1
|
Hammer DR, Voruz F, Aksit A, Breil E, Rousset F, Senn P, Ilmjärv S, Olson ES, Lalwani AK, Kysar JW. Novel dual-lumen microneedle delivers adeno-associated viral vectors in the guinea pig inner ear via the round window membrane. Biomed Microdevices 2025; 27:27. [PMID: 40493265 DOI: 10.1007/s10544-025-00751-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2025] [Indexed: 06/12/2025]
Abstract
The clinical need for minimally invasive inner ear diagnostics and therapeutics has grown rapidly in recent years, particularly with the development of gene therapies for treating hearing and balance disorders. These therapies often require delivery of large injectate volumes that can cause hearing damage. In response to this challenge, dual-lumen microneedles, with two separate fluidic pathways controlled independently by micropumps, were designed for simultaneous aspiration and delivery to the inner ear across the round window membrane (RWM) and were fabricated using 2-photon polymerization (2PP). To assess the proof of concept of the dual-lumen microneedle device, simultaneous injection of 5 µL of adeno-associated virus (AAV) expressing green fluorescent protein (GFP) and aspiration of 5 µL of perilymph was performed in guinea pigs in vivo. Hearing thresholds were measured using auditory brainstem response (ABR) at time points before and 1 week after the procedure. Confocal imaging of the cochlea, the utricle, and the contralateral inner ear was employed to quantify and characterize the spatial distribution of hair cells with AAV transduction. Dual-lumen microneedle devices were found to be functional in the surgical setting. There was hearing loss limited to higher frequencies of 24 kHz and 28 kHz with ABR mean threshold shifts of 13 dB sound pressure level (SPL) (p = 0.03) and 23 dB SPL (p < 0.01), respectively. Furthermore, cochlear AAV transduction with a stereotypical basoapical gradient was observed in all animals (n = 5). Thus, dual-lumen microneedles can facilitate delivery of large volumes of therapeutic material into the inner ear, overcoming the limitations of single-lumen microneedles.
Collapse
Affiliation(s)
- Daniella R Hammer
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA
| | - François Voruz
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA
- Department of Otolaryngology-Head and Neck Surgery, New York-Presbyterian/Columbia University Irving Medical Center, New York City, NY, 10032, USA
| | - Aykut Aksit
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA
| | - Eugénie Breil
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA
- Department of Otolaryngology-Head and Neck Surgery, New York-Presbyterian/Columbia University Irving Medical Center, New York City, NY, 10032, USA
| | - Francis Rousset
- The Inner Ear and Olfaction Lab, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Pascal Senn
- The Inner Ear and Olfaction Lab, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Otorhinolaryngology-Head and Neck Surgery, Department of Clinical Neurosciences, University Hospital of Geneva, Geneva, Switzerland
| | - Sten Ilmjärv
- Antion Biosciences SA, Plan-les-Ouates, Switzerland
| | - Elizabeth S Olson
- Department of Otolaryngology-Head and Neck Surgery, New York-Presbyterian/Columbia University Irving Medical Center, New York City, NY, 10032, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Anil K Lalwani
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA.
- Department of Otolaryngology-Head and Neck Surgery, New York-Presbyterian/Columbia University Irving Medical Center, New York City, NY, 10032, USA.
| | - Jeffrey W Kysar
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA.
- Department of Otolaryngology-Head and Neck Surgery, New York-Presbyterian/Columbia University Irving Medical Center, New York City, NY, 10032, USA.
| |
Collapse
|
2
|
Bai J, Bolonduro O, Gordiichuk P, Green RM, Chung HHL, Mahmud K, Shvartsman D. An integrative round window membrane/cochlear microphysiological system with sensing components for the study of real-time drug response. LAB ON A CHIP 2025; 25:2744-2756. [PMID: 40326305 DOI: 10.1039/d4lc01025f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Most hearing loss often results from permanent damage to cochlear hair cells, and effective treatments remain limited. A reliable, scalable, and physiologically relevant ear model can accelerate the development of hearing-loss protection therapeutics for injury prevention and hearing restoration. The challenge remains on screening delivery systems for regenerative compounds, and no in vitro screening systems exist that capture the complexity of inner ear properties. Here, we present a high-throughput, microphysiological system (MPS) featuring a round window membrane (RWM) model co-cultured with murine auditory hair cells. It is integrated with a transepithelial electrical resistance (TEER) sensor module to monitor epithelial barrier function development in continuous measurements, without sacrificing a sample and thus allowing "real-time" monitoring of the RWM construct progress. The MPS integrates a syringe pump, tissue compartment, multi-channel fluid distributor, and sensors into a microfluidic continuous-flow system, allowing for on-demand sample collections of analytes triggered by the cellular response to the introduced compounds. Drug screening was conducted with protective antibiotic, antioxidant, and anti-inflammatory compounds. RWM cell and hair cell viability, TD50 values, and membrane integrity were measured. In addition, we also designed a graphene field-effect transistor (GFET)-based cytokine sensor to study proinflammatory cytokine release from cells during damaging exposure. The system was employed to assess drug diffusion efficiency, cell viability, and the drug's TD50 and compared to published data from animal studies. Cell membrane integrity was also analyzed, and proinflammatory cytokine release was measured using a GFET sensor. We evaluated and monitored the real-time structural integrity of the RWM epithelial barrier using the integrated TEER sensor in the MPS. The sensor's ability to measure TEER and cytokine levels was validated by comparing its readings to those obtained from commercial TEER signal processing equipment and standard cytokine concentration measurements. This ear-on-a-chip design enables high-throughput screening of investigational new drugs, reducing the need for animal models in complex studies of inner ear damage and regeneration. It allows for the real-time study of drug responses. It facilitates the development and identifying novel agents that protect against hearing loss and the design of delivery methods for hearing regeneration compounds.
Collapse
Affiliation(s)
- Jing Bai
- Department of Living Systems, Triton Systems, Inc., Chelmsford, MA, USA.
| | | | - Pavlo Gordiichuk
- Department of Living Systems, Triton Systems, Inc., Chelmsford, MA, USA.
| | - R Madison Green
- Department of Living Systems, Triton Systems, Inc., Chelmsford, MA, USA.
| | | | - Ken Mahmud
- Department of Living Systems, Triton Systems, Inc., Chelmsford, MA, USA.
| | - Dmitry Shvartsman
- Department of Living Systems, Triton Systems, Inc., Chelmsford, MA, USA.
| |
Collapse
|
3
|
Lou J, Wu F, Liu W, Hu R, He W, Feng Y, Huang Y, Guo J, Deng J, Zhao Z, Zhang Z, Si Y. Inhibition of TLR4 mitigates sensorineural hearing loss resulting from cochlear inflammation. Mol Med 2025; 31:168. [PMID: 40325385 PMCID: PMC12051282 DOI: 10.1186/s10020-025-01219-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/18/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND Inflammation is a principal cause of sensorineural hearing loss resulting from cochlear injury. However, current research investigating the mechanisms of sensorineural inflammatory injury remains inadequate. METHODS Cochlear inflammation was induced by administering lipopolysaccharide (LPS) into the otic bulla (OB) and posterior semicircular canal (PSCC). Auditory brainstem responses (ABR) were recorded, and cochlear tissue alterations were analyzed using hematoxylin and eosin (HE) staining and immunofluorescence. Levels of cochlear inflammation were quantified using a cytokine array. Additionally, Toll-like receptor 4 (TLR4) knockout mice were employed to evaluate sensorineural neuroprotection. RESULTS LPS injection into the PSCC caused more pronounced and stable cochlear inflammatory damage compared to injection into the OB. LPS exposure led to significant loss of cochlear hair cells, atrophy of the stria vascularis, and spiral ganglion damage. Furthermore, LPS treatment upregulated TLR4 receptor expression, increased the number of Ionized calcium-binding adapter molecule 1 (IBA1) positive cells, and elevated levels of inflammatory cytokines in the cochlea. TLR4 knockout (TLR4-KO) mice demonstrated reduced LPS-induced cochlear sensorineural damage. CONCLUSION LPS injection into the PSCC induces sensorineural tissue damage in the cochlea and results in sensorineural hearing loss. These findings suggest that TLR4 inhibition can alleviate cochlear inflammation-induced sensorineural hearing loss. TLR4 represents a potential therapeutic target for sensorineural hearing loss.
Collapse
Grants
- 82471155 National Natural Science Foundation of China
- 82201277 National Natural Science Foundation of China
- 82471155 National Natural Science Foundation of China
- 82201277 National Natural Science Foundation of China
- 82471155 National Natural Science Foundation of China
- 82471155 National Natural Science Foundation of China
- 82471155 National Natural Science Foundation of China
- 82471155 National Natural Science Foundation of China
- 82471155 National Natural Science Foundation of China
- 82471155 National Natural Science Foundation of China
- 82471155 National Natural Science Foundation of China
- 82471155 National Natural Science Foundation of China
- 2022A1515012436 Natural Science Foundation of Guangdong Province
- 2022A1515012436 Natural Science Foundation of Guangdong Province
- 2022A1515012436 Natural Science Foundation of Guangdong Province
- 2022A1515012436 Natural Science Foundation of Guangdong Province
- 2022A1515012436 Natural Science Foundation of Guangdong Province
- 2022A1515012436 Natural Science Foundation of Guangdong Province
- 2022A1515012436 Natural Science Foundation of Guangdong Province
- 2022A1515012436 Natural Science Foundation of Guangdong Province
- 2022A1515012436 Natural Science Foundation of Guangdong Province
- 2024004 Fundamental Research Funds for the Central, Universities, Sun Yat-sen University
- 2024004 Fundamental Research Funds for the Central, Universities, Sun Yat-sen University
- 2024004 Fundamental Research Funds for the Central, Universities, Sun Yat-sen University
- 2024004 Fundamental Research Funds for the Central, Universities, Sun Yat-sen University
- 2024004 Fundamental Research Funds for the Central, Universities, Sun Yat-sen University
- 2024004 Fundamental Research Funds for the Central, Universities, Sun Yat-sen University
- 2024004 Fundamental Research Funds for the Central, Universities, Sun Yat-sen University
- 2024004 Fundamental Research Funds for the Central, Universities, Sun Yat-sen University
- 2024004 Fundamental Research Funds for the Central, Universities, Sun Yat-sen University
- 2024004 Fundamental Research Funds for the Central, Universities, Sun Yat-sen University
Collapse
Affiliation(s)
- Jintao Lou
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107 Yanjiang West Road, Yuexiu District, Guangzhou, 510120, China
- Institute of Hearing and Speech-Language Science, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Guangdong Provincial Key Laboratory of Cancer Pathogenesis and Precision Diagnosis and Treatment Shenshan Medical Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Shanwei, China
| | - Fan Wu
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107 Yanjiang West Road, Yuexiu District, Guangzhou, 510120, China
- Institute of Hearing and Speech-Language Science, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Guangdong Provincial Key Laboratory of Cancer Pathogenesis and Precision Diagnosis and Treatment Shenshan Medical Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Shanwei, China
| | - Wei Liu
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107 Yanjiang West Road, Yuexiu District, Guangzhou, 510120, China
- Institute of Hearing and Speech-Language Science, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Guangdong Provincial Key Laboratory of Cancer Pathogenesis and Precision Diagnosis and Treatment Shenshan Medical Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Shanwei, China
| | - Rui Hu
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107 Yanjiang West Road, Yuexiu District, Guangzhou, 510120, China
- Institute of Hearing and Speech-Language Science, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Guangdong Provincial Key Laboratory of Cancer Pathogenesis and Precision Diagnosis and Treatment Shenshan Medical Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Shanwei, China
| | - Wuhui He
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107 Yanjiang West Road, Yuexiu District, Guangzhou, 510120, China
- Institute of Hearing and Speech-Language Science, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Guangdong Provincial Key Laboratory of Cancer Pathogenesis and Precision Diagnosis and Treatment Shenshan Medical Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Shanwei, China
| | - Yisi Feng
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107 Yanjiang West Road, Yuexiu District, Guangzhou, 510120, China
- Institute of Hearing and Speech-Language Science, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Guangdong Provincial Key Laboratory of Cancer Pathogenesis and Precision Diagnosis and Treatment Shenshan Medical Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Shanwei, China
| | - Yan Huang
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107 Yanjiang West Road, Yuexiu District, Guangzhou, 510120, China
- Institute of Hearing and Speech-Language Science, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Guangdong Provincial Key Laboratory of Cancer Pathogenesis and Precision Diagnosis and Treatment Shenshan Medical Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Shanwei, China
| | - Jia Guo
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107 Yanjiang West Road, Yuexiu District, Guangzhou, 510120, China
- Institute of Hearing and Speech-Language Science, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Guangdong Provincial Key Laboratory of Cancer Pathogenesis and Precision Diagnosis and Treatment Shenshan Medical Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Shanwei, China
| | - Jingman Deng
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107 Yanjiang West Road, Yuexiu District, Guangzhou, 510120, China
- Institute of Hearing and Speech-Language Science, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Guangdong Provincial Key Laboratory of Cancer Pathogenesis and Precision Diagnosis and Treatment Shenshan Medical Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Shanwei, China
| | - Zhen Zhao
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107 Yanjiang West Road, Yuexiu District, Guangzhou, 510120, China
- Institute of Hearing and Speech-Language Science, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Guangdong Provincial Key Laboratory of Cancer Pathogenesis and Precision Diagnosis and Treatment Shenshan Medical Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Shanwei, China
| | - Zhigang Zhang
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107 Yanjiang West Road, Yuexiu District, Guangzhou, 510120, China.
- Institute of Hearing and Speech-Language Science, Sun Yat-Sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Guangdong Provincial Key Laboratory of Cancer Pathogenesis and Precision Diagnosis and Treatment Shenshan Medical Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Shanwei, China.
| | - Yu Si
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107 Yanjiang West Road, Yuexiu District, Guangzhou, 510120, China.
- Institute of Hearing and Speech-Language Science, Sun Yat-Sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Guangdong Provincial Key Laboratory of Cancer Pathogenesis and Precision Diagnosis and Treatment Shenshan Medical Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Shanwei, China.
| |
Collapse
|
4
|
Vitry S, Mendia C, Maudoux A, El-Amraoui A. Advancing precision ear medicine: leveraging animal models for disease insights and therapeutic innovations. Mamm Genome 2025:10.1007/s00335-025-10126-y. [PMID: 40263131 DOI: 10.1007/s00335-025-10126-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/28/2025] [Indexed: 04/24/2025]
Abstract
Gene therapy offers significant promise for treating inner ear disorders, but its clinical translation requires robust preclinical validation, often reliant on animal models. This review examines the role of these models in advancing gene therapeutics for inherited inner ear disorders, focusing on successes, challenges, and treatment solutions. By providing a precise understanding of disease mechanisms, these models offer a versatile preclinical platform that is essential for assessing and validating therapies. Successful gene supplementation and editing have shown potential in restoring hearing and balance functions and preventing their decline. However, challenges such as limitations in gene delivery methods, surgical access, immune responses, and discrepancies in disease manifestation between animal models and humans hinder clinical translation. Current efforts are dedicated to developing innovative strategies aimed at enhancing the efficiency of gene delivery, overcoming physical barriers such as the blood-labyrinth barrier, improving target specificity, and maximizing therapeutic efficacy while minimizing adverse immune responses. Diverse gene supplementation and editing strategies, along with evolving technologies, hold promise for maximizing therapeutic outcomes using disease relevant models. The future of inner ear gene therapeutics will hinge on personalized therapies and team science fueling interdisciplinary collaborations among researchers, clinicians, companies, and regulatory agencies to expedite the translation from bench to bedside and unlock the immense potential of precision medicine in the inner ear.
Collapse
Affiliation(s)
- Sandrine Vitry
- Université Paris Cité, Institut Pasteur, AP-HP, INSERM, CNRS, Fondation Pour l'Audition, Institut de l'Audition, IHU reConnect, Progressive Sensory Disorders, Pathophysiology and Therapy, F-75012, Paris, France.
- Unit Progressive Sensory Disorders, Pathophysiology and Therapy, Institut Pasteur, Institut de l'Audition, Paris, France.
| | - Clara Mendia
- Université Paris Cité, Institut Pasteur, AP-HP, INSERM, CNRS, Fondation Pour l'Audition, Institut de l'Audition, IHU reConnect, Progressive Sensory Disorders, Pathophysiology and Therapy, F-75012, Paris, France
- Collège Doctoral, Sorbonne Université, 75005, Paris, France
| | - Audrey Maudoux
- Université Paris Cité, Institut Pasteur, AP-HP, INSERM, CNRS, Fondation Pour l'Audition, Institut de l'Audition, IHU reConnect, Progressive Sensory Disorders, Pathophysiology and Therapy, F-75012, Paris, France
- Otolaryngology Department, Assistance Publique des Hôpitaux de Paris, Robert Debré University Hospital-APHP, Paris, France
| | - Aziz El-Amraoui
- Université Paris Cité, Institut Pasteur, AP-HP, INSERM, CNRS, Fondation Pour l'Audition, Institut de l'Audition, IHU reConnect, Progressive Sensory Disorders, Pathophysiology and Therapy, F-75012, Paris, France.
- Unit Progressive Sensory Disorders, Pathophysiology and Therapy, Institut Pasteur, Institut de l'Audition, Paris, France.
| |
Collapse
|
5
|
Jin Y, Dong W, Jiang Y, Dong L, Li Z, Yu D. VDAC1 Inhibition Protects Against Noise-Induced Hearing Loss via the PINK1/Parkin Pathway. CNS Neurosci Ther 2025; 31:e70410. [PMID: 40285415 PMCID: PMC12032401 DOI: 10.1111/cns.70410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 04/03/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025] Open
Abstract
AIMS This study examined the effect of 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), an anion channel blocker of voltage-dependent anion channel 1 (VDAC1), on noise-induced hearing loss (NIHL) and its underlying mechanisms. METHODS Cochlear explants and House Ear Institute-Organ of Corti 1 (HEI-OC1) cells were used to assess the effect of DIDS in vitro. Auditory brainstem responses were used to assess auditory functions in mice. Immunofluorescence staining of myosin 7a and CTBP2 were used to examine hair cells and synaptic ribbons. The accumulation of reactive oxygen species (ROS) was measured by 4-HNE staining. The gene expression changes of cochlea were analyzed using RNA sequencing. RESULTS DIDS reduced the levels of ROS in cochlear explants and attenuated cell death caused by hydrogen peroxide in both cochlear explants and HEI-OC1 cells. In C57BL/6 mice, DIDS reduced ROS generation and tumor necrosis factor-α induced by noise exposure, thereby protecting outer hair cells and inner hair cell synaptic ribbons from noise-induced damage through a mechanism involving the PINK1/Parkin signaling pathway. The preventive effect of DIDS in cochlear explants was eliminated by mitophagy inhibition. CONCLUSION VDAC1 inhibition enhances mitophagy in cochlear hair cells, playing a critical role in defending against oxidative stress and inflammation. Downregulation of VDAC1 may thus be considered a therapeutic strategy for preventing cochlear hair cell damage and reducing NIHL.
Collapse
Affiliation(s)
- Yuchen Jin
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology‐Head and Neck Surgery, Otolaryngology Institute of Shanghai Jiao Tong UniversityShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wenqi Dong
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology‐Head and Neck Surgery, Otolaryngology Institute of Shanghai Jiao Tong UniversityShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yumeng Jiang
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology‐Head and Neck Surgery, Otolaryngology Institute of Shanghai Jiao Tong UniversityShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Lingkang Dong
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology‐Head and Neck Surgery, Otolaryngology Institute of Shanghai Jiao Tong UniversityShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhuangzhuang Li
- Department of Otolaryngology, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Dongzhen Yu
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology‐Head and Neck Surgery, Otolaryngology Institute of Shanghai Jiao Tong UniversityShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
6
|
Zhao Z, Han Z, Shao Y, Naveena K, Yuan J, Zhou N, Wang C, Li X, Shi X, Jin D, Xu B, Dong F, Liu Z, Li W, Liu H, Qiao Y. A OHCs-Targeted Strategy for PEDF Delivery in Noise-Induced Hearing Loss. Adv Healthc Mater 2025; 14:e2403537. [PMID: 39865717 DOI: 10.1002/adhm.202403537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/09/2025] [Indexed: 01/28/2025]
Abstract
Noise-induced hearing loss (NIHL) results from prolonged exposure to intense noise, causing damage to sensory outer hair cells (OHCs) and spiral ganglion neurons (SGNs). The blood labyrinth barrier (BLB) hinders systemic drug delivery to the inner ear. This study applied a retro-auricular round window membrane (RWM) method to bypass the BLB, enabling the transport of macromolecular proteins into the inner ear. Pigment epithelium-derived factor (PEDF), which has anti-inflammatory and neuroprotective properties, is conjugated to a prestin-targeting peptide 2 (PrTP2) using N-succinimidyl-3-maleimidopropionate (SMP) to form PrTP2-SMP/PEDF. This compound specifically targeted Prestin and accumulated around OHCs for sustained release, effectively reducing OHC and SGN loss. Functional and structural tests, including auditory brainstem response (ABR), confocal microscopy, and scanning electron microscopy (SEM), revealed significant hearing restoration and cellular protection. Additionally, the results of enzyme-linked immunosorbent assay (ELISA), Annexin V and propidium iodide (PI) staining and immunoblotting show that noise exposure may induce pyroptosis in the cochlea by activating the NOD-like receptor protein 3 (NLRP3)-apoptosis-associated speck-like protein containing a CARD (ASC) - cysteinyl aspartate specific proteinase (Caspase-1) pathway and PrTP2-SMP/PEDF alleviates the inflammatory response by inhibiting pyroptosis. Toxicity analysis indicates no adverse effects, suggesting that PrTP2-SMP/PEDF has a promising therapeutic prospective for NIHL.
Collapse
Affiliation(s)
- Zeqi Zhao
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, P. R. China
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, 221002, P. R. China
- Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, 221002, P. R. China
| | - Zhengzhong Han
- Department of Neurosurgery, Xuzhou Children's Hospital, Xuzhou, 221002, P. R. China
| | - Yudi Shao
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, P. R. China
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, 221002, P. R. China
- Central Laboratory, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, P. R. China
| | - Konduru Naveena
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, P. R. China
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, 221002, P. R. China
- Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, 221002, P. R. China
| | - Jintao Yuan
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, P. R. China
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, 221002, P. R. China
- Central Laboratory, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, P. R. China
| | - Nan Zhou
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, P. R. China
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, 221002, P. R. China
- Central Laboratory, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, P. R. China
| | - Caiji Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, P. R. China
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, 221002, P. R. China
- Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, 221002, P. R. China
| | - Xuanyi Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, P. R. China
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, 221002, P. R. China
- Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, 221002, P. R. China
| | - Xi Shi
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, 221002, P. R. China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Hainan, 570228, P. R. China
- Song Li's Academician Workstation of Hainan University, School of Pharmaceutical Sciences, Hainan, 572000, P. R. China
| | - Dan Jin
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, P. R. China
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, 221002, P. R. China
- Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, 221002, P. R. China
| | - Bing Xu
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, P. R. China
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, 221002, P. R. China
- Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, 221002, P. R. China
| | - Fuxing Dong
- Public Experimental Research Center, Xuzhou Medical University, Xuzhou, 221002, P. R. China
| | - Zhiwei Liu
- Public Experimental Research Center, Xuzhou Medical University, Xuzhou, 221002, P. R. China
| | - Wei Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, P. R. China
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, 221002, P. R. China
- Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, 221002, P. R. China
| | - Hongmei Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yuehua Qiao
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, P. R. China
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, 221002, P. R. China
- Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, 221002, P. R. China
| |
Collapse
|
7
|
Sharma S, Patel VB, Chhatbar YB, Bhimani RJ, Rangani AM. Intratympanic Platelet-Rich Plasma Therapy for Sudden Sensorineural Hearing Loss: A Preliminary Prospective Study. Indian J Otolaryngol Head Neck Surg 2024; 76:5334-5339. [PMID: 39559101 PMCID: PMC11569041 DOI: 10.1007/s12070-024-04971-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/04/2024] [Indexed: 11/20/2024] Open
Abstract
Sudden Sensorineural Hearing Loss (SSNHL) is a distressing condition with limited treatment options. This prospective study aimed to investigate the effectiveness of intratympanic Platelet Rich Plasma (PRP) as a salvage treatment for SSNHL. 56 consecutive patients with unilateral SSNHL, unresponsive to conventional treatments, were administered two intratympanic injections of autologous PRP 10 days apart and hearing threshold evaluated after one month. Audiometric data before and after PRP injections revealed a significant mean hearing gain of 11.99 dB which was more in lower frequencies (250, 500, 1000 Hz) reaching upto 13.88dB. Notably, improvement was observed in patients with amino glycoside-induced hearing loss, even after prolonged symptom duration. Additionally, 8 out of 17 patients reported subjective improvement in tinnitus. No serious adverse events were noted, and patients tolerated the procedure well. Intratympanic PRP holds promise as a salvage treatment for SSNHL, particularly in cases where conventional treatments have failed. Further research with larger sample sizes and comparative studies is warranted to establish PRP's role as a primary therapy for SSNHL and explore its long-term benefits. Its role in treatment of tinnitus also needs to be explored.
Collapse
Affiliation(s)
- Suktara Sharma
- MS Otolaryngology, GCS Medical College & Research Centre, H-101, Red Avenue Maple County 2, Off Sindhu Bhavan Road, Ahmedabad, Thaltej, Gujarat 380058 India
| | - Vaibhav B. Patel
- MS Otolaryngology, GCS Medical College & Research Centre, H-101, Red Avenue Maple County 2, Off Sindhu Bhavan Road, Ahmedabad, Thaltej, Gujarat 380058 India
| | - Yashwant B. Chhatbar
- MS Otolaryngology, GCS Medical College & Research Centre, H-101, Red Avenue Maple County 2, Off Sindhu Bhavan Road, Ahmedabad, Thaltej, Gujarat 380058 India
| | - Rahulkumar J. Bhimani
- MS Otolaryngology, GCS Medical College & Research Centre, H-101, Red Avenue Maple County 2, Off Sindhu Bhavan Road, Ahmedabad, Thaltej, Gujarat 380058 India
| | - Aneri M. Rangani
- MS Otolaryngology, GCS Medical College & Research Centre, H-101, Red Avenue Maple County 2, Off Sindhu Bhavan Road, Ahmedabad, Thaltej, Gujarat 380058 India
| |
Collapse
|
8
|
Goncalves S, Thielhelm T, Pawley D, Bas E, Dikici E, Deo SK, Dinh CT, Daunert S, Telischi F. Improved intracochlear biopolymeric drug delivery system: an in vivo study. Acta Otolaryngol 2024:1-7. [PMID: 39522055 DOI: 10.1080/00016489.2024.2412719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND The delivery of drugs into the inner ear is a challenging field of study due to the complex cochlear anatomy and physiology. The creation of an intracochlear device that allows for short- and long-term intracochlear delivery of the drugs with a minimal invasive technology is needed to prevent or treat conditions that can potentially prevent the development of permanent hearing loss. AIM This study intends to test the efficacy of DXM-infused PLGA microneedles created in our laboratory in an in vivo animal model of acute ototoxic injury. MATERIAL AND METHODS Twenty-four male Norway Brown rats were randomized into four groups, three of which groups received an intratympanic injection of ethacrynic acid and kanamycin. Two of these groups underwent the placement of an intracochlear microneedle blended or not with dexamethasone, and two groups underwent implantation of a plain microneedle, one of without prior exposure to the ototoxic agent to confirm in vivo biocompatibility. Animals were then followed with a weekly auditory brainstem response testing until day 28 after surgical intervention. RESULT AND CONCLUSION Our intracochlear device demonstrated biocompatibility and produced no hearing changes after its implantation in the control group. Inserted DXM-blended microneedles prevented hearing deterioration in those animals exposed to an ototoxic environment.
Collapse
Affiliation(s)
- Stefania Goncalves
- Department of Otolaryngology - Head and Neck Surgery, University of Miami Ear Institute, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Torin Thielhelm
- Department of Otolaryngology - Head and Neck Surgery, University of Miami Ear Institute, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Devon Pawley
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, USA
- Dr. JT Macdonal Foundation Biomedial Nanotechnology Institute, University of Miami, Miami, FL, USA
| | - Esperanza Bas
- Department of Research Pharmacy, Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Emre Dikici
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, USA
- Dr. JT Macdonal Foundation Biomedial Nanotechnology Institute, University of Miami, Miami, FL, USA
| | - Sapna K Deo
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, USA
- Dr. JT Macdonal Foundation Biomedial Nanotechnology Institute, University of Miami, Miami, FL, USA
| | - Christine T Dinh
- Department of Otolaryngology - Head and Neck Surgery, University of Miami Ear Institute, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, USA
- Dr. JT Macdonal Foundation Biomedial Nanotechnology Institute, University of Miami, Miami, FL, USA
- University of Miami Clinical and Translational Science Institute, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Fred Telischi
- Department of Otolaryngology - Head and Neck Surgery, University of Miami Ear Institute, University of Miami, Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
9
|
Maniaci A, Briglia M, Allia F, Montalbano G, Romano GL, Zaouali MA, H’mida D, Gagliano C, Malaguarnera R, Lentini M, Graziano ACE, Giurdanella G. The Role of Pericytes in Inner Ear Disorders: A Comprehensive Review. BIOLOGY 2024; 13:802. [PMID: 39452111 PMCID: PMC11504721 DOI: 10.3390/biology13100802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/02/2024] [Accepted: 10/06/2024] [Indexed: 10/26/2024]
Abstract
Inner ear disorders, including sensorineural hearing loss, Meniere's disease, and vestibular neuritis, are prevalent conditions that significantly impact the quality of life. Despite their high incidence, the underlying pathophysiology of these disorders remains elusive, and current treatment options are often inadequate. Emerging evidence suggests that pericytes, a type of vascular mural cell specialized to maintain the integrity and function of the microvasculature, may play a crucial role in the development and progression of inner ear disorders. The pericytes are present in the microvasculature of both the cochlea and the vestibular system, where they regulate blood flow, maintain the blood-labyrinth barrier, facilitate angiogenesis, and provide trophic support to neurons. Understanding their role in inner ear disorders may provide valuable insights into the pathophysiology of these conditions and lead to the development of novel diagnostic and therapeutic strategies, improving the standard of living. This comprehensive review aims to provide a detailed overview of the role of pericytes in inner ear disorders, highlighting the anatomy and physiology in the microvasculature, and analyzing the mechanisms that contribute to the development of the disorders. Furthermore, we explore the potential pericyte-targeted therapies, including antioxidant, anti-inflammatory, and angiogenic approaches, as well as gene therapy strategies.
Collapse
Affiliation(s)
- Antonino Maniaci
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
- Department of Surgery, ENT Unit, Asp 7 Ragusa, 97100 Ragusa, Italy
| | - Marilena Briglia
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| | - Fabio Allia
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| | - Giuseppe Montalbano
- Zebrafish Neuromorphology Laboratory, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy;
| | - Giovanni Luca Romano
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| | - Mohamed Amine Zaouali
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy, University of Monastir, Avicenne Street, 5019 Monastir, Tunisia;
| | - Dorra H’mida
- Department of Cytogenetics and Reproductive Biology, Farhat Hached Hospital, 4021 Sousse, Tunisia;
| | - Caterina Gagliano
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| | - Roberta Malaguarnera
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| | - Mario Lentini
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
- Department of Surgery, ENT Unit, Asp 7 Ragusa, 97100 Ragusa, Italy
| | - Adriana Carol Eleonora Graziano
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| | - Giovanni Giurdanella
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| |
Collapse
|
10
|
Choi SJ, Lee SJ, Lee D, Im GJ, Jung HH, Lee SU, Park E. Protective Effect of Memantine on Cisplatin-Induced Ototoxicity: An In Vitro Study. Otol Neurotol 2024; 45:998-1005. [PMID: 39186064 DOI: 10.1097/mao.0000000000004317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
HYPOTHESIS Memantine, an N -methyl- d -aspartate receptor antagonist, is widely used to treat Alzheimer's disease and has been found to have potential neuroprotective effects. In this study, we evaluated the protective effects of memantine against cisplatin-induced ototoxicity. BACKGROUND Cisplatin is a widely used anticancer drug for various cancers; however, its use is limited by its side effects, including ototoxicity. Several drugs have been developed to reduce cisplatin toxicity. In this study, we treated cisplatin-damaged cochlear hair cells with memantine and evaluated its protective effects. METHOD House Ear Institute Organ of Corti 1 (HEI-OC1) cells and cochlear explants were treated with cisplatin or memantine. Cell viability, apoptotic patterns, reactive oxygen species (ROS) production, Bcl-2/caspase-3 activity, and cell numbers were measured to evaluate the anti-apoptotic and antioxidative effects of memantine. RESULT Memantine treatment significantly improved cell viability and reduced cisplatin-induced apoptosis in auditory cells. Bcl-2/caspase-3 activity was also significantly increased, suggesting anti-apoptotic effects against cisplatin-induced ototoxicity. CONCLUSION Our results suggest that memantine protects against cisplatin-induced ototoxicity in vitro, providing a potential new strategy for preventing hearing loss in patients undergoing cisplatin chemotherapy.
Collapse
Affiliation(s)
- Soo Jeong Choi
- Department of Otolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, Republic of Korea
| | - Soo Jin Lee
- Department of Otolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, Republic of Korea
| | - Dabin Lee
- Department of Otolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, Republic of Korea
| | - Gi Jung Im
- Department of Otolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hak Hyun Jung
- Department of Otolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, Republic of Korea
| | | | | |
Collapse
|
11
|
Kessler L, Koo C, Richter CP, Tan X. Hearing loss during chemotherapy: prevalence, mechanisms, and protection. Am J Cancer Res 2024; 14:4597-4632. [PMID: 39417180 PMCID: PMC11477841 DOI: 10.62347/okgq4382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/23/2024] [Indexed: 10/19/2024] Open
Abstract
Ototoxicity is an often-underestimated sequela for cancer patients undergoing chemotherapy, with an incidence rate exceeding 50%, affecting approximately 4 million individuals worldwide each year. Despite the nearly 2,000 publications on chemotherapy-related ototoxicity in the past decade, the understanding of its prevalence, mechanisms, and preventative or therapeutic measures remains ambiguous and subject to debate. To date, only one drug, sodium thiosulfate, has gained FDA approval for treating ototoxicity in chemotherapy. However, its utilization is restricted. This review aims to offer clinicians and researchers a comprehensive perspective by thoroughly and carefully reviewing available data and current evidence. Chemotherapy-induced ototoxicity is characterized by four primary symptoms: hearing loss, tinnitus, vertigo, and dizziness, originating from both auditory and vestibular systems. Hearing loss is the predominant symptom. Amongst over 700 chemotherapeutic agents documented in various databases, only seven are reported to induce hearing loss. While the molecular mechanisms of the hearing loss caused by the two platinum-based drugs are extensively explored, the pathways behind the action of the other five drugs are primarily speculative, rooted in their therapeutic properties and side effects. Cisplatin attracts the majority of attention among these drugs, encompassing around two-thirds of the literature regarding ototoxicity in chemotherapy. Cisplatin ototoxicity chiefly manifests through the loss of outer hair cells, possibly resulting from damages directly by cisplatin uptake or secondary effects on the stria vascularis. Both direct and indirect influences contribute to cisplatin ototoxicity, while it is still debated which path is dominant or where the primary target of cisplatin is located. Candidates for hearing protection against cisplatin ototoxicity are also discussed, with novel strategies and methods showing promise on the horizon.
Collapse
Affiliation(s)
- Lexie Kessler
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern UniversityChicago, Illinois 60611, USA
| | - Chail Koo
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern UniversityChicago, Illinois 60611, USA
| | - Claus-Peter Richter
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern UniversityChicago, Illinois 60611, USA
- Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern UniversityEvanston, Illinois 60208, USA
- Department of Biomedical Engineering, Northwestern UniversityEvanston, Illinois 60208, USA
- Department of Communication Sciences and Disorders, Northwestern UniversityEvanston, Illinois 60208, USA
| | - Xiaodong Tan
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern UniversityChicago, Illinois 60611, USA
- Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern UniversityEvanston, Illinois 60208, USA
| |
Collapse
|
12
|
Wu X, Wang H, Zhang X, Chen G, Guan J, Gao Y, Wang D, Wang Q. Clinical characteristics of sudden hearing loss during pregnancy. World J Otorhinolaryngol Head Neck Surg 2024; 10:165-172. [PMID: 39233853 PMCID: PMC11369794 DOI: 10.1002/wjo2.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/30/2023] [Accepted: 08/04/2023] [Indexed: 09/06/2024] Open
Abstract
Objective The objective of this study was to explore the clinical characteristics and management of sudden hearing loss (HL) during pregnancy, thus better guiding the clinical practice. Methods The clinical and follow-up data of 17 patients (17 ears) with sudden HL during pregnancy were analyzed retrospectively (the observe group). Twelve nonpregnant female patients (12 ears) with sudden HL of similar clinical characteristics were selected as the control group. The prognosis of the two groups was compared. All the patients were followed up after delivery, and two of them were readmitted to the hospital 1-2 months after delivery. Results The observe group had better improvement in hearing and a higher response rate compared to the control group. The pure tone hearing and speech recognition rate of patients could still be improved after the readmitted treatment, and the hearing could partially recover spontaneously during follow-up. The laboratory indicators that affect the inflammatory response and coagulation pathway were significantly different between the two groups. Conclusions The hearing condition of sudden HL during pregnancy is severe, and the prognosis of these patients is better than nonpregnant patients of similar clinical characteristics. Postpartum treatment is still effective, and some patients showed self-healing with time during follow-up. The inflammatory response and coagulation function may affect the hearing of patients through a metabolic pathway.
Collapse
Affiliation(s)
- Xiao‐Nan Wu
- Senior Department of Otolaryngology—Head & Neck Surgery, The Sixth Medical Center of PLA General HospitalChinese PLA Medical SchoolBeijingChina
| | - Hong‐Yang Wang
- Senior Department of Otolaryngology—Head & Neck Surgery, The Sixth Medical Center of PLA General HospitalChinese PLA Medical SchoolBeijingChina
- National Clinical Research Center for Otolaryngologic DiseasesBeijingChina
| | - Xiao‐Long Zhang
- Senior Department of Otolaryngology—Head & Neck Surgery, The Sixth Medical Center of PLA General HospitalChinese PLA Medical SchoolBeijingChina
| | - Guo‐Hui Chen
- Senior Department of Otolaryngology—Head & Neck Surgery, The Sixth Medical Center of PLA General HospitalChinese PLA Medical SchoolBeijingChina
| | - Jing Guan
- Senior Department of Otolaryngology—Head & Neck Surgery, The Sixth Medical Center of PLA General HospitalChinese PLA Medical SchoolBeijingChina
- National Clinical Research Center for Otolaryngologic DiseasesBeijingChina
| | - Yun Gao
- Senior Department of Otolaryngology—Head & Neck Surgery, The Sixth Medical Center of PLA General HospitalChinese PLA Medical SchoolBeijingChina
| | - Da‐Yong Wang
- Senior Department of Otolaryngology—Head & Neck Surgery, The Sixth Medical Center of PLA General HospitalChinese PLA Medical SchoolBeijingChina
- National Clinical Research Center for Otolaryngologic DiseasesBeijingChina
| | - Qiu‐Ju Wang
- Senior Department of Otolaryngology—Head & Neck Surgery, The Sixth Medical Center of PLA General HospitalChinese PLA Medical SchoolBeijingChina
- National Clinical Research Center for Otolaryngologic DiseasesBeijingChina
| |
Collapse
|
13
|
Singh CV, Jain S. The Role of Platelet-Rich Plasma in the Management of Sensorineural Hearing Loss: Current Evidence and Emerging Trends. Cureus 2024; 16:e68646. [PMID: 39371823 PMCID: PMC11451513 DOI: 10.7759/cureus.68646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 10/08/2024] Open
Abstract
Sensorineural hearing loss (SNHL) is a common form of hearing impairment characterized by damage to the inner ear or auditory nerve, resulting in significant communication difficulties and reduced quality of life. Current treatment options, including hearing aids, cochlear implants, and corticosteroids, primarily focus on symptom management and do not address the underlying pathophysiological damage. Platelet-rich plasma (PRP), an autologous concentrate rich in platelets and growth factors, has emerged as a potential regenerative therapy due to its ability to promote tissue repair and cellular regeneration. This review provides a comprehensive overview of the role of PRP in the management of SNHL, examining the current evidence from preclinical and clinical studies. We discuss the mechanisms through which PRP may promote auditory tissue regeneration and repair, analyze its efficacy and safety profile, and explore innovative approaches and future directions in its application for SNHL. Despite promising preliminary findings, further research is needed to optimize PRP protocols, establish standardized treatment guidelines, and conduct large-scale randomized controlled trials to validate efficacy. This review aims to highlight the potential of PRP as a novel therapeutic strategy in treating SNHL and its possible integration into current clinical practices, offering new hope for patients with this debilitating condition.
Collapse
Affiliation(s)
- Chandra Veer Singh
- Otolaryngology - Head and Neck Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Shraddha Jain
- Otolaryngology - Head and Neck Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
14
|
Wang L, Zhang R, Jiang L, Gao S, Wu J, Jiao Y. Biomaterials as a new option for treating sensorineural hearing loss. Biomater Sci 2024; 12:4006-4023. [PMID: 38979939 DOI: 10.1039/d4bm00518j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Sensorineural hearing loss (SNHL) usually involves damage to complex auditory pathways such as inner ear cells and auditory nerves. The highly intricate and nuanced characteristics of these cells render their repair and regeneration extremely challenging, making it difficult to restore hearing to normal levels once it has been compromised. The effectiveness of traditional drugs is so minimal that they provide little help with the treatment. Fortunately, extensive experiments have demonstrated that combining biomaterials with conventional techniques significantly enhances drug effectiveness. This article reviews the research progress of biomaterials in protecting hair cells and the auditory nerve, repairing genes related to hearing, and developing artificial cochlear materials. By organizing the knowledge presented in this article, perhaps new insights can be provided for the clinical management of SNHL.
Collapse
Affiliation(s)
- Liwen Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Guangzhou Twelfth People's Hospital (The Affiliated Twelfth People's Hospital of Guangzhou Medical University), Guangzhou 510620, China
- Institute of Otorhinolaryngology, Head and Neck Surgery, Guangzhou Medical University, Guangzhou 510620, China.
| | - Ruhe Zhang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Linlan Jiang
- Department of Otorhinolaryngology Head and Neck Surgery, Guangzhou Twelfth People's Hospital (The Affiliated Twelfth People's Hospital of Guangzhou Medical University), Guangzhou 510620, China
- Institute of Otorhinolaryngology, Head and Neck Surgery, Guangzhou Medical University, Guangzhou 510620, China.
| | - Shuyi Gao
- Department of Otorhinolaryngology Head and Neck Surgery, Guangzhou Twelfth People's Hospital (The Affiliated Twelfth People's Hospital of Guangzhou Medical University), Guangzhou 510620, China
- Institute of Otorhinolaryngology, Head and Neck Surgery, Guangzhou Medical University, Guangzhou 510620, China.
| | - Jun Wu
- Institute of Otorhinolaryngology, Head and Neck Surgery, Guangzhou Medical University, Guangzhou 510620, China.
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, China.
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yuenong Jiao
- Department of Otorhinolaryngology Head and Neck Surgery, Guangzhou Twelfth People's Hospital (The Affiliated Twelfth People's Hospital of Guangzhou Medical University), Guangzhou 510620, China
- Institute of Otorhinolaryngology, Head and Neck Surgery, Guangzhou Medical University, Guangzhou 510620, China.
| |
Collapse
|
15
|
Wagle SR, Kovacevic B, Foster T, Ionescu CM, Jones M, Mikov M, Wise A, Mooranian A, Al-Salami H. Probucol-bile acid nanoparticles: a novel approach and promising solution to prevent cellular oxidative stress in sensorineural hearing loss. J Drug Target 2024; 32:737-755. [PMID: 38758361 DOI: 10.1080/1061186x.2024.2349111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
The use of antioxidants could thus prove an effective medication to prevent or facilitate recovery from oxidative stress-induced sensorineural hearing loss (SNHL). One promising strategy to prevent SNHL is developing probucol (PB)-based nanoparticles using encapsulation technology and administering them to the inner ear via the established intratympanic route. The preclinical, clinical and epidemiological studies support that PB is a proven antioxidant that could effectively prevent oxidative stress in different study models. Such findings suggest its applicability in preventing oxidative stress within the inner ear and its associated neural cells. However, several hurdles, such as overcoming the blood-labyrinth barrier, ensuring sustained release, minimising systemic side effects and optimising targeted delivery in the intricate inner ear structures, must be overcome to efficiently deliver PB to the inner ear. This review explores the background and pathogenesis of hearing loss, the potential of PB in treating oxidative stress and its cellular mechanisms, and the obstacles linked to inner ear drug delivery for effectively introducing PB to the inner ear.
Collapse
Affiliation(s)
- Susbin Raj Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Western Australia, Australia
| | - Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Western Australia, Australia
| | - Thomas Foster
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Western Australia, Australia
| | - Corina Mihaela Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Western Australia, Australia
| | - Melissa Jones
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Western Australia, Australia
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | | | - Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Western Australia, Australia
- School of Pharmacy, University of Otago, Dunedin, Otago, New Zealand
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Western Australia, Australia
- Medical School, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
16
|
Vecchi JT, Claussen AD, Hansen MR. Decreasing the physical gap in the neural-electrode interface and related concepts to improve cochlear implant performance. Front Neurosci 2024; 18:1425226. [PMID: 39114486 PMCID: PMC11303154 DOI: 10.3389/fnins.2024.1425226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Cochlear implants (CI) represent incredible devices that restore hearing perception for those with moderate to profound sensorineural hearing loss. However, the ability of a CI to restore complex auditory function is limited by the number of perceptually independent spectral channels provided. A major contributor to this limitation is the physical gap between the CI electrodes and the target spiral ganglion neurons (SGNs). In order for CI electrodes to stimulate SGNs more precisely, and thus better approximate natural hearing, new methodologies need to be developed to decrease this gap, (i.e., transitioning CIs from a far-field to near-field device). In this review, strategies aimed at improving the neural-electrode interface are discussed in terms of the magnitude of impact they could have and the work needed to implement them. Ongoing research suggests current clinical efforts to limit the CI-related immune response holds great potential for improving device performance. This could eradicate the dense, fibrous capsule surrounding the electrode and enhance preservation of natural cochlear architecture, including SGNs. In the long term, however, optimized future devices will likely need to induce and guide the outgrowth of the peripheral process of SGNs to be in closer proximity to the CI electrode in order to better approximate natural hearing. This research is in its infancy; it remains to be seen which strategies (surface patterning, small molecule release, hydrogel coating, etc.) will be enable this approach. Additionally, these efforts aimed at optimizing CI function will likely translate to other neural prostheses, which face similar issues.
Collapse
Affiliation(s)
- Joseph T. Vecchi
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, Iowa City, IA, United States
- Department of Otolaryngology Head-Neck Surgery, Carver College of Medicine, Iowa City, IA, United States
| | - Alexander D. Claussen
- Department of Otolaryngology Head-Neck Surgery, Carver College of Medicine, Iowa City, IA, United States
| | - Marlan R. Hansen
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, Iowa City, IA, United States
- Department of Otolaryngology Head-Neck Surgery, Carver College of Medicine, Iowa City, IA, United States
| |
Collapse
|
17
|
Virk SM, Trujillo-Provencio C, Serrano EE. Transcriptomic Analysis Identifies Candidate Genes for Differential Expression during Xenopus laevis Inner Ear Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.29.573599. [PMID: 38260420 PMCID: PMC10802236 DOI: 10.1101/2023.12.29.573599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Background The genes involved in inner ear development and maintenance of the adult organ have yet to be fully characterized. Previous genetic analysis has emphasized the early development that gives rise to the otic vesicle. This study aimed to bridge the knowledge gap and identify candidate genes that are expressed as the auditory and vestibular sensory organs continue to grow and develop until the systems reach postmetamorphic maturity. Methods Affymetrix microarrays were used to assess inner ear transcriptome profiles from three Xenopus laevis developmental ages where all eight endorgans comprise mechanosensory hair cells: larval stages 50 and 56, and the post-metamorphic juvenile. Pairwise comparisons were made between the three developmental stages and the resulting differentially expressed X. laevis Probe Set IDs (Xl-PSIDs) were assigned to four groups based on differential expression patterns. DAVID analysis was undertaken to impart functional annotation to the differentially regulated Xl-PSIDs. Results Analysis identified 1510 candidate genes for differential gene expression in one or more pairwise comparison. Annotated genes not previously associated with inner ear development emerged from this analysis, as well as annotated genes with established inner ear function, such as oncomodulin, neurod1, and sp7. Notably, 36% of differentially expressed Xl-PSIDs were unannotated. Conclusions Results draw attention to the complex gene regulatory patterns that characterize Xenopus inner ear development, and underscore the need for improved annotation of the X. laevis genome. Outcomes can be utilized to select candidate inner ear genes for functional analysis, and to promote Xenopus as a model organism for biomedical studies of hearing and balance.
Collapse
Affiliation(s)
- Selene M Virk
- Biology Department, New Mexico State University, Las Cruces NM USA 88003
| | | | - Elba E Serrano
- Biology Department, New Mexico State University, Las Cruces NM USA 88003
| |
Collapse
|
18
|
Funt SA, Knezevic A, Wilson K, Bromberg M, Budnick A, O’Connor KL, McHugh DJ, Larsen E, Bajorin DF, Motzer RJ, Tonorezos ES, Patil S, Feldman DR. Ototoxicity associated with high-dose carboplatin for patients with previously treated germ cell tumors. Cancer 2023; 129:3952-3961. [PMID: 37715631 PMCID: PMC11305123 DOI: 10.1002/cncr.34991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/26/2023] [Accepted: 07/18/2023] [Indexed: 09/17/2023]
Abstract
BACKGROUND High-dose carboplatin is an essential part of curative high-dose chemotherapy (HDCT) for patients with previously treated germ cell tumors (GCTs). Although hearing loss (HL) is a known side effect of HDCT, data on its severity and characteristics are limited. METHODS Eligible patients received HDCT for GCTs from 1993 to 2017 and had audiograms before and after HDCT. HL severity was classified by American Speech-Language-Hearing Association criteria, and mean change in hearing threshold at each frequency (0.25-8 kHz) was estimated from pre- to post-HDCT and between HDCT cycles. RESULTS Of 115 patients (median age, 32 years), 102 (89%) received three cycles of HDCT. Of 106 patients with normal hearing to mild HL in the speech frequencies (0.5-4 kHz) before HDCT, 70 (66%) developed moderate to profound HL in the speech frequencies after HDCT. Twenty-five patients (22%) were recommended for hearing aids after HDCT. Patients with moderate to profound HL isolated to the higher frequencies (6-8 kHz) before HDCT were more likely to develop moderate to profound HL in the speech frequencies after HDCT (94% vs. 61%; p = .01) and to be recommended for hearing aids (39% vs. 18%; p = .05). CONCLUSIONS HL was frequent after HDCT for GCTs, with most patients developing at least moderate HL in the speech frequencies and approximately one in five recommended for hearing aids. Moderate to profound HL isolated to high frequencies at baseline was predictive of more clinically significant hearing impairment after HDCT. PLAIN LANGUAGE SUMMARY Some patients with germ cell tumors, the most common malignancy in adolescent and young adult men, are not cured with standard-dose chemotherapy and require high-dose chemotherapy (HDCT). Using detailed hearing assessments of patients receiving HDCT, we found that most patients developed significant hearing loss and that one in five needed hearing aids. Thus, strategies to reduce this side effect are urgently needed, and all patients receiving HDCT should have a hearing test after therapy.
Collapse
Affiliation(s)
- Samuel A. Funt
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Andrea Knezevic
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Kaamilah Wilson
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Maria Bromberg
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Amy Budnick
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Kerri L. O’Connor
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Deaglan J. McHugh
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Erik Larsen
- Formerly of Decibel Therapeutics, Boston, MA, USA
| | - Dean F. Bajorin
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Robert J. Motzer
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | | | - Sujata Patil
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Department of Biostatistics, Cleveland Clinic, Cleveland, Ohio, USA
| | - Darren R. Feldman
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
19
|
Chang SY, Kim E, Carpena NT, Lee JH, Kim DH, Lee MY. Photobiomodulation Can Enhance Stem Cell Viability in Cochlea with Auditory Neuropathy but Does Not Restore Hearing. Stem Cells Int 2023; 2023:6845571. [PMID: 38020205 PMCID: PMC10665102 DOI: 10.1155/2023/6845571] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/15/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Sensorineural hearing loss is very difficult to treat. Currently, one of the techniques used for hearing rehabilitation is a cochlear implant that can transform sound into electrical signals instead of inner ear hair cells. However, the prognosis remains very poor if sufficient auditory nerve cells are not secured. In this study, the effect of mouse embryonic stem cells (mESC) and photobiomodulation (PBM) combined treatment on auditory function and auditory nerve cells in a secondary neuropathy animal model was investigated. To confirm the engraftment of stem cells in vitro, cochlear explants were treated with kanamycin (KM) to mimic nerve damage and then cocultured with GFP-mESC. GFP-mESCs were observed to have attached and integrated into the explanted samples. An animal model for secondary neurodegeneration was achieved by KM treatment and was treated by a combination therapy of GFP-mESC and NIR-PBM at 8 weeks of KM treatment. Hearing recovery by functional testing using auditory brain stem response (ABR) and eABR was measured as well as morphological changes and epifluorescence analysis were conducted after 2 weeks of combination therapy. KM treatment elevated the hearing threshold at 70-80 dB and even after the combination treatment with GFP-mESC and PBM was applied, the auditory function was not restored. In addition, the stem cells transplanted into cochlea has exponentially increased due to PBM treatment although did not produce any malignancy. This study confirmed that the combined treatment with mESC and PBM could not improve hearing or increase the response of the auditory nerve. Nevertheless, it is noteworthy in this study that the cells are distributed in most cochlear tissues and the proliferation of stem cells was very active in animals irradiated with PBM compared to other groups wherein the stem cells had disappeared immediately after transplantation or existed for only a short period of time.
Collapse
Affiliation(s)
- So-Young Chang
- Beckman Laser Institute Korea, Dankook University, Cheonan 31116, Republic of Korea
| | - Eunjeong Kim
- Department of Biological Science, College of Science & Technology, Dankook University, Cheonan 31116, Republic of Korea
| | - Nathaniel T. Carpena
- Department of Otolaryngology-Head & Neck Surgery, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Jae-Hun Lee
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | | | - Min Young Lee
- Beckman Laser Institute Korea, Dankook University, Cheonan 31116, Republic of Korea
- Department of Otolaryngology-Head & Neck Surgery, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
20
|
Castelli V, d'Angelo M, Zazzeroni F, Vecchiotti D, Alesse E, Capece D, Brandolini L, Cattani F, Aramini A, Allegretti M, Cimini A. Intranasal delivery of NGF rescues hearing impairment in aged SAMP8 mice. Cell Death Dis 2023; 14:605. [PMID: 37704645 PMCID: PMC10499813 DOI: 10.1038/s41419-023-06100-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 09/15/2023]
Abstract
Hearing loss impacts the quality of life and affects communication resulting in social isolation and reduced well-being. Despite its impact on society and economy, no therapies for age-related hearing loss are available so far. Loss of mechanosensory hair cells of the cochlea is a common event of hearing loss in humans. Studies performed in birds demonstrating that they can be replaced following the proliferation and transdifferentiation of supporting cells, strongly pointed out on HCs regeneration as the main focus of research aimed at hearing regeneration. Neurotrophins are growth factors involved in neuronal survival, development, differentiation, and plasticity. NGF has been involved in the interplay between auditory receptors and efferent innervation in the cochlea during development. During embryo development, both NGF and its receptors are highly expressed in the inner ears. It has been reported that NGF is implicated in the differentiation of auditory gangliar and hair cells. Thus, it has been proposed that NGF administration can decrease neuronal damage and prevent hearing loss. The main obstacle to the development of hearing impairment therapy is that efficient means of delivery for selected drugs to the cochlea are missing. Herein, in this study NGF was administered by the intranasal route. The first part of the study was focused on a biodistribution study, which showed the effective delivery in the cochlea; while the second part was focused on analyzing the potential therapeutic effect of NGF in senescence-accelerated prone strain 8 mice. Interestingly, intranasal administration of NGF resulted protective in counteracting hearing impairment in SAMP8 mice, ameliorating hearing performances (analyzed by auditory brainstem responses and distortion product otoacoustic emission) and hair cells morphology (analyzed by microscopy analysis). The results obtained were encouraging indicating that the neurotrophin NGF was efficiently delivered to the inner ear and that it was effective in counteracting hearing loss.
Collapse
Affiliation(s)
- Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Michele d'Angelo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Davide Vecchiotti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Edoardo Alesse
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Daria Capece
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | | | - Franca Cattani
- Dompé Farmaceutici Spa, Via Campo di Pile 1, L'Aquila, Italy
| | - Andrea Aramini
- Dompé Farmaceutici Spa, Via Campo di Pile 1, L'Aquila, Italy
| | | | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
21
|
Kempfle JS, Jung DH. Experimental drugs for the prevention or treatment of sensorineural hearing loss. Expert Opin Investig Drugs 2023; 32:643-654. [PMID: 37598357 DOI: 10.1080/13543784.2023.2242253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/26/2023] [Indexed: 08/22/2023]
Abstract
INTRODUCTION Sensorineural hearing loss results in irreversible loss of inner ear hair cells and spiral ganglion neurons. Reduced sound detection and speech discrimination can span all ages, and sensorineural hearing rehabilitation is limited to amplification with hearing aids or cochlear implants. Recent insights into experimental drug treatments for inner ear regeneration and otoprotection have paved the way for clinical trials in order to restore a more physiological hearing experience. Paired with the development of innovative minimally invasive approaches for drug delivery to the inner ear, new, emerging treatments for hearing protection and restoration are within reach. AREAS COVERED This expert opinion provides an overview of the latest experimental drug therapies to protect from and to restore sensorineural hearing loss. EXPERT OPINION The degree and type of cellular damage to the cochlea, the responsiveness of remaining, endogenous cells to regenerative treatments, and the duration of drug availability within cochlear fluids will determine the success of hearing protection or restoration.
Collapse
Affiliation(s)
- Judith S Kempfle
- Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Otolaryngology, Head & Neck Surgery, Harvard Medical School, Boston, MA, USA
- Department of Otolaryngology, UMass Memorial Medical Center, Worcester, MA, USA
- Department of Otolaryngology, Head & Neck Surgery, University of Massachusetts Medical School, Worcester, MA, USA
| | - David H Jung
- Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Otolaryngology, Head & Neck Surgery, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
22
|
Amariutei AE, Jeng JY, Safieddine S, Marcotti W. Recent advances and future challenges in gene therapy for hearing loss. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230644. [PMID: 37325593 PMCID: PMC10265000 DOI: 10.1098/rsos.230644] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023]
Abstract
Hearing loss is the most common sensory deficit experienced by humans and represents one of the largest chronic health conditions worldwide. It is expected that around 10% of the world's population will be affected by disabling hearing impairment by 2050. Hereditary hearing loss accounts for most of the known forms of congenital deafness, and over 25% of adult-onset or progressive hearing loss. Despite the identification of well over 130 genes associated with deafness, there is currently no curative treatment for inherited deafness. Recently, several pre-clinical studies in mice that exhibit key features of human deafness have shown promising hearing recovery through gene therapy involving the replacement of the defective gene with a functional one. Although the potential application of this therapeutic approach to humans is closer than ever, substantial further challenges need to be overcome, including testing the safety and longevity of the treatment, identifying critical therapeutic time windows and improving the efficiency of the treatment. Herein, we provide an overview of the recent advances in gene therapy and highlight the current hurdles that the scientific community need to overcome to ensure a safe and secure implementation of this therapeutic approach in clinical trials.
Collapse
Affiliation(s)
- Ana E. Amariutei
- School of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| | - Jing-Yi Jeng
- School of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| | - Saaid Safieddine
- Institut Pasteur, Université Paris Cité, Inserm, Institut de l'Audition, F-75012 Paris, France
| | - Walter Marcotti
- School of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
- Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
23
|
Huang X, Kou X, Zhan T, Wei G, He F, Mao X, Yang H. Apoptotic vesicles resist oxidative damage in noise-induced hearing loss through activation of FOXO3a-SOD2 pathway. Stem Cell Res Ther 2023; 14:88. [PMID: 37061707 PMCID: PMC10105953 DOI: 10.1186/s13287-023-03314-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 03/29/2023] [Indexed: 04/17/2023] Open
Abstract
BACKGROUND Mesenchymal stem cell (MSC) transplantation is a promising therapeutic approach for noise-induced hearing loss (NIHL). As the indispensable role of apoptosis in MSC transplantation was raised, the benefits of MSC-derived apoptotic vesicles (apoVs) in several disease models have been proved. However, whether apoVs benefit in NIHL have not been studied yet. METHODS Female CBA/J mice and HEI-OC1 cells were used in this study. Flow cytometry, nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM) were used to characterize apoVs. Proteomic analysis was used to identify function proteins in apoVs. Immunofluorescence was used to reveal distribution pattern. Auditory brainstem response (ABR) test was used to measure the effect of apoVs treatment. DCFH-DA staining and MitoSOX staining were used to indicate oxidative damage. Western-blot and qRT-PCR were used to study the signaling pathways. RESULTS We found that apoVs can be endocytosed by hair cells through systemic administration. Importantly, apoVs administration effectively attenuated NIHL and reduced hair cell loss by resisting oxidative damage in vivo. Further, apoVs application activated forkhead box o3 (FOXO3a)-mitochondrial superoxide dismutase 2(SOD2) pathway, which may relate to signal transduction and activators of transcription 3 (STAT3) in apoVs. CONCLUSIONS These findings uncovered the role of apoVs in preventing NIHL and resisting oxidative damage, indicating that apoVs is a promising way for inner ear delivery and a prospective cell-free therapy for NIHL.
Collapse
Affiliation(s)
- Xiaotong Huang
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xiaoxing Kou
- Hospital of Stomatology, Guanghua School of Stomatology, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, China
- Key Laboratory of Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ting Zhan
- Department of Otolaryngology, Zhujiang Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510285, China
| | - Guokun Wei
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Feinan He
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Xueli Mao
- Hospital of Stomatology, Guanghua School of Stomatology, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, China.
| | - Haidi Yang
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Department of Hearing and Speech Science, Guangzhou Xinhua University, Guangzhou, 510310, China.
| |
Collapse
|
24
|
Yildiz E, Gadenstaetter AJ, Gerlitz M, Landegger LD, Liepins R, Nieratschker M, Glueckert R, Staecker H, Honeder C, Arnoldner C. Investigation of inner ear drug delivery with a cochlear catheter in piglets as a representative model for human cochlear pharmacokinetics. Front Pharmacol 2023; 14:1062379. [PMID: 36969846 PMCID: PMC10034346 DOI: 10.3389/fphar.2023.1062379] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
Hearing impairment is the most common sensory disorder in humans, and yet hardly any medications are licensed for the treatment of inner ear pathologies. Intricate pharmacokinetic examinations to better understand drug distribution within this complex organ could facilitate the development of novel therapeutics. For such translational research projects, animal models are indispensable, but differences in inner ear dimensions and other anatomical features complicate the transfer of experimental results to the clinic. The gap between rodents and humans may be bridged using larger animal models such as non-human primates. However, their use is challenging and impeded by administrative, regulatory, and financial hurdles. Other large animal models with more human-like inner ear dimensions are scarce. In this study, we analyzed the inner ears of piglets as a potential representative model for the human inner ear and established a surgical approach for intracochlear drug application and subsequent apical sampling. Further, controlled intracochlear delivery of fluorescein isothiocyanate-dextran (FITC-d) was carried out after the insertion of a novel, clinically applicable CE-marked cochlear catheter through the round window membrane. Two, six, and 24 hours after a single injection with this device, the intracochlear FITC-d distribution was determined in sequential perilymph samples. The fluorometrically assessed concentrations two hours after injection were compared to the FITC-d content in control groups, which either had been injected with a simple needle puncture through the round window membrane or the cochlear catheter in combination with a stapes vent hole. Our findings demonstrate not only significantly increased apical FITC-d concentrations when using the cochlear catheter but also higher total concentrations in all perilymph samples. Additionally, the concentration decreased after six and 24 hours and showed a more homogenous distribution compared to shorter observation times.
Collapse
Affiliation(s)
- Erdem Yildiz
- Christian Doppler Laboratory for Inner Ear Research, Department of Otorhinolaryngology, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
- Department of Otorhinolaryngology, Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Anselm J. Gadenstaetter
- Christian Doppler Laboratory for Inner Ear Research, Department of Otorhinolaryngology, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
- Department of Otorhinolaryngology, Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Matthias Gerlitz
- Christian Doppler Laboratory for Inner Ear Research, Department of Otorhinolaryngology, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
- Department of Otorhinolaryngology, Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Lukas D. Landegger
- Christian Doppler Laboratory for Inner Ear Research, Department of Otorhinolaryngology, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
- Department of Otorhinolaryngology, Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Rudolfs Liepins
- Department of Otorhinolaryngology, Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Michael Nieratschker
- Christian Doppler Laboratory for Inner Ear Research, Department of Otorhinolaryngology, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
- Department of Otorhinolaryngology, Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Rudolf Glueckert
- Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Hinrich Staecker
- Department of Otolaryngology, Head and Neck Surgery, University of Kansas School of Medicine, Kansas, KS, United States
| | - Clemens Honeder
- Christian Doppler Laboratory for Inner Ear Research, Department of Otorhinolaryngology, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
- Department of Otorhinolaryngology, Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Christoph Arnoldner
- Christian Doppler Laboratory for Inner Ear Research, Department of Otorhinolaryngology, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
- Department of Otorhinolaryngology, Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
- *Correspondence: Christoph Arnoldner,
| |
Collapse
|
25
|
Liquid Crystalline Nanoparticles Conjugated with Dexamethasone Prevent Cisplatin Ototoxicity In Vitro. Int J Mol Sci 2022; 23:ijms232314881. [PMID: 36499206 PMCID: PMC9741167 DOI: 10.3390/ijms232314881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The conjugation of drugs with nanoparticles represents an innovative approach for controlled and targeted administration of therapeutic agents. Nanoparticle-based systems have been tested for the inner ear therapy, increasing the drug diffusion and being detected in all parts of the cochlea when locally applied near the round window. In this study, glycerol monooleate liquid crystalline NanoParticles were conjugated with Dexamethasone (NPD), a hydrophobic drug already used for inner ear treatments but defective in solubility and bioavailability. NPD has been tested in vitro in the cell line OC-k3, a model of sensory cells of the inner ear, and the therapeutic efficacy has been evaluated against cisplatin, a chemotherapeutic compound known to induce ototoxicity. After comparing the physical chemical characteristics of NPD to the equivalent naïve nanoparticles, an initial investigation was carried out into the nanoparticle's uptake in OC-k3 cells, which takes place within a few hours of treatment without causing toxic damage up to a concentration of 50 µg/mL. The NPD delivered the dexamethasone inside the cells at a significantly increased rate compared to the equivalent free drug administration, increasing the half-life of the therapeutic compound within the cell. Concerning the co-treatment with cisplatin, the NPD significantly lowered the cisplatin cytotoxicity after 48 h of administration, preventing cell apoptosis. To confirm this result, also cell morphology, cell cycle and glucocorticoids receptor expression were investigated. In conclusion, the NPD system has thus preliminarily shown the potential to improve the therapeutic efficacy of treatments delivered in the inner ear and prevent drug-induced ototoxicity.
Collapse
|
26
|
Frolova L, Li ITS. Targeting Capabilities of Native and Bioengineered Extracellular Vesicles for Drug Delivery. Bioengineering (Basel) 2022; 9:bioengineering9100496. [PMID: 36290464 PMCID: PMC9598801 DOI: 10.3390/bioengineering9100496] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 11/16/2022] Open
Abstract
Extracellular vesicles (EVs) are highly promising as drug delivery vehicles due to their nanoscale size, stability and biocompatibility. EVs possess natural targeting abilities and are known to traverse long distances to reach their target cells. This long-range organotropism and the ability to penetrate hard-to-reach tissues, including the brain, have sparked interest in using EVs for the targeted delivery of pharmaceuticals. In addition, EVs can be readily harvested from an individual’s biofluids, making them especially suitable for personalized medicine applications. However, the targeting abilities of unmodified EVs have proven to be insufficient for clinical applications. Multiple attempts have been made to bioengineer EVs to fine-tune their on-target binding. Here, we summarize the current state of knowledge on the natural targeting abilities of native EVs. We also critically discuss the strategies to functionalize EV surfaces for superior long-distance targeting of specific tissues and cells. Finally, we review the challenges in achieving specific on-target binding of EV nanocarriers.
Collapse
|
27
|
Veit JGS, Birru B, Wang Y, Singh R, Arrigali EM, Park R, Miller B, Firpo MA, Park AH, Serban MA. An Evaluation of the Drug Permeability Properties of Human Cadaveric In Situ Tympanic and Round Window Membranes. Pharmaceuticals (Basel) 2022; 15:ph15091037. [PMID: 36145258 PMCID: PMC9501436 DOI: 10.3390/ph15091037] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/19/2022] [Accepted: 08/19/2022] [Indexed: 01/24/2023] Open
Abstract
It is estimated that hearing loss currently affects more than 1.5 billion people, or approximately 20% of the global population; however, presently, there are no Food and Drug Administration-approved therapeutics or prophylactics for this condition. While continued research on the development of otoprotective drugs to target this clear unmet need is an obvious path, there are numerous challenges to translating promising therapeutic candidates into human clinical testing. The screening of promising drug candidates relies exclusively on preclinical models. Current models do not permit the rapid high-throughput screening of promising drug candidates, and their relevance to clinical scenarios is often ambiguous. With the current study, we seek to understand the drug permeability properties of the cadaveric tympanic and round window membranes with the goal of generating knowledge that could inform the design and/or evaluation of in vitro organotypic models. The development of such models could enable the early high-throughput screening of topical therapeutic candidates and should address some of the limitations of currently used animal models.
Collapse
Affiliation(s)
- Joachim G. S. Veit
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
- Montana Biotechnology Center (BIOTECH), University of Montana, Missoula, MT 59812, USA
| | - Bhaskar Birru
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
- Montana Biotechnology Center (BIOTECH), University of Montana, Missoula, MT 59812, USA
| | - Yong Wang
- Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Ruby Singh
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
- Montana Biotechnology Center (BIOTECH), University of Montana, Missoula, MT 59812, USA
| | - Elizabeth M. Arrigali
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
- Montana Biotechnology Center (BIOTECH), University of Montana, Missoula, MT 59812, USA
| | - Ryan Park
- Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Briggs Miller
- Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Matthew A. Firpo
- Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Albert H. Park
- Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Monica A. Serban
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
- Montana Biotechnology Center (BIOTECH), University of Montana, Missoula, MT 59812, USA
- Correspondence:
| |
Collapse
|