1
|
Hsu AL, Wu CY, Ng HYH, Chuang CH, Huang CM, Wu CW, Chao YP. Classification of mindfulness experiences from gamma-band effective connectivity: Application of machine-learning algorithms on resting, breathing, and body scan. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 257:108446. [PMID: 39369588 DOI: 10.1016/j.cmpb.2024.108446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 09/16/2024] [Accepted: 09/27/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND AND OBJECTIVE Practicing mindfulness is a mental process toward interoceptive awareness, achieving stress reduction and emotion regulation through brain-function alteration. Literature has shown that electroencephalography (EEG)-derived connectivity possesses the potential to differentiate brain functions between mindfulness naïve and mindfulness experienced, where such quantitative differentiation could benefit telediagnosis for mental health. However, there is no prior guidance in model selection targeting on the mindfulness-experience prediction. Here we hypothesized that the EEG effective connectivity could reach a good prediction performance in mindfulness experiences with brain interpretability. METHODS We aimed at probing direct Directed Transfer Function (dDTF) to classify the participants' history of mindfulness-based stress reduction (MBSR), and aimed at optimizing the prediction accuracy by comparing multiple machine learning (ML) algorithms. Targeting the gamma-band effective connectivity, we evaluated the EEG-based prediction of the mindfulness experiences across 7 machine learning (ML) algorithms and 3 sessions (i.e., resting, focus-breathing, and body-scan). RESULTS The support vector machine and naïve Bayes classifiers exhibited significant accuracies above the chance level across all three sessions, and the decision tree algorithm reached the highest prediction accuracy of 91.7 % with the resting state, compared to the classification accuracies with the other two mindful states. We further conducted the analysis on essential EEG channels to preserve the classification accuracy, revealing that preserving just four channels (F7, F8, T7, and P7) out of 19 yielded the accuracy of 83.3 %. Delving into the contribution of connectivity features, specific connectivity features predominantly located in the frontal lobe contributed more to classifier construction, which aligned well with the existing mindfulness literature. CONCLUSION In the present study, we initiated a milestone of developing an EEG-based classifier to detect a person's mindfulness experience objectively. The prediction accuracy of the decision tree was optimal to differentiate the mindfulness experiences using the local resting-state EEG data. The suggested algorithm and key channels on the mindfulness-experience prediction may provide guidance for predicting mindfulness experiences using the EEG-based classification embedded in future wearable neurofeedback systems or plausible digital therapeutics.
Collapse
Affiliation(s)
- Ai-Ling Hsu
- Department of Artificial Intelligence, Chang Gung University, Taoyuan, Taiwan; Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chun-Yu Wu
- Department of Computer Science and Information Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Hei-Yin Hydra Ng
- Research Center for Education and Mind Sciences, College of Education, National Tsing Hua University, Hsinchu, Taiwan; Department of Educational Psychology and Counseling, College of Education, National Tsing Hua University, Hsinchu, Taiwan
| | - Chun-Hsiang Chuang
- Research Center for Education and Mind Sciences, College of Education, National Tsing Hua University, Hsinchu, Taiwan; Institute of Information Systems and Applications, College of Electrical Engineering and Computer Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Mao Huang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Changwei W Wu
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, New Taipei, Taiwan; Research Center of Sleep Medicine, Taipei Medical University Hospital, Taipei, Taiwan.
| | - Yi-Ping Chao
- Department of Computer Science and Information Engineering, Chang Gung University, Taoyuan, Taiwan; Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| |
Collapse
|
2
|
Sheeraz M, Aslam AR, Drakakis EM, Heidari H, Altaf MAB, Saadeh W. A Closed-Loop Ear-Worn Wearable EEG System with Real-Time Passive Electrode Skin Impedance Measurement for Early Autism Detection. SENSORS (BASEL, SWITZERLAND) 2024; 24:7489. [PMID: 39686027 DOI: 10.3390/s24237489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024]
Abstract
Autism spectrum disorder (ASD) is a chronic neurological disorder with the severity directly linked to the diagnosis age. The severity can be reduced if diagnosis and intervention are early (age < 2 years). This work presents a novel ear-worn wearable EEG system designed to aid in the early detection of ASD. Conventional EEG systems often suffer from bulky, wired electrodes, high power consumption, and a lack of real-time electrode-skin interface (ESI) impedance monitoring. To address these limitations, our system incorporates continuous, long-term EEG recording, on-chip machine learning for real-time ASD prediction, and a passive ESI evaluation system. The passive ESI methodology evaluates impedance using the root mean square voltage of the output signal, considering factors like pressure, electrode surface area, material, gel thickness, and duration. The on-chip machine learning processor, implemented in 180 nm CMOS, occupies a minimal 2.52 mm² of active area while consuming only 0.87 µJ of energy per classification. The performance of this ML processor is validated using the Old Dominion University ASD dataset.
Collapse
Affiliation(s)
- Muhammad Sheeraz
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Abdul Rehman Aslam
- Department of Computer Engineering, University of Engineering and Technology Taxila, Taxila 47050, Pakistan
| | | | - Hadi Heidari
- School of Engineering, University of Glasgow Scotland, Glasgow G12 8QQ, UK
| | | | - Wala Saadeh
- Engineering and Design Department, Western Washington University, Bellingham, WA 98225, USA
| |
Collapse
|
3
|
Wang B, Li M, Haihambo N, Qiu Z, Sun M, Guo M, Zhao X, Han C. Characterizing Major Depressive Disorder (MDD) using alpha-band activity in resting-state electroencephalogram (EEG) combined with MATRICS Consensus Cognitive Battery (MCCB). J Affect Disord 2024; 355:254-264. [PMID: 38561155 DOI: 10.1016/j.jad.2024.03.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND The diagnosis of major depressive disorder (MDD) is commonly based on the subjective evaluation by experienced psychiatrists using clinical scales. Hence, it is particularly important to find more objective biomarkers to aid in diagnosis and further treatment. Alpha-band activity (7-13 Hz) is the most prominent component in resting electroencephalogram (EEG), which is also thought to be a potential biomarker. Recent studies have shown the existence of multiple sub-oscillations within the alpha band, with distinct neural underpinnings. However, the specific contribution of these alpha sub-oscillations to the diagnosis and treatment of MDD remains unclear. METHODS In this study, we recorded the resting-state EEG from MDD and HC populations in both open and closed-eye state conditions. We also assessed cognitive processing using the MATRICS Consensus Cognitive Battery (MCCB). RESULTS We found that the MDD group showed significantly higher power in the high alpha range (10.5-11.5 Hz) and lower power in the low alpha range (7-8.5 Hz) compared to the HC group. Notably, high alpha power in the MDD group is negatively correlated with working memory performance in MCCB, whereas no such correlation was found in the HC group. Furthermore, using five established classification algorithms, we discovered that combining alpha oscillations with MCCB scores as features yielded the highest classification accuracy compared to using EEG or MCCB scores alone. CONCLUSIONS Our results demonstrate the potential of sub-oscillations within the alpha frequency band as a potential distinct biomarker. When combined with psychological scales, they may provide guidance relevant for the diagnosis and treatment of MDD.
Collapse
Affiliation(s)
- Bin Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, 100191 Beijing, China
| | - Meijia Li
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Naem Haihambo
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Zihan Qiu
- Avenues the World School Shenzhen Campus, Shenzhen 518000, China
| | - Meirong Sun
- School of Psychology, Beijing Sport University, Beijing 100084, China
| | - Mingrou Guo
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong
| | - Xixi Zhao
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, 100191 Beijing, China.
| | - Chuanliang Han
- School of Biomedical Sciences and Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
4
|
Das S, Zomorrodi R, Mirjalili M, Kirkovski M, Blumberger DM, Rajji TK, Desarkar P. Machine learning approaches for electroencephalography and magnetoencephalography analyses in autism spectrum disorder: A systematic review. Prog Neuropsychopharmacol Biol Psychiatry 2023; 123:110705. [PMID: 36574922 DOI: 10.1016/j.pnpbp.2022.110705] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/04/2022] [Accepted: 12/21/2022] [Indexed: 12/26/2022]
Abstract
There are growing application of machine learning models to study the intricacies of non-linear and non-stationary characteristics of electroencephalography (EEG) and magnetoencephalography (MEG) data in neurobiologically complex and heterogeneous conditions such as autism spectrum disorder (ASD). Such tools have potential diagnostic applications, and given the highly heterogeneous presentation of ASD, might prove fruitful in early detection and therefore could facilitate very early intervention. We conducted a systematic review (PROSPERO ID#CRD42021257438) by searching PubMed, EMBASE, and PsychINFO for machine learning approaches for EEG and MEG analyses in ASD. Thirty-nine studies were identified, of which the majority (18) used support vector machines for classification; other successful methods included deep learning. Thirty-seven studies were found to employ EEG and two were found to employ MEG. This systematic review indicate that machine learning methods can be used to classify ASD, predict ASD diagnosis in high-risk infants as early as 3 months of age, predict ASD symptom severity, and classify states of cognition in ASD with high accuracy. Replication studies testing validity, reproducibility and generalizability in tandem with randomized controlled trials in ASD populations will likely benefit the field.
Collapse
Affiliation(s)
- Sushmit Das
- Centre for Addiction and Mental Health, Toronto, Canada; Azrieli Adult Neurodevelopmental Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Reza Zomorrodi
- Centre for Addiction and Mental Health, Toronto, Canada; Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Mina Mirjalili
- Centre for Addiction and Mental Health, Toronto, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Adult Neurodevelopmental and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Vector Institute for Artificial Intelligence, Toronto, ON, Canada
| | - Melissa Kirkovski
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Insitute for Health and Sport, Victoria University, Melbourne, Australia
| | - Daniel M Blumberger
- Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Tarek K Rajji
- Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Pushpal Desarkar
- Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Azrieli Adult Neurodevelopmental Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada; Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada.
| |
Collapse
|
5
|
Zhang H, Xu L, Yu J, Li J, Wang J. Identification of autism spectrum disorder based on functional near-infrared spectroscopy using adaptive spatiotemporal graph convolution network. Front Neurosci 2023; 17:1132231. [PMID: 36968494 PMCID: PMC10038196 DOI: 10.3389/fnins.2023.1132231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/23/2023] [Indexed: 03/12/2023] Open
Abstract
The accurate diagnosis of autism spectrum disorder (ASD) is of great practical significance in clinical practice. The spontaneous hemodynamic fluctuations were collected by functional near-infrared spectroscopy (fNIRS) from the bilateral frontal and temporal cortices of typically developing (TD) children and children with ASD. Since traditional machine learning and deep learning methods cannot make full use of the potential spatial dependence between variable pairs, and require a long time series to diagnose ASD. Therefore, we use adaptive spatiotemporal graph convolution network (ASGCN) and short time series to classify ASD and TD. To capture spatial and temporal features of fNIRS multivariable time series without the pre-defined graph, we combined the improved adaptive graph convolution network (GCN) and gated recurrent units (GRU). We conducted a series of experiments on the fNIRS dataset, and found that only using 2.1 s short time series could achieve high precision classification, with an accuracy of 95.4%. This suggests that our approach may have the potential to detect pathological signals in autism patients within 2.1 s. In different brain regions, the left frontal lobe has the best classification effect, and the abnormalities occur more frequently in left hemisphere and frontal lobe region. Moreover, we also found that there were correlations between multiple channels, which had different degrees of influence on the classification of ASD. From this, we can also generalize to a wider range, there may be potential correlations between different brain regions. This may help to better understand the cortical mechanism of ASD.
Collapse
Affiliation(s)
- Haoran Zhang
- School of Computer Engineering and Science, Shanghai University, Shanghai, China
| | - Lingyu Xu
- School of Computer Engineering and Science, Shanghai University, Shanghai, China
- Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, China
- *Correspondence: Lingyu Xu
| | - Jie Yu
- School of Computer Engineering and Science, Shanghai University, Shanghai, China
- Jie Yu
| | - Jun Li
- South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, China
- Key Lab for Behavioral Economic Science & Technology, South China Normal University, Guangzhou, China
| | - Jinhong Wang
- Department of Medical Imaging Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Electroencephalography based emotion detection using ensemble classification and asymmetric brain activity. J Affect Disord 2022; 319:416-427. [PMID: 36162677 DOI: 10.1016/j.jad.2022.09.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 08/07/2022] [Accepted: 09/20/2022] [Indexed: 11/22/2022]
Abstract
Over the past decade, emotion detection using rhythmic brain activity has become a critical area of research. The asymmetrical brain activity has garnered the most significant level of research attention due to its implications for the study of emotions, including hemispheric asymmetry or, more generally, asymmetrical brain activity. This study aimed at enhancing the accuracy of emotion detection using Electroencephalography (EEG) brain signals. This happens by identifying electrodes where relevant brain activity changes occur during the emotions and by defining pairs of relevant electrodes having asymmetric brain activities during emotions. Experimental results showed that the proposed method is highly competitive compared with existing studies of multi-class emotion recognition. These results were improved by processing not the whole EEG signals but by focusing on fragments of the signals, called epochs, which represent the instants where the excitation is maximum during emotions. The epochs were extracted using the zero-time windowing method and the numerator group-delay function.
Collapse
|