1
|
Goto T, Tsurugizawa T, Komaki Y, Takashima I, Iwaki S, Kunori N. Clemastine enhances exercise-induced motor improvement in hypoxic ischemic rats. Brain Res 2024; 1846:149257. [PMID: 39362477 DOI: 10.1016/j.brainres.2024.149257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/07/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Neonatal hypoxic ischemia (HI) occurs owing to reduced cerebral oxygen levels and perfusion during the perinatal period. Brain injury after HI triggers neurological manifestations such as motor impairment, and the improvement of impaired brain function remains challenging. Recent studies suggest that cortical myelination plays a role in motor learning, but its involvement in motor improvement after HI injury is not well understood. This study aimed to investigate the impact of myelination on motor improvement following neonatal HI injury. We employed a modified Rice-Vannucci model; the right common carotid artery of postnatal day 7 (P7) Wistar rats was isolated and divided, and the rats were then exposed to hypoxic condition (90 min, 8 % O2). A total of 101 rats (66 males) were divided into four groups: trained-HI (n = 38), trained-Sham (n = 16), untrained-HI (n = 31), and untrained-Sham (n = 16). The trained groups underwent rotarod-based exercise training from P22 to P41 (3 days per week). Structural analysis using magnetic resonance imaging and immunohistochemistry (n = 6 per group) revealed increased fractional anisotropy and myelin density in the primary somatosensory cortex of the trained-HI group. We further evaluated the effect of myelination promotion on rotarod performance by administering clemastine, a myelination-promoting drug, via daily intraperitoneal injections. Clemastine did not enhance motor improvement in untrained-HI rats. However, clemastine-administered trained-HI rats (n = 7) exhibited significantly improved motor performance compared to both saline-administered trained-HI rats (n = 11) and clemastine-administered untrained-HI rats (n = 7). These findings suggest that myelination may be a key mechanism in motor improvement after HI injury and that combining exercise training with clemastine administration could be an effective therapeutic strategy for motor improvement following HI injury.
Collapse
Affiliation(s)
- Taichi Goto
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan; Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan; Research Fellow of Japan Society for the Promotion of Science (DC2), 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Tomokazu Tsurugizawa
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan; Faculty of Engineering, Information and Systems, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Yuji Komaki
- Central Institute for Experimental Medicine and Life Science, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Ichiro Takashima
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan; Department of Information, Artificial Intelligence and Data Science, Daiichi Institute of Technology, 7-7-4 Ueno, Taito-ku, Tokyo 110-0005, Japan
| | - Sunao Iwaki
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan; Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Nobuo Kunori
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan.
| |
Collapse
|
2
|
Alouit A, Gavaret M, Ramdani C, Lindberg PG, Dupin L. Cortical activations associated with spatial remapping of finger touch using EEG. Cereb Cortex 2024; 34:bhae161. [PMID: 38642106 DOI: 10.1093/cercor/bhae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/22/2024] Open
Abstract
The spatial coding of tactile information is functionally essential for touch-based shape perception and motor control. However, the spatiotemporal dynamics of how tactile information is remapped from the somatotopic reference frame in the primary somatosensory cortex to the spatiotopic reference frame remains unclear. This study investigated how hand position in space or posture influences cortical somatosensory processing. Twenty-two healthy subjects received electrical stimulation to the right thumb (D1) or little finger (D5) in three position conditions: palm down on right side of the body (baseline), hand crossing the body midline (effect of position), and palm up (effect of posture). Somatosensory-evoked potentials (SEPs) were recorded using electroencephalography. One early-, two mid-, and two late-latency neurophysiological components were identified for both fingers: P50, P1, N125, P200, and N250. D1 and D5 showed different cortical activation patterns: compared with baseline, the crossing condition showed significant clustering at P1 for D1, and at P50 and N125 for D5; the change in posture showed a significant cluster at N125 for D5. Clusters predominated at centro-parietal electrodes. These results suggest that tactile remapping of fingers after electrical stimulation occurs around 100-125 ms in the parietal cortex.
Collapse
Affiliation(s)
- Anaëlle Alouit
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, 102-108 Rue de la Santé, 75014 Paris, France
| | - Martine Gavaret
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, 102-108 Rue de la Santé, 75014 Paris, France
- GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Service de neurophysiologie clinique, 1 Rue Cabanis, F-75014 Paris, France
| | - Céline Ramdani
- Service de Santé des Armées, Institut de Recherche Biomédicale des Armées, 1 Place du Général Valérie André, 91220 Brétigny-sur-Orge, France
| | - Påvel G Lindberg
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, 102-108 Rue de la Santé, 75014 Paris, France
| | - Lucile Dupin
- Université Paris Cité, INCC UMR 8002, CNRS, 45 Rue des Saints-Pères, F-75006 Paris, France
| |
Collapse
|