IR; IGF-1), body composition (by DXA at ages 0 and 2) and abdominal fat partitioning (subcutaneous, visceral and hepatic fat by MRI at age 7). Results Circulating exosomes of AGAs decreased in size (on average by 4.2%) and increased in number (on average by 77%) between birth and age 7. Circulating exosomes of SGAs (as compared to those of AGAs) had a larger size at birth [146.8 vs 137.8 nm, respectively; p=0.02], and were in lower number at ages 2 [4.3x1011 vs 5.6x1011 particles/mL, respectively; p=0.01] and 7 [6.3x1011 vs 6.8x1011 particles/mL, respectively; p=0.006]. Longitudinal changes were thus more pronounced in SGAs for exosome size, and in AGAs for exosome number. At age 7, exosome size associated (P<0.0001) to liver fat in the whole study population. Conclusion Early-life changes in circulating exosomes include a minor decrease in size and a major increase in number, and these changes may be influenced by fetal growth. Exosome size may become one of the first circulating markers of liver fat in childhood.
Collapse
Affiliation(s)
- Marta Díaz
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Paula Casano
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Tania Quesada
- Department of Biomedicine, Institut de Recerca Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Network Biomedical Research Center of Physiopathology of Obesity and Nutrition (CIBEROBN), Health Institute Carlos III, Madrid, Spain
| | - Abel López-Bermejo
- Pediatric Endocrinology Research Group, Girona Institute for Biomedical Research (IDIBGI), Faculty of Medicine, University of Girona and Dr. Josep Trueta Hospital, Girona, Spain
| | - Francis de Zegher
- Leuven Research & Development, University of Leuven, Leuven, Belgium
| | - Francesc Villarroya
- Network Biomedical Research Center of Physiopathology of Obesity and Nutrition (CIBEROBN), Health Institute Carlos III, Madrid, Spain
- Biochemistry and Molecular Biomedicine Department, Institute of Biomedicine, University of Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues, Spain
| | - Lourdes Ibáñez
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
8
|
Beylerli O, Encarnacion Ramirez MDJ, Shumadalova A, Ilyasova T, Zemlyanskiy M, Beilerli A, Montemurro N. Cell-Free miRNAs as Non-Invasive Biomarkers in Brain Tumors. Diagnostics (Basel) 2023; 13:2888. [PMID: 37761255 PMCID: PMC10529040 DOI: 10.3390/diagnostics13182888] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Diagnosing brain tumors, especially malignant variants, such as glioblastoma, medulloblastoma, or brain metastasis, presents a considerable obstacle, while current treatment methods often yield unsatisfactory results. The monitoring of individuals with brain neoplasms becomes burdensome due to the intricate tumor nature and associated risks of tissue biopsies, compounded by the restricted accuracy and sensitivity of presently available non-invasive diagnostic techniques. The uncertainties surrounding diagnosis and the tumor's reaction to treatment can lead to delays in critical determinations that profoundly influence the prognosis of the disease. Consequently, there exists a pressing necessity to formulate and validate dependable, minimally invasive biomarkers that can effectively diagnose and predict brain tumors. Cell-free microRNAs (miRNAs), which remain stable and detectable in human bodily fluids, such as blood and cerebrospinal fluid (CSF), have emerged as potential indicators for a range of ailments, brain tumors included. Numerous investigations have showcased the viability of profiling cell-free miRNA expression in both CSF and blood samples obtained from patients with brain tumors. Distinct miRNAs demonstrate varying expression patterns within CSF and blood. While cell-free microRNAs in the blood exhibit potential in diagnosing, prognosticating, and monitoring treatment across diverse tumor types, they fall short in effectively diagnosing brain tumors. Conversely, the cell-free miRNA profile within CSF demonstrates high potential in delivering precise and specific evaluations of brain tumors.
Collapse
Affiliation(s)
- Ozal Beylerli
- Bashkir State Medical University, 450008 Ufa, Russia
| | | | | | | | - Mikhail Zemlyanskiy
- Department of Neurosurgery, Podolsk Regional Hospital, 141110 Moscow, Russia
| | - Aferin Beilerli
- Department of Obstetrics and Gynecology, Tyumen State Medical University, 625000 Tyumen, Russia
| | - Nicola Montemurro
- Department of Neurosurgery, Azienda Ospedaliero Universitaria Pisana (AOUP), University of Pisa, 56100 Pisa, Italy
| |
Collapse
|
9
|
Kluszczynska K, Czyz M. Extracellular Vesicles-Based Cell-Cell Communication in Melanoma: New Perspectives in Diagnostics and Therapy. Int J Mol Sci 2023; 24:ijms24020965. [PMID: 36674479 PMCID: PMC9865538 DOI: 10.3390/ijms24020965] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023] Open
Abstract
Extracellular vesicles (EVs) are a heterogeneous group of cell-secreted particles that carry cargo of functional biomolecules crucial for cell-to-cell communication with both physiological and pathophysiological consequences. In this review, we focus on evidence demonstrating that the EV-mediated crosstalk between melanoma cells within tumor, between melanoma cells and immune and stromal cells, promotes immune evasion and influences all steps of melanoma development from local progression, pre-metastatic niche formation, to metastatic colonization of distant organs. We also discuss the role of EVs in the development of resistance to immunotherapy and therapy with BRAFV600/MEK inhibitors, and shortly summarize the recent advances on the potential applications of EVs in melanoma diagnostics and therapy.
Collapse
|
10
|
Manohar K, Mesfin FM, Liu J, Shelley WC, Brokaw JP, Markel TA. Gut-Brain cross talk: The pathogenesis of neurodevelopmental impairment in necrotizing enterocolitis. Front Pediatr 2023; 11:1104682. [PMID: 36873645 PMCID: PMC9975605 DOI: 10.3389/fped.2023.1104682] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/23/2023] [Indexed: 02/17/2023] Open
Abstract
Necrotizing enterocolitis (NEC) is a devastating condition of multi-factorial origin that affects the intestine of premature infants and results in high morbidity and mortality. Infants that survive contend with several long-term sequelae including neurodevelopmental impairment (NDI)-which encompasses cognitive and psychosocial deficits as well as motor, vision, and hearing impairment. Alterations in the gut-brain axis (GBA) homeostasis have been implicated in the pathogenesis of NEC and the development of NDI. The crosstalk along the GBA suggests that microbial dysbiosis and subsequent bowel injury can initiate systemic inflammation which is followed by pathogenic signaling cascades with multiple pathways that ultimately lead to the brain. These signals reach the brain and activate an inflammatory cascade in the brain resulting in white matter injury, impaired myelination, delayed head growth, and eventual downstream NDI. The purpose of this review is to summarize the NDI seen in NEC, discuss what is known about the GBA, explore the relationship between the GBA and perinatal brain injury in the setting of NEC, and finally, highlight the existing research into possible therapies to help prevent these deleterious outcomes.
Collapse
Affiliation(s)
- Krishna Manohar
- Department of Surgery, Indiana University School of Medicine (IUSM), Indianapolis, IN, United States
| | - Fikir M Mesfin
- Department of Surgery, Indiana University School of Medicine (IUSM), Indianapolis, IN, United States
| | - Jianyun Liu
- Department of Surgery, Indiana University School of Medicine (IUSM), Indianapolis, IN, United States
| | - W Christopher Shelley
- Department of Surgery, Indiana University School of Medicine (IUSM), Indianapolis, IN, United States
| | - John P Brokaw
- Department of Surgery, Indiana University School of Medicine (IUSM), Indianapolis, IN, United States
| | - Troy A Markel
- Department of Surgery, Indiana University School of Medicine (IUSM), Indianapolis, IN, United States.,Riley Hospital for Children, Indiana University Health, Indianapolis, IN, United States
| |
Collapse
|
11
|
Bao Q, Huang Q, Chen Y, Wang Q, Sang R, Wang L, Xie Y, Chen W. Tumor-Derived Extracellular Vesicles Regulate Cancer Progression in the Tumor Microenvironment. Front Mol Biosci 2022; 8:796385. [PMID: 35059436 PMCID: PMC8764126 DOI: 10.3389/fmolb.2021.796385] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/08/2021] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) are nanosized particles released by numerous kinds of cells, which are now increasingly considered as essential vehicles of cell-to-cell communication and biomarkers in disease diagnosis and treatment. They contain a variety of biomolecular components, including lipids, proteins and nucleic acids. These functional molecules can be transmitted between tumor cells and other stromal cells such as endothelial cells, fibroblasts and immune cells utilizing EVs. As a result, tumor-derived EVs can deliver molecules to remodel the tumor microenvironment, thereby influencing cancer progression. On the one hand, tumor-derived EVs reprogram functions of endothelial cells, promote cancer-associated fibroblasts transformation, induce resistance to therapy and inhibit the immune response to form a pro-tumorigenic environment. On the other hand, tumor-derived EVs stimulate the immune response to create an anti-tumoral environment. This article focuses on presenting a comprehensive and critical overview of the potential role of tumor-derived EVs-mediated communication in the tumor microenvironment.
Collapse
Affiliation(s)
- Qianqian Bao
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Qianqian Huang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Yunna Chen
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Qiang Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Ran Sang
- Bengbu Medical College, Bengbu, China.,The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Lei Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Ying Xie
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Weidong Chen
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| |
Collapse
|