1
|
Baldwin A, States G, Pikov V, Gunalan P, Elyahoodayan S, Kilgore K, Meng E. Recent advances in facilitating the translation of bioelectronic medicine therapies. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2025; 33:100575. [PMID: 39896232 PMCID: PMC11781353 DOI: 10.1016/j.cobme.2024.100575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Bioelectronic medicine is a growing field which involves directly interfacing with the vagus, sacral, enteric, and other autonomic nerves to treat conditions. Therapies based on bioelectronic medicine could address previously intractable diseases and provide an alternative to pharmaceuticals. However, translating a bioelectronic medicine therapy to the clinic requires overcoming several challenges, including titrating stimulation parameters to an individual's physiology, selectively stimulating target nerves without inducing off-target activation or block, and improving accessibility to clinically approved devices. This review describes recent progress towards solving these problems, including advances in mapping and characterizing the human autonomic nervous system, new sensor technology and signal processing techniques to enable closed-loop therapies, new methods for selectively stimulating autonomic nerves without inducing off-target effects, and efforts to develop open-source implantable devices. Recent commercial successes in bringing bioelectronic medicine therapies to the clinic are highlighted showing how addressing these challenges can lead to novel therapies.
Collapse
Affiliation(s)
- Alex Baldwin
- Alfred E. Mann Department of Biomedical Engineering,
University of Southern California, USA
| | - Gregory States
- Department of Physical Medicine & Rehabilitation, Case
Western Reserve University and The MetroHealth System, Cleveland, OH, USA
| | | | - Pallavi Gunalan
- Alfred E. Mann Department of Biomedical Engineering,
University of Southern California, USA
| | - Sahar Elyahoodayan
- Alfred E. Mann Department of Biomedical Engineering,
University of Southern California, USA
| | - Kevin Kilgore
- Department of Physical Medicine & Rehabilitation, Case
Western Reserve University and The MetroHealth System, Cleveland, OH, USA
| | - Ellis Meng
- Alfred E. Mann Department of Biomedical Engineering,
University of Southern California, USA
| |
Collapse
|
2
|
Mittal R, McKenna K, Keith G, McKenna E, Sinha R, Lemos JRN, Hirani K. Systematic review of translational insights: Neuromodulation in animal models for Diabetic Peripheral Neuropathy. PLoS One 2024; 19:e0308556. [PMID: 39116099 PMCID: PMC11309513 DOI: 10.1371/journal.pone.0308556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
Diabetic Peripheral Neuropathy (DPN) is a prevalent and debilitating complication of diabetes, affecting a significant proportion of the diabetic population. Neuromodulation, an emerging therapeutic approach, has shown promise in the management of DPN symptoms. This systematic review aims to synthesize and analyze the current advancements in neuromodulation techniques for the treatment of DPN utilizing studies with preclinical animal models. A comprehensive search was conducted across multiple databases, including PubMed, Scopus, and Web of Science. Inclusion criteria were focused on studies utilizing preclinical animal models for DPN that investigated the efficacy of various neuromodulation techniques, such as spinal cord stimulation, transcranial magnetic stimulation, and peripheral nerve stimulation. The findings suggest that neuromodulation significantly alleviated pain symptoms associated with DPN. Moreover, some studies reported improvements in nerve conduction velocity and reduction in nerve damage. The mechanisms underlying these effects appeared to involve modulation of pain pathways and enhancement of neurotrophic factors. However, the review also highlights the variability in methodology and stimulation parameters across studies, highlighting the need for standardization in future research. Additionally, while the results are promising, the translation of these findings from animal models to human clinical practice requires careful consideration. This review concludes that neuromodulation presents a potentially effective therapeutic strategy for DPN, but further research is necessary to optimize protocols and understand the underlying molecular mechanisms. It also emphasizes the importance of bridging the gap between preclinical findings and clinical applications to improve the management of DPN in diabetic patients.
Collapse
Affiliation(s)
- Rahul Mittal
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Keelin McKenna
- Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, United States of America
| | - Grant Keith
- School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Evan McKenna
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Rahul Sinha
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Joana R. N. Lemos
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Khemraj Hirani
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| |
Collapse
|
3
|
Waataja JJ, Honda CN, Asp AJ, Nihilani RK, Farajidavar A. The Duration and Intensity of High Frequency Alternating Current Influences the Degree and Recovery of Nerve Conduction Block. IEEE Trans Biomed Eng 2024; 71:2170-2179. [PMID: 38335073 DOI: 10.1109/tbme.2024.3364350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
OBJECTIVE The purpose of this paper is to investigate the persistence of nerve blockade beyond the duration of applying high frequency alternating current (HFAC) to thinly myelinated and non-myelinated fibers, also termed a "carry-over effect". METHODS In this study, we used electrically-evoked compound action potentials from isolated rat vagus nerves to assess the influence of 5 kHz HFAC amplitude and duration on the degree of the carry-over effect. Current amplitudes from 1-10 mA and 5 kHz durations from 10-120 seconds were tested. RESULTS By testing 20 different combinations of 5 kHz amplitude and duration, we found a significant interaction between 5 kHz amplitude and duration on influencing the carry-over effect. CONCLUSION The degree of carry-over effect was dependent on 5 kHz amplitude, as well as duration. SIGNIFICANCE Utilizing the carry-over effect may be useful in designing energy efficient nerve blocking algorithms for the treatment of diseases influenced by nerve activity.
Collapse
|
4
|
Guemes A, Missey FM, Sahalianov I, Glowacki ED, Malliaras GG, Williamson A. Hepatic neuromodulation using temporal interference. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40040021 DOI: 10.1109/embc53108.2024.10782726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
This study explores non-invasive Temporal Interference (TI) for hepatic neuromodulation. Leveraging targeted electric fields to the hepatic plexus using distinct high-frequency carrier and envelope frequencies, we investigate the short-term modulation of glucose fluctuations in relation to stimulation parameters and electrode placement on the abdomen of anaesthetized Sprague-Dawley rats. Computational simulations assisted experimental interventions. In both front and back electrode placement, low-frequency modulation (4Hz) elicited decreasing glucose trends, while higher frequencies (14Hz or 40Hz) induced increasing trends. Targeted stimulation, confirmed visually using a recording needle placed at the hepatic plexus, resulted in a higher percentage of decreasing trends at 4 and 14Hz, with 40Hz showing no meaningful changes. Responsive protocols are less than half in both setups, possibly due to short stimulation duration. This pilot study serves as a foundation to guide TI stimulation protocols to assess their impact on glucose levels in longer experiments under anaesthesia or awake setups and opens avenues for the study of non-invasive alternatives to tackle metabolic conditions.
Collapse
|
5
|
Berthoud HR, Münzberg H, Morrison CD, Neuhuber WL. Hepatic interoception in health and disease. Auton Neurosci 2024; 253:103174. [PMID: 38579493 PMCID: PMC11129274 DOI: 10.1016/j.autneu.2024.103174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/14/2024] [Accepted: 03/28/2024] [Indexed: 04/07/2024]
Abstract
The liver is a large organ with crucial functions in metabolism and immune defense, as well as blood homeostasis and detoxification, and it is clearly in bidirectional communication with the brain and rest of the body via both neural and humoral pathways. A host of neural sensory mechanisms have been proposed, but in contrast to the gut-brain axis, details for both the exact site and molecular signaling steps of their peripheral transduction mechanisms are generally lacking. Similarly, knowledge about function-specific sensory and motor components of both vagal and spinal access pathways to the hepatic parenchyma is missing. Lack of progress largely owes to controversies regarding selectivity of vagal access pathways and extent of hepatocyte innervation. In contrast, there is considerable evidence for glucose sensors in the wall of the hepatic portal vein and their importance for glucose handling by the liver and the brain and the systemic response to hypoglycemia. As liver diseases are on the rise globally, and there are intriguing associations between liver diseases and mental illnesses, it will be important to further dissect and identify both neural and humoral pathways that mediate hepatocyte-specific signals to relevant brain areas. The question of whether and how sensations from the liver contribute to interoceptive self-awareness has not yet been explored.
Collapse
Affiliation(s)
- Hans-Rudolf Berthoud
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA.
| | - Heike Münzberg
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Christopher D Morrison
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Winfried L Neuhuber
- Institute for Anatomy and Cell Biology, Friedrich-Alexander University, Erlangen, Germany.
| |
Collapse
|
6
|
刘 洪, 王 卫. [Research advances in neuromodulation techniques for blood glucose regulation and diabetes intervention]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2023; 40:1227-1234. [PMID: 38151947 PMCID: PMC10753312 DOI: 10.7507/1001-5515.202307019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/03/2023] [Indexed: 12/29/2023]
Abstract
Diabetes and its complications that seriously threaten the health and life of human, has become a public health problem of global concern. Glycemic control remains a major focus in the treatment and management of patients with diabetes. The traditional lifestyle interventions, drug therapies, and surgeries have benefited many patients with diabetes. However, due to problems such as poor patient compliance, drug side effects, and limited surgical indications, there are still patients who fail to effectively control their blood glucose levels. With the development of bioelectronic medicine, neuromodulation techniques have shown great potential in the field of glycemic control and diabetes intervention with its unique advantages. This paper mainly reviewed the research advances and latest achievements of neuromodulation technologies such as peripheral nerve electrical stimulation, ultrasound neuromodulation, and optogenetics in blood glucose regulation and diabetes intervention, analyzed the existing problems and presented prospects for the future development trend to promote clinical research and application of neuromodulation technologies in the treatment of diabetes.
Collapse
Affiliation(s)
- 洪运 刘
- 中国人民解放军总医院 医学创新研究部 生物工程研究中心(北京 100853)Research Center for Biomedical Engineering, Medical Innovation & Research Division, Chinese PLA General Hospital, Beijing 100853, P. R. China
- 工业和信息化部生物医学工程与转化医学重点实验室(北京 100853)Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Beijing 100853, P. R. China
| | - 卫东 王
- 中国人民解放军总医院 医学创新研究部 生物工程研究中心(北京 100853)Research Center for Biomedical Engineering, Medical Innovation & Research Division, Chinese PLA General Hospital, Beijing 100853, P. R. China
- 工业和信息化部生物医学工程与转化医学重点实验室(北京 100853)Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Beijing 100853, P. R. China
| |
Collapse
|
7
|
Waataja JJ, Asp AJ, Billington CJ. Combining Celiac and Hepatic Vagus Nerve Neuromodulation Reverses Glucose Intolerance and Improves Glycemic Control in Pre- and Overt-Type 2 Diabetes Mellitus. Biomedicines 2023; 11:2452. [PMID: 37760895 PMCID: PMC10525327 DOI: 10.3390/biomedicines11092452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Neurological disorders and type 2 diabetes mellitus (T2DM) are deeply intertwined. For example, autonomic neuropathy contributes to the development of T2DM and continued unmanaged T2DM causes further progression of nerve damage. Increasing glycemic control has been shown to prevent the onset and progression of diabetic autonomic neuropathies. Neuromodulation consisting of combined stimulation of celiac vagal fibers innervating the pancreas with concurrent electrical blockade of neuronal hepatic vagal fibers innervating the liver has been shown to increase glycemic control in animal models of T2DM. The present study demonstrated that the neuromodulation reversed glucose intolerance in alloxan-treated swine in both pre- and overt stages of T2DM. This was demonstrated by improved performance on oral glucose tolerance tests (OGTTs), as assessed by area under the curve (AUC). In prediabetic swine (fasting plasma glucose (FPG) range: 101-119 mg/dL) the median AUC decreased from 31.9 AUs (IQR = 28.6, 35.5) to 15.9 AUs (IQR = 15.1, 18.3) p = 0.004. In diabetic swine (FPG range: 133-207 mg/dL) the median AUC decreased from 54.2 AUs (IQR = 41.5, 56.6) to 16.0 AUs (IQR = 15.4, 21.5) p = 0.003. This neuromodulation technique may offer a new treatment for T2DM and reverse glycemic dysregulation at multiple states of T2DM involved in diabetic neuropathy including at its development and during progression.
Collapse
Affiliation(s)
| | - Anders J. Asp
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55605, USA
| | | |
Collapse
|