1
|
Van Oosterwijck S, Billens A, Cnockaert E, Danneels L, Mertens T, Dhondt E, Van Oosterwijck J. Spinal hyperexcitability in patients with chronic musculoskeletal pain or headache as evidenced by alterations in the nociceptive withdrawal reflex: a systematic review and meta-analysis. Pain 2025; 166:1002-1029. [PMID: 39471047 DOI: 10.1097/j.pain.0000000000003436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 09/03/2024] [Indexed: 11/01/2024]
Abstract
ABSTRACT The nociceptive withdrawal reflex (NWR) is a spinal withdrawal reflex induced by painful stimulation. It is a measure of spinal hyperexcitability, which is believed to contribute to chronic musculoskeletal pain (MSKP) and headache. Previous syntheses of the evidence for alterations in the NWR in patients with chronic MSKP and headache needed a comprehensive update. This systematic review and meta-analysis was performed after the Preferred Items for Systematic reviews and Meta-Analyses guidelines. Studies examining NWR-related outcome measures in patients with chronic MSKP and headache compared to pain-free controls were identified through electronic database searches and included after screening against predefined eligibility criteria. Standardized mean differences or mean differences and 95% confidence intervals (CI) were calculated. Thirty-one studies were included in the systematic review and 25 in the meta-analysis. Moderate-quality evidence was found indicating lower NWR threshold (-3.68; 95% CI, -4.56 to -2.80; P < 0.001), larger NWR area (standardized mean difference = 0.69; 95% CI, 0.37-1.01; P < 0.001), and shorter NWR latency (mean difference = -13.68; 95% CI, -22.69, -4.67; P = 0.003) in patients compared to controls. These findings remained robust when performing meta-regressions based on subgroups (ie, headache, fibromyalgia, whiplash-associated disorder, and osteoarthritis). Low-quality evidence demonstrated facilitated temporal summation of NWR threshold (-2.48; 95% CI, -3.13 to -1.83; P < 0.001) in patients compared to controls. Spinal hyperexcitability as evidenced by lowered NWR threshold values and temporal summation of the NWR is present in patients with chronic MSKP and headache. No evidence was found for alterations in NWR duration and NWR magnitude. Future research is needed to address the gap in research on NWR-related outcome measures other than NWR threshold.
Collapse
Affiliation(s)
- Sophie Van Oosterwijck
- Spine, Head and Pain Research Unit Ghent, Department of Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Pain in Motion International Research Group
- Research Foundation - Flanders (FWO), Brussels, Belgium
| | - Amber Billens
- Spine, Head and Pain Research Unit Ghent, Department of Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Pain in Motion International Research Group
- Research Foundation - Flanders (FWO), Brussels, Belgium
| | - Elise Cnockaert
- Spine, Head and Pain Research Unit Ghent, Department of Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Pain in Motion International Research Group
| | - Lieven Danneels
- Spine, Head and Pain Research Unit Ghent, Department of Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Research Foundation - Flanders (FWO), Brussels, Belgium
| | - Timoti Mertens
- Spine, Head and Pain Research Unit Ghent, Department of Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Evy Dhondt
- Spine, Head and Pain Research Unit Ghent, Department of Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Pain in Motion International Research Group
| | - Jessica Van Oosterwijck
- Spine, Head and Pain Research Unit Ghent, Department of Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Pain in Motion International Research Group
- Research Foundation - Flanders (FWO), Brussels, Belgium
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
2
|
Wu Y, Wang Y, Lu Y, Yan J, Zhao H, Yang R, Pan J. Research advances in huntingtin-associated protein 1 and its application prospects in diseases. Front Neurosci 2024; 18:1402996. [PMID: 38975245 PMCID: PMC11224548 DOI: 10.3389/fnins.2024.1402996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024] Open
Abstract
Huntingtin-associated protein 1 (HAP1) was the first protein discovered to interact with huntingtin. Besides brain, HAP1 is also expressed in the spinal cord, dorsal root ganglion, endocrine, and digestive systems. HAP1 has diverse functions involving in vesicular transport, receptor recycling, gene transcription, and signal transduction. HAP1 is strongly linked to several neurological diseases, including Huntington's disease, Alzheimer's disease, epilepsy, ischemic stroke, and depression. In addition, HAP1 has been proved to participate in cancers and diabetes mellitus. This article provides an overview of HAP1 regarding the tissue distribution, cell localization, functions, and offers fresh perspectives to investigate its role in diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jingying Pan
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| |
Collapse
|
3
|
Ghavidel-Parsa B, Bidari A. The crosstalk of the pathophysiologic models in fibromyalgia. Clin Rheumatol 2023; 42:3177-3187. [PMID: 37749410 DOI: 10.1007/s10067-023-06778-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/12/2023] [Accepted: 09/16/2023] [Indexed: 09/27/2023]
Abstract
Fibromyalgia (FM) is a heterogeneous condition with various mechanisms (endotype) and manifestations (phenotypes). Many worthy endeavors have been dedicated to exploring the main trajectories of FM pathogenesis, depicted as the models of FM development. The Imbalance of Threat and Soothing Systems (FITSS) model, which is an advancing psychosocial form of the "central sensitization" model, and autonomic nervous system (ANS) model, besides new discoveries of potential pathways for FM development such as autoimmunity, small fiber pathology, and gut-brain axis currently comprise all our knowledge assets about FM pathogenesis. The pathophysiology of fibromyalgia is too complex to justify with one model, one main loop of pathogenesis, and one terminator. It appears that the variable FM models could justify some phenotypes of FM. Currently, our knowledge about FM pathogenesis and trying to match the different pathways and links mimic solving a puzzle in the hands of beginners. Until unraveling many missed interconnections and formulas between numerous scrambled pieces of the FM puzzle, proposing an integrated model seems not possible. This review focuses on the main trajectories of FM pathogenesis proposed thus far and tries to illuminate the crosstalking between them. We also propose the subgrouping FM into more homogenous categories based on the endotype-phenotype characteristics. It could provide a more pragmatic approach toward understanding of the diverse network of FM pathogenesis as well as the personalized stratification of FM. Key Points • The disentangled nature of FM pathogenesis escapes from embracing under one integrated model. • There appears to be no way for formulizing FM pathogenesis except the acknowledgment of the different pathways and their crosstalk explored as yet. • Acknowledging the different endotypes/phenotypes of FM spectrum and classifying them into more homogenous groups can help to the pragmatic approach to FM.
Collapse
Affiliation(s)
- Banafsheh Ghavidel-Parsa
- Rheumatology Research Center, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Sardar Jangal St, Rasht, Iran.
| | - Ali Bidari
- Department of Rheumatology, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Przybylowicz PK, Sokolowska KE, Rola H, Wojdacz TK. DNA Methylation Changes in Blood Cells of Fibromyalgia and Chronic Fatigue Syndrome Patients. J Pain Res 2023; 16:4025-4036. [PMID: 38054109 PMCID: PMC10695140 DOI: 10.2147/jpr.s439412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/13/2023] [Indexed: 12/07/2023] Open
Abstract
Purpose Fibromyalgia (FM) and Chronic Fatigue Syndrome (CFS) affect 0.4% and 1% of society, respectively, and the prevalence of these pain syndromes is increasing. To date, no strong association between these syndromes and the genetic background of affected individuals has been shown. Therefore, it is plausible that epigenetic changes might play a role in the development of these syndromes. Patients and Methods Three previous studies have attempted to elaborate the involvement of genome-wide methylation changes in blood cells in the development of fibromyalgia and chronic fatigue syndrome. These studies included 22 patients with fibromyalgia and 127 patients with CFS, and the results of the studies were largely discrepant. Contradicting results of those studies may be attributed to differences in the omics data analysis approaches used in each study. We reanalyzed the data collected in these studies using an updated and coherent data-analysis framework. Results Overall, the methylation changes that we observed overlapped with previous results only to some extent. However, the gene set enrichment analyses based on genes annotated to methylation changes identified in each of the analyzed datasets were surprisingly coherent and uniformly associated with the physiological processes that, when affected, may result in symptoms characteristic of fibromyalgia and chronic fatigue syndrome. Conclusion Methylomes of the blood cells of patients with FM and CFS in three independent studies have shown methylation changes that appear to be implicated in the pathogenesis of these syndromes.
Collapse
Affiliation(s)
| | | | - Hubert Rola
- Independent Clinical Epigenetics Laboratory, Pomeranian Medical University, Szczecin, Poland
| | | |
Collapse
|
5
|
Li J, Wang Y, Yang R, Ma W, Yan J, Li Y, Chen G, Pan J. Pain in Huntington's disease and its potential mechanisms. Front Aging Neurosci 2023; 15:1190563. [PMID: 37484692 PMCID: PMC10357841 DOI: 10.3389/fnagi.2023.1190563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
Pain is common and frequent in many neurodegenerative diseases, although it has not received much attention. In Huntington's disease (HD), pain is often ignored and under-researched because attention is more focused on motor and cognitive decline than psychiatric symptoms. In HD progression, pain symptoms are complex and involved in multiple etiologies, particularly mental issues such as apathy, anxiety and irritability. Because of psychiatric issues, HD patients rarely complain of pain, although their bodies show severe pain symptoms, ultimately resulting in insufficient awareness and lack of research. In HD, few studies have focused on pain and pain-related features. A detailed and systemic pain history is crucial to assess and explore pain pathophysiology in HD. This review provides an overview concentrating on pain-related factors in HD, including neuropathology, frequency, features, affecting factors and mechanisms. More attention and studies are still needed in this interesting field in the future.
Collapse
Affiliation(s)
- Jiajie Li
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Yan Wang
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Riyun Yang
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Wenjun Ma
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - JunGuo Yan
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Yi Li
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Gang Chen
- Center for Basic Medical Research, Medical School of Nantong University, Co-innovation Center of Neuroregeneration, Nantong, Jiangsu, China
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jingying Pan
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| |
Collapse
|
6
|
Pan J, Zhao Y, Sang R, Yang R, Bao J, Wu Y, Fei Y, Wu J, Chen G. Huntington-associated protein 1 inhibition contributes to neuropathic pain by suppressing Cav1.2 activity and attenuating inflammation. Pain 2023; 164:e286-e302. [PMID: 36508175 DOI: 10.1097/j.pain.0000000000002837] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022]
Abstract
ABSTRACT Although pain dysfunction is increasingly observed in Huntington disease, the underlying mechanisms still unknown. As a crucial Huntington-associated protein, Huntington-associated protein 1 (HAP1) is enriched in normal spinal dorsal horn and dorsal root ganglia (DRG) which are regarded as "primary sensory center," indicating its potential functions in pain process. Here, we discovered that HAP1 level was greatly increased in the dorsal horn and DRG under acute and chronic pain conditions. Lack of HAP1 obviously suppressed mechanical allodynia and hyperalgesia in spared nerve injury (SNI)-induced and chronic constriction injury-induced pain. Its deficiency also greatly inhibited the excitability of nociceptive neurons. Interestingly, we found that suppressing HAP1 level diminished the membrane expression of the L-type calcium channel (Cav1.2), which can regulate Ca 2+ influx and then influence brain-derived neurotrophic factor (BDNF) synthesis and release. Furthermore, SNI-induced activation of astrocytes and microglia notably decreased in HAP1-deficient mice. These results indicate that HAP1 deficiency might attenuate pain responses. Collectively, our results suggest that HAP1 in dorsal horn and DRG neurons regulates Cav1.2 surface expression, which in turn reduces neuronal excitability, BDNF secretion, and inflammatory responses and ultimately influences neuropathic pain progression.
Collapse
Affiliation(s)
- JingYing Pan
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - YaYu Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Rui Sang
- Department of Physiology, Medical School of Nantong University, Nantong, China
| | - RiYun Yang
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - JingYin Bao
- Center for Basic Medical Research, Medical School of Nantong University, Nantong, China
| | - YongJiang Wu
- Center for Basic Medical Research, Medical School of Nantong University, Nantong, China
| | - Ying Fei
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jian Wu
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Gang Chen
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Center for Basic Medical Research, Medical School of Nantong University, Nantong, China
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
7
|
Ovrom EA, Mostert KA, Khakhkhar S, McKee DP, Yang P, Her YF. A Comprehensive Review of the Genetic and Epigenetic Contributions to the Development of Fibromyalgia. Biomedicines 2023; 11:1119. [PMID: 37189737 PMCID: PMC10135661 DOI: 10.3390/biomedicines11041119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023] Open
Abstract
This narrative review summarizes the current knowledge of the genetic and epigenetic contributions to the development of fibromyalgia (FM). Although there is no single gene that results in the development of FM, this study reveals that certain polymorphisms in genes involved in the catecholaminergic pathway, the serotonergic pathway, pain processing, oxidative stress, and inflammation may influence susceptibility to FM and the severity of its symptoms. Furthermore, epigenetic changes at the DNA level may lead to the development of FM. Likewise, microRNAs may impact the expression of certain proteins that lead to the worsening of FM-associated symptoms.
Collapse
Affiliation(s)
- Erik A. Ovrom
- Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA;
| | - Karson A. Mostert
- Department of Physical Medicine and Rehabilitation, Mayo Clinic Hospital, Rochester, MN 55905, USA
| | - Shivani Khakhkhar
- Department of Orthopedics and Rehabilitation, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Daniel P. McKee
- Department of Orthopedics and Rehabilitation, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Padao Yang
- Department of Psychiatry and Psychology, Mayo Clinic Hospital, Rochester, MN 55905, USA
| | - Yeng F. Her
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic Hospital, Rochester, MN 55905, USA
| |
Collapse
|