1
|
De Introna M, Krashia P, Sabetta A, La Barbera L, Nobili A, D'Amelio M, Cecconi F, Ammassari-Teule M, Pignataro A. Chemogenetic induction of CA1 hyperexcitability triggers indistinguishable autistic traits in asymptomatic mice differing in Ambra1 expression and sex. Transl Psychiatry 2025; 15:82. [PMID: 40097399 PMCID: PMC11914586 DOI: 10.1038/s41398-025-03271-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 12/18/2024] [Accepted: 02/07/2025] [Indexed: 03/19/2025] Open
Abstract
Among the genomic alterations identified as risk factors in mice models of autism spectrum disorders (ASD), heterozygous deletion of Ambra1 (Activating Molecule in Beclin1-Regulated Autophagy) triggers an ASD phenotype associated with hippocampal hyperexcitability exclusively in the female sex although Ambra1 protein is comparably expressed in the hippocampus of symptomatic females and asymptomatic males. Given the intricate relationship between Ambra1 deficiency and sex in the etiology of ASD, we took advantage of asymptomatic mice including Ambra1+/- males and wild-type (Wt) mice of both sexes to investigate whether their non-pathogenic variations in Ambra1 levels could underlie a differential susceptibility to exhibit ASD-like traits in response to experimental elevation of hippocampal excitability. Here we report that selective activation of inhibitory DREADD in CA1 parvalbumin-positive interneurons (PV-IN) reduces GABAergic currents onto pyramidal neurons (PN), causes social and attentional deficits, and augments the proportion of immature/thin spines in CA1 PN dendrites to the same extent in Ambra1+/- males and Wt mice of both sexes. Our findings show that the substantial hippocampal variations in pro-autophagic Ambra1 gene product shown by asymptomatic mice differing in mutation and/or sex do not underlie a differential reactivity to chemogenetic induction of idiopathic ASD.
Collapse
Affiliation(s)
- Margherita De Introna
- IRCCS Santa Lucia Foundation, Centro Europeo di Ricerca sul Cervello CERC, Rome, Italy
- Department of Systems Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - Paraskevi Krashia
- IRCCS Santa Lucia Foundation, Centro Europeo di Ricerca sul Cervello CERC, Rome, Italy
- Università Campus Bio-Medico di Roma, Rome, Italy
| | - Annamaria Sabetta
- IRCCS Santa Lucia Foundation, Centro Europeo di Ricerca sul Cervello CERC, Rome, Italy
- Dipartimento di Medicina Traslazionale e di Precisione, Sapienza Università di Roma, Rome, Italy
| | - Livia La Barbera
- IRCCS Santa Lucia Foundation, Centro Europeo di Ricerca sul Cervello CERC, Rome, Italy
- Università Campus Bio-Medico di Roma, Rome, Italy
| | - Annalisa Nobili
- IRCCS Santa Lucia Foundation, Centro Europeo di Ricerca sul Cervello CERC, Rome, Italy
- Università Campus Bio-Medico di Roma, Rome, Italy
| | - Marcello D'Amelio
- IRCCS Santa Lucia Foundation, Centro Europeo di Ricerca sul Cervello CERC, Rome, Italy
- Università Campus Bio-Medico di Roma, Rome, Italy
| | - Francesco Cecconi
- Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Annabella Pignataro
- IRCCS Santa Lucia Foundation, Centro Europeo di Ricerca sul Cervello CERC, Rome, Italy.
- Institute of Translational Pharmacology, National Research Council, CNR, Rome, Italy.
| |
Collapse
|
2
|
Horner D, Jepsen JRM, Chawes B, Aagaard K, Rosenberg JB, Mohammadzadeh P, Sevelsted A, Vahman N, Vinding R, Fagerlund B, Pantelis C, Bilenberg N, Pedersen CET, Eliasen A, Brandt S, Chen Y, Prince N, Chu SH, Kelly RS, Lasky-Su J, Halldorsson TI, Strøm M, Strandberg-Larsen K, Olsen SF, Glenthøj BY, Bønnelykke K, Ebdrup BH, Stokholm J, Rasmussen MA. A western dietary pattern during pregnancy is associated with neurodevelopmental disorders in childhood and adolescence. Nat Metab 2025; 7:586-601. [PMID: 40033007 PMCID: PMC12022897 DOI: 10.1038/s42255-025-01230-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 02/06/2025] [Indexed: 03/05/2025]
Abstract
Despite the high prevalence of neurodevelopmental disorders, the influence of maternal diet during pregnancy on child neurodevelopment remains understudied. Here we show that a western dietary pattern during pregnancy is associated with child neurodevelopmental disorders. We analyse self-reported maternal dietary patterns at 24 weeks of pregnancy and clinically evaluated neurodevelopmental disorders at 10 years of age in the COPSAC2010 cohort (n = 508). We find significant associations with attention-deficit hyperactivity disorder (ADHD) and autism diagnoses. We validate the ADHD findings in three large, independent mother-child cohorts (n = 59,725, n = 656 and n = 348) through self-reported dietary modelling, maternal blood metabolomics and foetal blood metabolomics. Metabolome analyses identify 15 mediating metabolites in pregnancy that improve ADHD prediction. Longitudinal blood metabolome analyses, incorporating five time points per cohort in two independent cohorts, reveal that associations between western dietary pattern metabolite scores and neurodevelopmental outcomes are consistently significant in early-mid-pregnancy. These findings highlight the potential for targeted prenatal dietary interventions to prevent neurodevelopmental disorders and emphasise the importance of early intervention.
Collapse
Affiliation(s)
- David Horner
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark.
| | - Jens Richardt M Jepsen
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
- Mental Health Centre for Child and Adolescent Psychiatry - Research unit, Mental Health Services in the Capital Region of Denmark, Copenhagen, Denmark
| | - Bo Chawes
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Kristina Aagaard
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Julie B Rosenberg
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Parisa Mohammadzadeh
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Astrid Sevelsted
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Nilo Vahman
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Rebecca Vinding
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Fagerlund
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Niels Bilenberg
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Casper-Emil T Pedersen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Anders Eliasen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Health Technology, Section for Bioinformatics, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Sarah Brandt
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Yulu Chen
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicole Prince
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Su H Chu
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rachel S Kelly
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jessica Lasky-Su
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Thorhallur I Halldorsson
- Faculty of Food Science and Nutrition, School of Health Science, University of Iceland, Health Science Institute, Unit for Nutrition Research, Reykjavík, Iceland
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Marin Strøm
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
- Faculty of Health Sciences, University of the Faroe Islands, Tórshavn, Faroe Islands
| | | | - Sjurdur F Olsen
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
- Faculty of Health Sciences, University of the Faroe Islands, Tórshavn, Faroe Islands
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Birte Y Glenthøj
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Klaus Bønnelykke
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Bjørn H Ebdrup
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Stokholm
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Section of Food Microbiology, Gut Health and Fermentation, Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Morten Arendt Rasmussen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark.
- Section of Food Microbiology, Gut Health and Fermentation, Department of Food Science, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
3
|
Holme JA, Myhre O, Øvrevik J. Adverse neurodevelopment in children associated with prenatal exposure to fine particulate matter (PM 2.5) - Possible roles of polycyclic aromatic hydrocarbons (PAHs) and mechanisms involved. Reprod Toxicol 2024; 130:108718. [PMID: 39276806 DOI: 10.1016/j.reprotox.2024.108718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Prenatal exposure to ambient fine particles (PM2.5) and polycyclic aromatic hydrocarbons (PAHs) has been associated with adverse birth outcomes including neurodevelopmental effects with cognitive and/or behavioral implications in early childhood. As a background we first briefly summarize human studies on PM2.5 and PAHs associated with adverse birth outcomes and modified neurodevelopment. Next, we add more specific information from animal studies and in vitro studies and elucidate possible biological mechanisms. More specifically we focus on the potential role of PAHs attached to PM2.5 and explore whether effects of these compounds may arise from disturbance of placental function or more directly by interfering with neurodevelopmental processes in the fetal brain. Possible molecular initiating events (MIEs) include interactions with cellular receptors such as the aryl hydrocarbon receptor (AhR), beta-adrenergic receptors (βAR) and transient receptor potential (TRP)-channels resulting in altered gene expression. MIE linked to the binding of PAHs to cytochrome P450 (CYP) enzymes and formation of reactive electrophilic metabolites are likely less important. The experimental animal and in vitro studies support the epidemiological findings and suggest steps involved in mechanistic pathways explaining the associations. An overall evaluation of the doses/concentrations used in experimental studies combined with the mechanistic understanding further supports the hypothesis that prenatal PAHs exposure may cause adverse outcomes (AOs) linked to human neurodevelopment. Several MIEs will likely occur simultaneously in various cells/tissues involving several key events (KEs) which relative importance will depend on dose, time, tissue, genetics, other environmental factors, and neurodevelopmental endpoint in study.
Collapse
Affiliation(s)
- Jørn A Holme
- Department of Air quality and Noise, Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box PO Box 222 Skøyen, Oslo 0213, Norway.
| | - Oddvar Myhre
- Department of Chemical Toxicology, Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box 222 Skøyen, Oslo 0213, Norway
| | - Johan Øvrevik
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, PO Box 1066 Blindern, Oslo 0316, Norway; Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box 222 Skøyen, Oslo 0213, Norway
| |
Collapse
|
4
|
Stein TP. Does Bisphenol A (BPA) Exposure Cause Human Diseases? Biomedicines 2024; 12:2678. [PMID: 39767585 PMCID: PMC11727305 DOI: 10.3390/biomedicines12122678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Autism spectrum disorders (ASDs), attention-deficit disorder (ADHD), Parkinson's disease (PD), polycystic ovary disease (PCOS), and Alzheimer's disease (AD) have all been linked to exposure to bisphenol A (BPA). METHODS This paper is a review and discussion of the published literature. RESULTS Animal studies have shown BPA to be a broad-spectrum endocrine disruptor. BPA is metabolized via the glucuronidation pathway, which involves the addition of glucose to the target molecule, and is catalyzed by uridine 5'-diphospho-glucuronosyltransferases (UGTs). Evidence of compromised glucuronidation has been found for ASD, DHD, PD, and PCOS. Genetic polymorphisms that alter the catalytic activity of the UGTs and efflux transporters involved are common. There are two ways to interpret the findings of associations between BPA glucuronidation efficiency and disease, a 'direct' pathway and an 'indirect' pathway. With the 'direct' pathway, free BPA is the actual causative agent. Compromised BPA detoxification leads to higher concentrations of free BPA in vulnerable tissues. Decreased BPA detoxification leads to increased exposure of vulnerable tissues to free BPA, where it can function as an endocrine disruptor. With the 'indirect' pathway, BPA is not the causative agent. BPA serves as a marker for the decreased glucuronidation efficiency of another unknown compound of endogenous origin detoxified by a similar combination of UGTs and efflux transporters as BPA. It is this compound(s), acting as an endocrine disruptor, that leads to a metabolic environment that favors disease development over an extended time period. CONCLUSION A review of the existing literature supports the indirect 'marker' hypothesis over the 'direct' hypothesis.
Collapse
Affiliation(s)
- T Peter Stein
- Rowan-Virtua School of Translational Biomedical Engineering and Sciences and School of Osteopathic Medicine, 2 Medical Center Drive, Stratford, NJ 08084, USA
| |
Collapse
|
5
|
Hakizimana O, Hitayezu J, Uyisenga JP, Onohuean H, Palmeira L, Bours V, Alagbonsi AI, Uwineza A. Genetic etiology of autism spectrum disorder in the African population: a scoping review. Front Genet 2024; 15:1431093. [PMID: 39391062 PMCID: PMC11464363 DOI: 10.3389/fgene.2024.1431093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/28/2024] [Indexed: 10/12/2024] Open
Abstract
Background Autism spectrum disorder (ASD) is a neurodevelopmental disorder (NDD) characterized by significant impairments in social, communicative, and behavioral abilities. However, only a limited number of studies address the genetic basis of ASD in the African population. This study aims to document the genes associated with ASD in Africa and the techniques used to identify them. Additionally, genes identified elsewhere but not yet in Africa are also noted. Methods Online databases such as Wiley Online Library, PubMed, and Africa Journal Online were used. The review was conducted using the keyword related to genetic and genomic ASD study in the African population. Result In this scoping review, 40 genetic studies on ASD in Africa were reviewed. The Egyptian and South African populations were the most studied, with 25 and 5 studies, respectively. Countries with fewer studies included Tunisia (4), East African countries (3), Libya (1), Nigeria (1), and Morocco (1). Some 61 genes responsible for ASD were identified in the African population: 26 were identified using a polymerase chain reaction (PCR)-based method, 22 were identified using sequencing technologies, and 12 genes and one de novo chromosomal aberration were identified through other techniques. No African study identified any ASD gene with genome-wide association studies (GWAS). Notably, at least 20 ASD risk genes reported in non-African countries were yet to be confirmed in Africa's population. Conclusion There are insufficient genetic studies on ASD in the African population, with sample size being a major limitation in most genetic association studies, leading to inconclusive results. Thus, there is a need to conduct more studies with large sample sizes to identify other genes associated with ASD in Africa's population using high-throughput sequencing technology.
Collapse
Affiliation(s)
- Olivier Hakizimana
- Department of Biochemistry, Molecular Biology and Genetics, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
- Center for Human Genetics, Centre Hospitalier Universitaire Sart-Tilman, University of Liege, Liege, Belgium
| | - Janvier Hitayezu
- Department of Pediatrics, University Teaching Hospital of Kigali (CHUK), Kigali, Rwanda
| | - Jeanne P. Uyisenga
- Department of Biology, College of Science and Technology, University of Rwanda, Kigali, Rwanda
| | - Hope Onohuean
- Biopharmaceutics Unit, Department of Pharmacology and Toxicology, School of Pharmacy, Kampala International University, Bushenyi, Uganda
| | - Leonor Palmeira
- Center for Human Genetics, Centre Hospitalier Universitaire Sart-Tilman, University of Liege, Liege, Belgium
| | - Vincent Bours
- Center for Human Genetics, Centre Hospitalier Universitaire Sart-Tilman, University of Liege, Liege, Belgium
| | - Abdullateef Isiaka Alagbonsi
- Department of Physiology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | - Annette Uwineza
- Department of Biochemistry, Molecular Biology and Genetics, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| |
Collapse
|
6
|
Ramírez V, González-Palacios P, González-Domenech PJ, Jaimez-Pérez S, Baca MA, Rodrigo L, Álvarez-Cubero MJ, Monteagudo C, Martínez-González LJ, Rivas A. Influence of Genetic Polymorphisms on Cognitive Function According to Dietary Exposure to Bisphenols in a Sample of Spanish Schoolchildren. Nutrients 2024; 16:2639. [PMID: 39203776 PMCID: PMC11357571 DOI: 10.3390/nu16162639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND Neurodevelopmental disorders (NDDs) like intellectual disability (ID) are highly heritable, but the environment plays an important role. For example, endocrine disrupting chemicals (EDCs), including bisphenol A (BPA) and its analogues, have been termed neuroendocrine disruptors. This study aimed to evaluate the influence of different genetic polymorphisms (SNPs) on cognitive function in Spanish schoolchildren according to dietary bisphenol exposure. METHODS A total of 102 children aged 6-12 years old were included. Ten SNPs in genes involved in brain development, synaptic plasticity, and neurotransmission (BDNF, NTRK2, HTR2A, MTHFR, OXTR, SLC6A2, and SNAP25) were genotyped. Then, dietary exposure to bisphenols (BPA plus BPS) was estimated and cognitive functions were assessed using the WISC-V Spanish form. RESULTS BDNF rs11030101-T and SNAP25 rs363039-A allele carriers scored better on the fluid reasoning domain, except for those inheriting the BDNF rs6265-A allele, who had lower scores. Secondly, relevant SNP-bisphenol interactions existed in verbal comprehension (NTRK2 rs10868235 (p-int = 0.043)), working memory (HTR2A rs7997012 (p-int = 0.002), MTHFR rs1801133 (p-int = 0.026), and OXTR rs53576 (p-int = 0.030)) and fluid reasoning (SLC6A2 rs998424 (p-int = 0.004)). CONCLUSIONS Our findings provide the first proof that exploring the synergistic or additive effects between genetic variability and bisphenol exposure on cognitive function could lead to a better understanding of the multifactorial and polygenic aetiology of NDDs.
Collapse
Affiliation(s)
- Viviana Ramírez
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; (V.R.); (P.G.-P.); (A.R.)
- GENYO Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government PTS Granada—Avenida de la Ilustración, 114, 18016 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Institute of Nutrition and Food Technology “Jose Mataix Verdú”, Biomedical Research Center, Health Sciences Technological Park, University of Granada, 18016 Granada, Spain
| | - Patricia González-Palacios
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; (V.R.); (P.G.-P.); (A.R.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | | | | | | | - Lourdes Rodrigo
- Department of Legal Medicine, Toxicology and Physical Anthropology, Faculty of Medicine, University of Granada, 18012 Granada, Spain;
| | - María Jesús Álvarez-Cubero
- GENYO Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government PTS Granada—Avenida de la Ilustración, 114, 18016 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Department of Biochemistry and Molecular Biology III, Faculty of Medicine, University of Granada, 18012 Granada, Spain
| | - Celia Monteagudo
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; (V.R.); (P.G.-P.); (A.R.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Luis Javier Martínez-González
- GENYO Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government PTS Granada—Avenida de la Ilustración, 114, 18016 Granada, Spain;
- Department of Biochemistry and Molecular Biology III, Faculty of Medicine, University of Granada, 18012 Granada, Spain
| | - Ana Rivas
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; (V.R.); (P.G.-P.); (A.R.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Institute of Nutrition and Food Technology “Jose Mataix Verdú”, Biomedical Research Center, Health Sciences Technological Park, University of Granada, 18016 Granada, Spain
| |
Collapse
|
7
|
Horner D, Jepsen JRM, Chawes B, Aagaard K, Rosenberg JB, Mohammadzadeh P, Sevelsted A, Følsgaard N, Vinding R, Fagerlund B, Pantelis C, Bilenberg N, Pedersen CET, Eliasen A, Chen Y, Prince N, Chu SH, Kelly RS, Lasky-Su J, Halldorsson TI, Strøm M, Strandberg-Larsen K, Olsen SF, Glenthøj BY, Bønnelykke K, Ebdrup BH, Stokholm J, Rasmussen MA. A Western Dietary Pattern during Pregnancy is Associated with Neurodevelopmental Disorders in Childhood and Adolescence. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.07.24303907. [PMID: 38496582 PMCID: PMC10942528 DOI: 10.1101/2024.03.07.24303907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Despite the high prevalence of neurodevelopmental disorders, there is a notable gap in clinical studies exploring the impact of maternal diet during pregnancy on child neurodevelopment. This observational clinical study examined the association between pregnancy dietary patterns and neurodevelopmental disorders, as well as their symptoms, in a prospective cohort of 10-year-old children (n=508). Data-driven dietary patterns were derived from self-reported food frequency questionnaires. A Western dietary pattern in pregnancy (per SD change) was significantly associated with attention-deficit / hyperactivity disorder (ADHD) (OR 1.66 [1.21 - 2.27], p=0.002) and autism diagnosis (OR 2.22 [1.33 - 3.74], p=0.002) and associated symptoms (p<0.001). Findings for ADHD were validated in three large (n=59725, n=656, n=348), independent mother-child cohorts. Objective blood metabolome modelling at 24 weeks gestation identified 15 causally mediating metabolites which significantly improved ADHD prediction in external validation. Temporal analyses across five blood metabolome timepoints in two independent mother-child cohorts revealed that the association of Western dietary pattern metabolite scores with neurodevelopmental outcomes was consistently significant in early to mid-pregnancy, independent of later child timepoints. These findings underscore the importance of early intervention and provide robust evidence for targeted prenatal dietary interventions to prevent neurodevelopmental disorders in children.
Collapse
|
8
|
Caputi V, Hill L, Figueiredo M, Popov J, Hartung E, Margolis KG, Baskaran K, Joharapurkar P, Moshkovich M, Pai N. Functional contribution of the intestinal microbiome in autism spectrum disorder, attention deficit hyperactivity disorder, and Rett syndrome: a systematic review of pediatric and adult studies. Front Neurosci 2024; 18:1341656. [PMID: 38516317 PMCID: PMC10954784 DOI: 10.3389/fnins.2024.1341656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/02/2024] [Indexed: 03/23/2024] Open
Abstract
Introduction Critical phases of neurodevelopment and gut microbiota diversification occur in early life and both processes are impacted by genetic and environmental factors. Recent studies have shown the presence of gut microbiota alterations in neurodevelopmental disorders. Here we performed a systematic review of alterations of the intestinal microbiota composition and function in pediatric and adult patients affected by autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD), and Rett syndrome (RETT). Methods We searched selected keywords in the online databases of PubMed, Cochrane, and OVID (January 1980 to December 2021) with secondary review of references of eligible articles. Two reviewers independently performed critical appraisals on the included articles using the Critical Appraisal Skills Program for each study design. Results Our systematic review identified 18, 7, and 3 original articles describing intestinal microbiota profiles in ASD, ADHD, and RETT, respectively. Decreased Firmicutes and increased Bacteroidetes were observed in the gut microbiota of individuals affected by ASD and ADHD. Proinflammatory cytokines, short-chain fatty acids and neurotransmitter levels were altered in ASD and RETT. Constipation and visceral pain were related to changes in the gut microbiota in patients affected by ASD and RETT. Hyperactivity and impulsivity were negatively correlated with Faecalibacterium (phylum Firmicutes) and positively correlated with Bacteroides sp. (phylum Bacteroidetes) in ADHD subjects. Five studies explored microbiota-or diet-targeted interventions in ASD and ADHD. Probiotic treatments with Lactobacillus sp. and fecal microbiota transplantation from healthy donors reduced constipation and ameliorated ASD symptoms in affected children. Perinatal administration of Lactobacillus sp. prevented the onset of Asperger and ADHD symptoms in adolescence. Micronutrient supplementation improved disease symptomatology in ADHD without causing significant changes in microbiota communities' composition. Discussion Several discrepancies were found among the included studies, primarily due to sample size, variations in dietary practices, and a high prevalence of functional gastrointestinal symptoms. Further studies employing longitudinal study designs, larger sample sizes and multi-omics technologies are warranted to identify the functional contribution of the intestinal microbiota in developmental trajectories of the human brain and neurobehavior. Systematic review registration https://clinicaltrials.gov/, CRD42020158734.
Collapse
Affiliation(s)
- Valentina Caputi
- Poultry Production and Product Safety Research Unit, Agricultural Research Service, United States Department of Agriculture, Fayetteville, AR, United States
| | - Lee Hill
- Department of Pediatrics, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Department of Pediatrics, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Melanie Figueiredo
- Department of Pediatrics, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jelena Popov
- Department of Pediatrics, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Harvard Medical School, Boston, MA, United States
- Boston Children’s Hospital, Boston, MA, United States
| | - Emily Hartung
- Department of Pediatrics, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Department of Biochemistry and Biomedical Sciences, Faculty of Science, McMaster University, Hamilton, ON, Canada
| | - Kara Gross Margolis
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, United States
- New York University Pain Research Center, New York, NY, United States
- New York University College of Dentistry, New York, NY, United States
| | - Kanish Baskaran
- Department of Pediatrics, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Papiha Joharapurkar
- Department of Pediatrics, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Michal Moshkovich
- Department of Pediatrics, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Nikhil Pai
- Department of Pediatrics, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Division of Gastroenterology, Hepatology and Nutrition, McMaster Children’s Hospital, Hamilton, ON, Canada
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
- Division of Gastroenterology, Hepatology, and Nutrition, the Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| |
Collapse
|
9
|
Costa HE, Cairrao E. Effect of bisphenol A on the neurological system: a review update. Arch Toxicol 2024; 98:1-73. [PMID: 37855918 PMCID: PMC10761478 DOI: 10.1007/s00204-023-03614-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/27/2023] [Indexed: 10/20/2023]
Abstract
Bisphenol A (BPA) is an endocrine-disrupting chemical (EDC) and one of the most produced synthetic compounds worldwide. BPA can be found in epoxy resins and polycarbonate plastics, which are frequently used in food storage and baby bottles. However, BPA can bind mainly to estrogen receptors, interfering with various neurologic functions, its use is a topic of significant concern. Nonetheless, the neurotoxicity of BPA has not been fully understood despite numerous investigations on its disruptive effects. Therefore, this review aims to highlight the most recent studies on the implications of BPA on the neurologic system. Our findings suggest that BPA exposure impairs various structural and molecular brain changes, promoting oxidative stress, changing expression levels of several crucial genes and proteins, destructive effects on neurotransmitters, excitotoxicity and neuroinflammation, damaged blood-brain barrier function, neuronal damage, apoptosis effects, disruption of intracellular Ca2+ homeostasis, increase in reactive oxygen species, promoted apoptosis and intracellular lactate dehydrogenase release, a decrease of axon length, microglial DNA damage, astrogliosis, and significantly reduced myelination. Moreover, BPA exposure increases the risk of developing neurologic diseases, including neurovascular (e.g. stroke) and neurodegenerative (e.g. Alzheimer's and Parkinson's) diseases. Furthermore, epidemiological studies showed that the adverse effects of BPA on neurodevelopment in children contributed to the emergence of serious neurological diseases like attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), depression, emotional problems, anxiety, and cognitive disorders. In summary, BPA exposure compromises human health, promoting the development and progression of neurologic disorders. More research is required to fully understand how BPA-induced neurotoxicity affects human health.
Collapse
Affiliation(s)
- Henrique Eloi Costa
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
- FCS-UBI, Faculty of Health Sciences, University of Beira Interior, 6200-506, Covilhã, Portugal
| | - Elisa Cairrao
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.
- FCS-UBI, Faculty of Health Sciences, University of Beira Interior, 6200-506, Covilhã, Portugal.
| |
Collapse
|
10
|
Stein TP, Schluter MD, Steer RA, Ming X. Bisphenol-A and phthalate metabolism in children with neurodevelopmental disorders. PLoS One 2023; 18:e0289841. [PMID: 37703261 PMCID: PMC10499243 DOI: 10.1371/journal.pone.0289841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/24/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND The etiology of autism spectrum (ASD) and Attention Deficit/Hyperactivity (ADHD) disorders are multifactorial. Epidemiological studies have shown associations with environmental pollutants, such as plasticizers. This study focused on two of these compounds, the Bisphenol-A (BPA) and Diethylhexyl Phthalate (DEHP). The major pathway for BPA and DEHP excretion is via glucuronidation. Glucuronidation makes insoluble substances more water-soluble allowing for their subsequent elimination in urine. HYPOTHESIS Detoxification of these two plasticizers is compromised in children with ASD and ADHD. Consequently, their tissues are more exposed to these two plasticizers. METHODS We measured the efficiency of glucuronidation in three groups of children, ASD (n = 66), ADHD (n = 46) and healthy controls (CTR, n = 37). The children were recruited from the clinics of Rutgers-NJ Medical School. A urine specimen was collected from each child. Multiple mass spectrometric analyses including the complete metabolome were determined and used to derive values for the efficiency of glucuronidation for 12 varied glucuronidation pathways including those for BPA and MEHP. RESULTS (1) Both fold differences and metabolome analyses showed that the three groups of children were metabolically different from each other. (2) Of the 12 pathways examined, only the BPA and DEHP pathways discriminated between the three groups. (3) Glucuronidation efficiencies for BPA were reduced by 11% for ASD (p = 0.020) and 17% for ADHD (p<0.001) compared to controls. DEHP showed similar, but not significant trends. CONCLUSION ASD and ADHD are clinically and metabolically different but share a reduction in the efficiency of detoxification for both BPA and DEHP with the reductions for BPA being statistically significant.
Collapse
Affiliation(s)
- T. Peter Stein
- Department of Surgery, Rowan University-School of Osteopathic Medicine, Stratford, NJ, United States of America
| | - Margaret D. Schluter
- Department of Surgery, Rowan University-School of Osteopathic Medicine, Stratford, NJ, United States of America
| | - Robert A. Steer
- Department of Psychiatry, Rowan University-School of Osteopathic Medicine, Stratford, NJ, United States of America
| | - Xue Ming
- Departments of Neurosciences and Neurology, Rutgers University–New Jersey Medical School, Newark, NJ, United States of America
| |
Collapse
|
11
|
Alshehri S, Ahmad SF, Albekairi NA, Alqarni SS, Al-Harbi NO, Al-Ayadhi LY, Attia SM, Alfardan AS, Bakheet SA, Nadeem A. Thioredoxin 1 and Thioredoxin Reductase 1 Redox System Is Dysregulated in Neutrophils of Subjects with Autism: In Vitro Effects of Environmental Toxicant, Methylmercury. TOXICS 2023; 11:739. [PMID: 37755749 PMCID: PMC10536321 DOI: 10.3390/toxics11090739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/28/2023]
Abstract
Autism spectrum disorder (ASD) is a complex developmental disorder in children that results in abnormal communicative and verbal behaviors. Exposure to heavy metals plays a significant role in the pathogenesis or progression of ASD. Mercury compounds pose significant risk for the development of ASD as children are more exposed to environmental toxicants. Increased concentration of mercury compounds has been detected in different body fluids/tissues in ASD children, which suggests an association between mercury exposure and ASD. Thioredoxin1 (Trx1) and thioredoxin reductase1 (TrxR1) redox system plays a crucial role in detoxification of oxidants generated in different immune cells. However, the effect of methylmercury and the Nrf2 activator sulforaphane on the Trx1/TrxR1 antioxidant system in neutrophils of ASD subjects has not been studied previously. Therefore, this study examined the effect of methylmercury on Trx1/TrxR1 expression, TrxR activity, nitrotyrosine, and ROS in neutrophils of ASD and TDC subjects. Our study shows that Trx1/TrxR1 protein expression is dysregulated in ASD subjects as compared to the TDC group. Further, methylmercury treatment significantly inhibits the activity of TrxR in both ASD and TDC groups. Inhibition of TrxR by mercury is associated with upregulation of the Trx1 protein in TDC neutrophils but not in ASD neutrophils. Furthermore, ASD neutrophils have exaggerated ROS production after exposure to methylmercury, which is much greater in magnitude than TDC neutrophils. Sulforaphane reversed methylmercury-induced effects on neutrophils through Nrf2-mediated induction of the Trx1/TrxR1 system. These observations suggest that exposure to the environmental toxicant methylmercury may elevate systemic oxidative inflammation due to a dysregulated Trx1/TrxR1 redox system in the neutrophils of ASD subjects, which may play a role in the progression of ASD.
Collapse
Affiliation(s)
- Samiyah Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Norah A. Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sana S. Alqarni
- Department of Medical Laboratory Science, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Naif O. Al-Harbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Laila Y. Al-Ayadhi
- Department of Physiology, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M. Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali S. Alfardan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A. Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
12
|
Alshamrani AA, Alwetaid MY, Al-Hamamah MA, Attia MSM, Ahmad SF, Algonaiah MA, Nadeem A, Ansari MA, Bakheet SA, Attia SM. Aflatoxin B1 Exacerbates Genomic Instability and Apoptosis in the BTBR Autism Mouse Model via Dysregulating DNA Repair Pathway. TOXICS 2023; 11:636. [PMID: 37505601 PMCID: PMC10384561 DOI: 10.3390/toxics11070636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
The pathophysiology of autism is influenced by a combination of environmental and genetic factors. Furthermore, individuals with autism appear to be at a higher risk of developing cancer. However, this is not fully understood. Aflatoxin B1 (AFB1) is a potent food pollutant carcinogen. The effects of AFB1 on genomic instability in autism have not yet been investigated. Hence, we have aimed to investigate whether repeated exposure to AFB1 causes alterations in genomic stability, a hallmark of cancer and apoptosis in the BTBR autism mouse model. The data revealed increased micronuclei generation, oxidative DNA strand breaks, and apoptosis in BTBR animals exposed to AFB1 when compared to unexposed animals. Lipid peroxidation in BTBR mice increased with a reduction in glutathione following AFB1 exposure, demonstrating an exacerbated redox imbalance. Furthermore, the expressions of some of DNA damage/repair- and apoptosis-related genes were also significantly dysregulated. Increases in the redox disturbance and dysregulation in the DNA damage/repair pathway are thus important determinants of susceptibility to AFB1-exacerbated genomic instability and apoptosis in BTBR mice. This investigation shows that AFB1-related genomic instability can accelerate the risk of cancer development. Moreover, approaches that ameliorate the redox balance and DNA damage/repair dysregulation may mitigate AFB1-caused genomic instability.
Collapse
Affiliation(s)
- Ali A Alshamrani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Y Alwetaid
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed A Al-Hamamah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed S M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Majed A Algonaiah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
13
|
Santos JX, Sampaio P, Rasga C, Martiniano H, Faria C, Café C, Oliveira A, Duque F, Oliveira G, Sousa L, Nunes A, Vicente AM. Evidence for an association of prenatal exposure to particulate matter with clinical severity of Autism Spectrum Disorder. ENVIRONMENTAL RESEARCH 2023; 228:115795. [PMID: 37028534 DOI: 10.1016/j.envres.2023.115795] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 03/06/2023] [Accepted: 03/28/2023] [Indexed: 05/16/2023]
Abstract
Early-life exposure to air pollutants, including ozone (O3), particulate matter (PM2.5 or PM10, depending on diameter of particles), nitrogen dioxide (NO2) and sulfur dioxide (SO2) has been suggested to contribute to the etiology of Autism Spectrum Disorder (ASD). In this study, we used air quality monitoring data to examine whether mothers of children with ASD were exposed to high levels of air pollutants during critical periods of pregnancy, and if higher exposure levels may lead to a higher clinical severity in their offspring. We used public data from the Portuguese Environment Agency to estimate exposure to these pollutants during the first, second and third trimesters of pregnancy, full pregnancy and first year of life of the child, for 217 subjects with ASD born between 2003 and 2016. These subjects were stratified in two subgroups according to clinical severity, as defined by the Autism Diagnostic Observational Schedule (ADOS). For all time periods, the average levels of PM2.5, PM10 and NO2 to which the subjects were exposed were within the admissible levels defined by the European Union. However, a fraction of these subjects showed exposure to levels of PM2.5 and PM10 above the admissible threshold. A higher clinical severity was associated with higher exposure to PM2.5 (p = 0.001), NO2 (p = 0.011) and PM10 (p = 0.041) during the first trimester of pregnancy, when compared with milder clinical severity. After logistic regression, associations with higher clinical severity were identified for PM2.5 exposure during the first trimester (p = 0.002; OR = 1.14, 95%CI: 1.05-1.23) and full pregnancy (p = 0.04; OR = 1.07, 95%CI: 1.00-1.15) and for PM10 (p = 0.02; OR = 1.07, 95%CI: 1.01-1.14) exposure during the third trimester. Exposure to PM is known to elicit neuropathological mechanisms associated with ASD, including neuroinflammation, mitochondrial disruptions, oxidative stress and epigenetic changes. These results offer new insights on the impact of early-life exposure to PM in ASD clinical severity.
Collapse
Affiliation(s)
- João Xavier Santos
- Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016, Lisboa, Portugal; BioISI - Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, C8, 1749-016, Lisboa, Portugal.
| | - Pedro Sampaio
- Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016, Lisboa, Portugal; BioISI - Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, C8, 1749-016, Lisboa, Portugal.
| | - Célia Rasga
- Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016, Lisboa, Portugal; BioISI - Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, C8, 1749-016, Lisboa, Portugal.
| | - Hugo Martiniano
- Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016, Lisboa, Portugal; BioISI - Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, C8, 1749-016, Lisboa, Portugal.
| | - Clarissa Faria
- Unidade de Neurodesenvolvimento e Autismo, Serviço Do Centro de Desenvolvimento da Criança, Centro de Investigação e Formação Clínica, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.
| | - Cátia Café
- Unidade de Neurodesenvolvimento e Autismo, Serviço Do Centro de Desenvolvimento da Criança, Centro de Investigação e Formação Clínica, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal; Faculty of Medicine, University Clinic of Pediatrics and Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Alexandra Oliveira
- Unidade de Neurodesenvolvimento e Autismo, Serviço Do Centro de Desenvolvimento da Criança, Centro de Investigação e Formação Clínica, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal; Faculty of Medicine, University Clinic of Pediatrics and Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.
| | - Frederico Duque
- Unidade de Neurodesenvolvimento e Autismo, Serviço Do Centro de Desenvolvimento da Criança, Centro de Investigação e Formação Clínica, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal; Faculty of Medicine, University Clinic of Pediatrics and Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.
| | - Guiomar Oliveira
- Unidade de Neurodesenvolvimento e Autismo, Serviço Do Centro de Desenvolvimento da Criança, Centro de Investigação e Formação Clínica, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal; Faculty of Medicine, University Clinic of Pediatrics and Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.
| | - Lisete Sousa
- Departamento de Estatística e Investigação Operacional e Centro de Estatística e Aplicações, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.
| | - Ana Nunes
- BioISI - Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, C8, 1749-016, Lisboa, Portugal; Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.
| | - Astrid Moura Vicente
- Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016, Lisboa, Portugal; BioISI - Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, C8, 1749-016, Lisboa, Portugal.
| |
Collapse
|
14
|
Savino R, Medoro A, Ali S, Scapagnini G, Maes M, Davinelli S. The Emerging Role of Flavonoids in Autism Spectrum Disorder: A Systematic Review. J Clin Med 2023; 12:jcm12103520. [PMID: 37240625 DOI: 10.3390/jcm12103520] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/29/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Although autism spectrum disorder (ASD) is a multifaceted neurodevelopmental syndrome, accumulating evidence indicates that oxidative stress and inflammation are common features of ASD. Flavonoids, one of the largest and best-investigated classes of plant-derived compounds, are known to exert antioxidant, anti-inflammatory, and neuroprotective effects. This review used a systematic search process to assess the available evidence on the effect of flavonoids on ASD. A comprehensive literature search was carried out in PubMed, Scopus, and Web of Science databases following the PRISMA guidelines. A total of 17 preclinical studies and 4 clinical investigations met our inclusion criteria and were included in the final review. Most findings from animal studies suggest that treatment with flavonoids improves oxidative stress parameters, reduces inflammatory mediators, and promotes pro-neurogenic effects. These studies also showed that flavonoids ameliorate the core symptoms of ASD, such as social deficits, repetitive behavior, learning and memory impairments, and motor coordination. However, there are no randomized placebo-controlled trials that support the clinical efficacy of flavonoids in ASD. We only found open-label studies and case reports/series, using only two flavonoids such as luteolin and quercetin. These preliminary clinical studies indicate that flavonoid administration may improve specific behavioral symptoms of ASD. Overall, this review is the first one to systematically report evidence for the putative beneficial effects of flavonoids on features of ASD. These promising preliminary results may provide the rationale for future randomized controlled trials aimed at confirming these outcomes.
Collapse
Affiliation(s)
- Rosa Savino
- Department of Woman and Child, Neuropsychiatry for Child and Adolescent Unit, General Hospital "Riuniti" of Foggia, 71122 Foggia, Italy
| | - Alessandro Medoro
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, 86100 Campobasso, Italy
| | - Sawan Ali
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, 86100 Campobasso, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, 86100 Campobasso, Italy
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sergio Davinelli
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, 86100 Campobasso, Italy
| |
Collapse
|
15
|
Li H, Xu Y, Li W, Zhang L, Zhang X, Li B, Chen Y, Wang X, Zhu C. Novel insights into the immune cell landscape and gene signatures in autism spectrum disorder by bioinformatics and clinical analysis. Front Immunol 2023; 13:1082950. [PMID: 36761165 PMCID: PMC9905846 DOI: 10.3389/fimmu.2022.1082950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/28/2022] [Indexed: 01/26/2023] Open
Abstract
The pathogenesis of autism spectrum disorder (ASD) is not well understood, especially in terms of immunity and inflammation, and there are currently no early diagnostic or treatment methods. In this study, we obtained six existing Gene Expression Omnibus transcriptome datasets from the blood of ASD patients. We performed functional enrichment analysis, PPI analysis, CIBERSORT algorithm, and Spearman correlation analysis, with a focus on expression profiling in hub genes and immune cells. We validated that monocytes and nonclassical monocytes were upregulated in the ASD group using peripheral blood (30 children with ASD and 30 age and sex-matched typically developing children) using flow cytometry. The receiver operating characteristic curves (PSMC4 and ALAS2) and analysis stratified by ASD severity (LIlRB1 and CD69) showed that they had predictive value using the "training" and verification groups. Three immune cell types - monocytes, M2 macrophages, and activated dendritic cells - had different degrees of correlation with 15 identified hub genes. In addition, we analyzed the miRNA-mRNA network and agents-gene interactions using miRNA databases (starBase and miRDB) and the DSigDB database. Two miRNAs (miR-342-3p and miR-1321) and 23 agents were linked with ASD. These findings suggest that dysregulation of the immune system may contribute to ASD development, especially dysregulation of monocytes and monocyte-derived cells. ASD-related hub genes may serve as potential predictors for ASD, and the potential ASD-related miRNAs and agents identified here may open up new strategies for the prevention and treatment of ASD.
Collapse
Affiliation(s)
- Hongwei Li
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China,National Health Council (NHC) Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Zhengzhou, China
| | - Wenhua Li
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lingling Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoli Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bingbing Li
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yiwen Chen
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoyang Wang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Centre of Perinatal Medicine and Health, Institute of Clinical Science, University of Gothenburg, Gothenburg, Sweden
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden,*Correspondence: Changlian Zhu, ;;
| |
Collapse
|
16
|
Davide G, Rebecca C, Irene P, Luciano C, Francesco R, Marta N, Miriam O, Natascia B, Pierluigi P. Epigenetics of Autism Spectrum Disorders: A Multi-level Analysis Combining Epi-signature, Age Acceleration, Epigenetic Drift and Rare Epivariations Using Public Datasets. Curr Neuropharmacol 2023; 21:2362-2373. [PMID: 37489793 PMCID: PMC10556384 DOI: 10.2174/1570159x21666230725142338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/09/2022] [Accepted: 12/17/2022] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Epigenetics of Autism Spectrum Disorders (ASD) is still an understudied field. The majority of the studies on the topic used an approach based on mere classification of cases and controls. OBJECTIVE The present study aimed at providing a multi-level approach in which different types of epigenetic analysis (epigenetic drift, age acceleration) are combined. METHODS We used publicly available datasets from blood (n = 3) and brain tissues (n = 3), separately. Firstly, we evaluated for each dataset and meta-analyzed the differential methylation profile between cases and controls. Secondly, we analyzed age acceleration, epigenetic drift and rare epigenetic variations. RESULTS We observed a significant epi-signature of ASD in blood but not in brain specimens. We did not observe significant age acceleration in ASD, while epigenetic drift was significantly higher compared to controls. We reported the presence of significant rare epigenetic variations in 41 genes, 35 of which were never associated with ASD. Almost all genes were involved in pathways linked to ASD etiopathogenesis (i.e., neuronal development, mitochondrial metabolism, lipid biosynthesis and antigen presentation). CONCLUSION Our data support the hypothesis of the use of blood epi-signature as a potential tool for diagnosis and prognosis of ASD. The presence of an enhanced epigenetic drift, especially in brain, which is linked to cellular replication, may suggest that alteration in epigenetics may occur at a very early developmental stage (i.e., fetal) when neuronal replication is still high.
Collapse
Affiliation(s)
- Gentilini Davide
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, 27100, Italy
- Bioinformatics and Statistical Genomics Unit, IRCCS Istituto Auxologico Italiano, Milan, 20090, Italy
| | - Cavagnola Rebecca
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, 27100, Italy
| | - Possenti Irene
- Department of Statistical Sciences Paolo Fortunati, University of Bologna, Bologna, Italy
| | - Calzari Luciano
- Bioinformatics and Statistical Genomics Unit, IRCCS Istituto Auxologico Italiano, Milan, 20090, Italy
| | - Ranucci Francesco
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, 27100, Italy
| | - Nola Marta
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, 27100, Italy
| | - Olivola Miriam
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, 27100, Italy
| | - Brondino Natascia
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, 27100, Italy
| | - Politi Pierluigi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, 27100, Italy
| |
Collapse
|
17
|
Li J, Xu X, Liu J, Zhang S, Tan X, Li Z, Zhang J, Wang Z. Decoding microRNAs in autism spectrum disorder. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 30:535-546. [PMID: 36457702 PMCID: PMC9685394 DOI: 10.1016/j.omtn.2022.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Autism spectrum disorder (ASD)-a congenital mental disorder accompanied by social dysfunction and stereotyped behaviors-has attracted a great deal of attention worldwide. A combination of genetic and environmental factors may determine the pathogenesis of ASD. Recent research of multiple ASD models indicates that microRNAs (miRNAs) play a central role at the onset and progression of ASD by repressing the translation of key mRNAs in neural development and functions. As such, miRNAs show great potential to serve as biomarkers for ASD diagnosis or prognosis and therapeutic targets for the treatment of ASD. In this review, we discuss the regulatory mechanisms by which miRNAs influence ASD phenotypes through various in vivo and in vitro models, including necropsy specimens, animal models, cellular models, and, in particular, induced pluripotent stem cells derived from patients with ASD. We then discuss the potential of miRNA-based therapeutic strategies for ASD currently being evaluated in preclinical studies.
Collapse
Affiliation(s)
- Jinyu Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, Shandong 266071, China
| | - Xiaohui Xu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, Shandong 266071, China
| | - Jiane Liu
- Department of Reproductive Medicine, the Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Sudan Zhang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, Shandong 266071, China
| | - Xiaohua Tan
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, Shandong 266071, China
| | - Zhiqiang Li
- The Affiliated Hospital of Qingdao University & the Biomedical Sciences Institute of Qingdao University, Qingdao Branch of SJTU Bio-X Institutes, Qingdao University, Qingdao, Shandong 266003, China
| | - Jian Zhang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zheng Wang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, Shandong 266071, China
- Department of Reproductive Medicine, the Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| |
Collapse
|