1
|
Sun J, Sun Y, Ma B, Qi R, Hao X, Lv J, Shi J, Wu W, Fu X, Shi R. Mechanisms of polygalasaponin F against brain ischemia-reperfusion injury by targeting NKCC1. Exp Neurol 2025; 385:115076. [PMID: 39608559 DOI: 10.1016/j.expneurol.2024.115076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/01/2024] [Accepted: 11/24/2024] [Indexed: 11/30/2024]
Abstract
Stroke is a serious threat to human health and current clinical therapies remain unsatisfactory. Elevated expression of Na+-K+-2Cl- cotransporter 1 (NKCC1) following stroke can disrupt the blood-brain barrier (BBB) and result in brain edema, indicating that NKCC1 may be a potential therapeutic target for improving stroke outcomes. Polygalasaponin F (PGSF) is a triterpenoid saponin isolated from Polygala japonica Houtt, which has showed neuroprotective effects in previous studies. The present study aimed to assess the protective effects of PGSF on cerebral ischemia-reperfusion injury (CIRI) in vivo and elucidate its underlying mechanism by targeting NKCC1. Experimental results revealed that following CIRI, rats displayed neurological deficits, cerebral infarction and brain edema, concurrent with increased NKCC1 mRNA and protein expression in the cerebral tissue. Notably, the administration of PGSF at both 10 mg/kg and 20 mg/kg effectively mitigated these adverse outcomes. To explore the mechanism of PGSF, pyrosequencing was used to find that CIRI reduces the methylation of the NKCC1 promoter, while PGSF enhances it. It was thereby demonstrated that PGSF could reduce NKCC1 expression in this manner. Simultaneously, we also observed that the protein expression of DNA methyltransferase 1 (DNMT1) in the ischemic penumbra was augmented after CIRI, whereas PGSF reduced the expression of DNMT1, which was contrary to the trend of NKCC1 methylation under the treatment of PGSF. These results imply that the enhancement of NKCC1 methylation by PGSF may not be catalyzed by DNMT1 and that the reduction of NKCC1 methylation level after CIRI may not be related to DNMT1. Finally, we discovered that PGSF can decrease the leakage of the BBB and enhance the expression of the BBB structural proteins occludin and ZO-1. In conclusion, PGSF can target NKCC1 as an epigenetic target and downregulate its expression following CIRI by enhancing DNA methylation of NKCC1, thereby safeguarding the structure and function of brain tissue.
Collapse
Affiliation(s)
- Jianqi Sun
- Department of Physiology, Baotou Medical College, Baotou, Inner Mongolia 014040, China; The Second Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia 014000, China
| | - Yao Sun
- Department of Physiology, Baotou Medical College, Baotou, Inner Mongolia 014040, China
| | - Baohui Ma
- Department of Physiology, Baotou Medical College, Baotou, Inner Mongolia 014040, China
| | - Ruifang Qi
- Department of Physiology, Baotou Medical College, Baotou, Inner Mongolia 014040, China
| | - Xiaoqiong Hao
- Department of Physiology, Baotou Medical College, Baotou, Inner Mongolia 014040, China
| | - Jun Lv
- Department of Physiology, Baotou Medical College, Baotou, Inner Mongolia 014040, China
| | - Jinghua Shi
- Department of Physiology, Baotou Medical College, Baotou, Inner Mongolia 014040, China
| | - Wei Wu
- Department of Physiology, Baotou Medical College, Baotou, Inner Mongolia 014040, China
| | - Xuyang Fu
- Department of Physiology, Baotou Medical College, Baotou, Inner Mongolia 014040, China
| | - Ruili Shi
- Department of Physiology, Baotou Medical College, Baotou, Inner Mongolia 014040, China; Institute of Neuroscience, Baotou Medical College, Baotou, Inner Mongolia 014040, China.
| |
Collapse
|
2
|
Yoshimoto T, Yamagami H, Matsumaru Y. Recent Advances in Stroke Genetics-Unraveling the Complexity of Cerebral Infarction: A Brief Review. Genes (Basel) 2025; 16:59. [PMID: 39858606 PMCID: PMC11764629 DOI: 10.3390/genes16010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND/OBJECTIVES Recent advances in stroke genetics have substantially enhanced our understanding of the complex genetic architecture underlying cerebral infarction and other stroke subtypes. As knowledge in this field expands, healthcare providers must remain informed about these latest developments. This review aims to provide a comprehensive overview of recent advances in stroke genetics, with a focus on cerebral infarction, and discuss their potential impact on patient care and future research directions. METHODS We reviewed recent literature about advances in stroke genetics, focusing on cerebral infarction, and discussed their potential impact on patient care and future research directions. Key developments include the identification of monogenic stroke syndromes, such as cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, and cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy caused by mutations in the NOTCH3 and HTRA1 genes, respectively. In addition, the role of RNF213 in moyamoya disease and other cerebrovascular disorders, particularly in East Asian populations, has been elucidated. The development of polygenic risk scores for assessing genetic predisposition to stroke has demonstrated the potential to improve risk prediction beyond traditional factors. Genetic studies have also elucidated the distinct genetic architecture of stroke subtypes, including large artery atherosclerosis, small vessel disease, and cardioembolic stroke. Furthermore, the investigation of epigenetic modifications influencing stroke risk and its outcomes has revealed new research avenues, while advancements in pharmacogenomics highlight the potential for personalized stroke treatment based on individual genetic profiles. CONCLUSIONS These genetic discoveries have important clinical implications, including improved risk stratification, targeted prevention strategies, and the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Takeshi Yoshimoto
- Department of Stroke and Cerebrovascular Diseases, University of Tsukuba Hospital, Tsukuba 305-8576, Japan;
- Division of Stroke Prevention and Treatment, Institute of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan;
| | - Hiroshi Yamagami
- Division of Stroke Prevention and Treatment, Institute of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan;
| | - Yuji Matsumaru
- Department of Stroke and Cerebrovascular Diseases, University of Tsukuba Hospital, Tsukuba 305-8576, Japan;
- Department of Neurosurgery, Institute of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| |
Collapse
|
3
|
Rroji O, Mucignat C. Factors influencing brain recovery from stroke via possible epigenetic changes. Future Sci OA 2024; 10:2409609. [PMID: 39429231 PMCID: PMC11497982 DOI: 10.1080/20565623.2024.2409609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 09/24/2024] [Indexed: 10/22/2024] Open
Abstract
Aim: To examine epigenetic changes leading to functional repair after damage to the central motor system.Data sources: A literature search was conducted using medical and health science electronic databases (PubMed, MEDLINE, Scopus) up to July 2023.Study selection: Data were summarized for type of intervention, study design, findings including human and animal studies.Data extraction: Data were extracted and double-checked independently for methodological quality. By means of the influence of environmental (calorie restriction or physical exercise) and other factors, epigenetic instructions were found to increase levels of BDNF and enhance synaptic neurotransmission, possibly leading to larger scale changes in structural and functional assets, which may end up to cognitive and motor repair after stroke.
Collapse
Affiliation(s)
- Orjon Rroji
- Department of Radiology & Imaging techniques, European University of Tirana, Albania
| | - Carla Mucignat
- Department of Molecular Medicine, University of Padova, Italy
- National Institute for Biostructures & Biosystems, Rome, Italy
| |
Collapse
|
4
|
Leonov G, Salikhova D, Starodubova A, Vasilyev A, Makhnach O, Fatkhudinov T, Goldshtein D. Oral Microbiome Dysbiosis as a Risk Factor for Stroke: A Comprehensive Review. Microorganisms 2024; 12:1732. [PMID: 39203574 PMCID: PMC11357103 DOI: 10.3390/microorganisms12081732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Stroke represents a significant global health burden, with a substantial impact on mortality, morbidity, and long-term disability. The examination of stroke biomarkers, particularly the oral microbiome, offers a promising avenue for advancing our understanding of the factors that contribute to stroke risk and for developing strategies to mitigate that risk. This review highlights the significant correlations between oral diseases, such as periodontitis and caries, and the onset of stroke. Periodontal pathogens within the oral microbiome have been identified as a contributing factor in the exacerbation of risk factors for stroke, including obesity, dyslipidemia, atherosclerosis, hypertension, and endothelial dysfunction. The alteration of the oral microbiome may contribute to these conditions, emphasizing the vital role of oral health in the prevention of cardiovascular disease. The integration of dental and medical health practices represents a promising avenue for enhancing stroke prevention efforts and improving patient outcomes.
Collapse
Affiliation(s)
- Georgy Leonov
- Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia;
| | - Diana Salikhova
- Institute of Molecular and Cellular Medicine, RUDN University, 117198 Moscow, Russia; (D.S.); (A.V.); (T.F.)
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (O.M.); (D.G.)
| | - Antonina Starodubova
- Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia;
- Therapy Faculty, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Andrey Vasilyev
- Institute of Molecular and Cellular Medicine, RUDN University, 117198 Moscow, Russia; (D.S.); (A.V.); (T.F.)
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (O.M.); (D.G.)
- E.V. Borovsky Institute of Dentistry, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia
- Central Research Institute of Dental and Maxillofacial Surgery, 119021 Moscow, Russia
| | - Oleg Makhnach
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (O.M.); (D.G.)
| | - Timur Fatkhudinov
- Institute of Molecular and Cellular Medicine, RUDN University, 117198 Moscow, Russia; (D.S.); (A.V.); (T.F.)
| | - Dmitry Goldshtein
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (O.M.); (D.G.)
| |
Collapse
|
5
|
Nuszkiewicz J, Kukulska-Pawluczuk B, Piec K, Jarek DJ, Motolko K, Szewczyk-Golec K, Woźniak A. Intersecting Pathways: The Role of Metabolic Dysregulation, Gastrointestinal Microbiome, and Inflammation in Acute Ischemic Stroke Pathogenesis and Outcomes. J Clin Med 2024; 13:4258. [PMID: 39064298 PMCID: PMC11278353 DOI: 10.3390/jcm13144258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/13/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024] Open
Abstract
Acute ischemic stroke (AIS) remains a major cause of mortality and long-term disability worldwide, driven by complex and multifaceted etiological factors. Metabolic dysregulation, gastrointestinal microbiome alterations, and systemic inflammation are emerging as significant contributors to AIS pathogenesis. This review addresses the critical need to understand how these factors interact to influence AIS risk and outcomes. We aim to elucidate the roles of dysregulated adipokines in obesity, the impact of gut microbiota disruptions, and the neuroinflammatory cascade initiated by lipopolysaccharides (LPS) in AIS. Dysregulated adipokines in obesity exacerbate inflammatory responses, increasing AIS risk and severity. Disruptions in the gut microbiota and subsequent LPS-induced neuroinflammation further link systemic inflammation to AIS. Advances in neuroimaging and biomarker development have improved diagnostic precision. Here, we highlight the need for a multifaceted approach to AIS management, integrating metabolic, microbiota, and inflammatory insights. Potential therapeutic strategies targeting these pathways could significantly improve AIS prevention and treatment. Future research should focus on further elucidating these pathways and developing targeted interventions to mitigate the impacts of metabolic dysregulation, microbiome imbalances, and inflammation on AIS.
Collapse
Affiliation(s)
- Jarosław Nuszkiewicz
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland;
| | - Beata Kukulska-Pawluczuk
- Department of Neurology, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 9 M. Skłodowskiej—Curie St., 85-094 Bydgoszcz, Poland; (B.K.-P.); (K.P.)
| | - Katarzyna Piec
- Department of Neurology, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 9 M. Skłodowskiej—Curie St., 85-094 Bydgoszcz, Poland; (B.K.-P.); (K.P.)
| | - Dorian Julian Jarek
- Student Research Club of Medical Biology and Biochemistry, Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland;
| | - Karina Motolko
- Student Research Club of Neurology, Department of Neurology, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 9 M. Skłodowskiej—Curie St., 85-094 Bydgoszcz, Poland;
| | - Karolina Szewczyk-Golec
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland;
| | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland;
| |
Collapse
|
6
|
Opare-Addo PA, Sarfo FS, Aikins M, Bediako SA, Ovbiagele B. Epigenetics as a target to mitigate excess stroke risk in people of African ancestry: A scoping review. J Stroke Cerebrovasc Dis 2024; 33:107585. [PMID: 38253246 PMCID: PMC11060795 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Globally, individuals of African ancestry have a relatively greater stroke preponderance compared to other racial/ethnic groups. The higher prevalence of traditional stroke risk factors in this population, however, only partially explains this longstanding disparity. Epigenetic signatures are transgenerational and could be a plausible therapeutic target to further bend the stroke disparities curve for people of African ancestry. There is, however, limited data on epigenetics and stroke risk in this population. PURPOSE To examine existing evidence and knowledge gaps on the potential contribution of epigenetics to excess stroke risk in people of African ancestry and avenues for mitigation. MATERIALS AND METHODS We conducted a scoping review of studies published between January 2003 and July 2023, on epigenetics and stroke risk. We then summarized our findings, highlighting the results for people of African ancestry. RESULTS Of 104 studies, there were only 6 studies that specifically looked at epigenetic mechanisms and stroke risk in people of African ancestry. Results of these studies show how patterns of DNA methylation and non-coding RNA interact with lifestyle choices, xenobiotics, and FVIII levels to raise stroke risk in people of African ancestry. However, no studies evaluated epigenetic patterns as actionable targets for the influence of psychosocial stressors or social context and excess stroke risk in this population (versus others). Also, no studies interrogated the role of established or novel therapeutic agents with the potential to reprogram DNA by adding or removing epigenetic markers in people of African ancestry. CONCLUSION Epigenetics potentially offers a promising target for modifying the effects of lifestyle, environmental exposures, and other factors that differentially affect people of African ancestry and place them at relatively greater stroke risk compared to other populations. Studies that precisely assess the pathways by which epigenetic mechanisms modulate population-specific disparities in the risk of stroke are needed.
Collapse
Affiliation(s)
| | - Fred Stephen Sarfo
- Komfo Anokye Teaching Hospital, Kumasi, Ghana; Neurology Division, Kwame Nkrumah University of Science & Technology, P. O. Box 1934, Kumasi, Ghana.
| | | | | | | |
Collapse
|
7
|
Słowikowski B, Owecki W, Jeske J, Jezierski M, Draguła M, Goutor U, Jagodziński PP, Kozubski W, Dorszewska J. Epigenetics and the neurodegenerative process. Epigenomics 2024; 16:473-491. [PMID: 38511224 DOI: 10.2217/epi-2023-0416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
Neurological diseases are multifactorial, genetic and environmental. Environmental factors such as diet, physical activity and emotional state are epigenetic factors. Environmental markers are responsible for epigenetic modifications. The effect of epigenetic changes is increased inflammation of the nervous system and neuronal damage. In recent years, it has been shown that epigenetic changes may cause an increased risk of neurological disorders but, currently, the relationship between epigenetic modifications and neurodegeneration remains unclear. This review summarizes current knowledge about neurological disorders caused by epigenetic changes in diseases such as Alzheimer's disease, Parkinson's disease, stroke and epilepsy. Advances in epigenetic techniques may be key to understanding the epigenetics of central changes in neurological diseases.
Collapse
Affiliation(s)
- Bartosz Słowikowski
- Department of Biochemistry & Molecular Biology, Poznan University of Medical Sciences, Poznan, 61-701, Poland
| | - Wojciech Owecki
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, 61-701, Poland
| | - Jan Jeske
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, 61-701, Poland
| | - Michał Jezierski
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, 61-701, Poland
| | - Michał Draguła
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, 61-701, Poland
| | - Ulyana Goutor
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, 61-701, Poland
| | - Paweł P Jagodziński
- Department of Biochemistry & Molecular Biology, Poznan University of Medical Sciences, Poznan, 61-701, Poland
| | - Wojciech Kozubski
- Chair & Department of Neurology, Poznan University of Medical Sciences, Poznan, 61-701, Poland
| | - Jolanta Dorszewska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, 61-701, Poland
| |
Collapse
|
8
|
Colita D, Burdusel D, Glavan D, Hermann DM, Colită CI, Colita E, Udristoiu I, Popa-Wagner A. Molecular mechanisms underlying major depressive disorder and post-stroke affective disorders. J Affect Disord 2024; 344:149-158. [PMID: 37827260 DOI: 10.1016/j.jad.2023.10.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/24/2023] [Accepted: 10/08/2023] [Indexed: 10/14/2023]
Abstract
Two of the most common and incapacitating mental health disorders around the world are major depressive disorder (MDD) and post-stroke depression (PSD). MDD is thought to result from abnormal connectivity between the monoaminergic, glutamatergic, GABAergic, and/or cholinergic pathways. Additional factors include the roles of hormonal, immune, ageing, as well as the influence of cellular, molecular, and epigenetics in the development of mood disorders. This complexity of factors has been anticipated by the Swiss psychiatrists Paul Kielholz and Jules Angst who introduced a multimodal treatment of MDD. Depression is the predominant mood disorder, impacting around one-third of individuals who have experienced a stroke. MDD and PSD share common underlying biological mechanisms related to the disruption of monoaminergic pathways. The major contributor to PSD is the stroke lesion location, which can involve the disruption of the serotoninergic, dopaminergic, glutamatergic, GABAergic, or cholinergic pathways. Additionally, various other disorders such as mania, bipolar disorder, anxiety disorder, and apathy might occur post-stroke, although their prevalence is considerably lower. However, there are differences in the onset of MDD among mood disorders. Some mood disorders develop gradually and can persist for a lifetime, potentially culminating in suicide. In contrast, PSD has a rapid onset because of the severe disruption of neural pathways essential for mood behavior caused by the lesion. However, PSD might also spontaneously resolve several months after a stroke, though it is associated with higher mortality. This review also provides a brief overview of the treatments currently available in medical practice.
Collapse
Affiliation(s)
- Daniela Colita
- Doctoral School, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania
| | - Daiana Burdusel
- Department of Psychiatry, University of Medicine and Pharmacy, 200349 Craiova, Romania; Chair of Vascular Neurology, Dementia and Ageing, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Daniela Glavan
- Department of Psychiatry, University of Medicine and Pharmacy, 200349 Craiova, Romania; Chair of Vascular Neurology, Dementia and Ageing, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Dirk M Hermann
- Chair of Vascular Neurology, Dementia and Ageing, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Cezar-Ivan Colită
- Doctoral School, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania
| | - Eugen Colita
- Doctoral School, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania
| | - Ion Udristoiu
- Department of Psychiatry, University of Medicine and Pharmacy, 200349 Craiova, Romania.
| | - Aurel Popa-Wagner
- Chair of Vascular Neurology, Dementia and Ageing, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany.
| |
Collapse
|
9
|
Wei D, Chen X, Xu J, Yin Y, Peng X, Li S, He W. Identification of disordered profiles of gut microbiota and functional component in stroke and poststroke epilepsy. Brain Behav 2023; 13:e3318. [PMID: 37984550 PMCID: PMC10726879 DOI: 10.1002/brb3.3318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/22/2023] Open
Abstract
AIMS It is estimated that 11.5% of patients with stroke (STR) were at risk of suffering poststroke epilepsy (PSE) within 5 years. Gut microbiota is shown to affect health in humans by producing metabolites. The association between dysregulation of gut microbiota and STR/PSE remains unclear. The aim of this study was to identify potential gut microbiota and functional component in STR and PSE, which may provide a theoretical foundation for diagnosis and treatment of STR and PSE. METHODS The fresh stool samples were collected from 19 healthy controls, 27 STR patients, and 20 PSE patients for 16S rRNA gene sequencing. Analysis of amplicon sequence variant and community diversity was performed, followed by the identification of dominant species, species differences analysis, diagnostic, and functional analysis of species in STR and PSE. RESULTS Community diversity was decreased in STR and PSE. Some disordered profiles of gut microbiota in STR and PSE were identified, such as the increase of Enterococcus and the decrease of butyricicoccus in STR, the increase of Escherichia Shigella and Clostridium innocuum-group and the decrease of Faecalibacterium in PSE, and the decrease of Anaerostipes in both STR and PSE. Moreover, potential diagnostic biomarkers for STR (butyricicoccus), PSE (Faecalibacterium), STR, and PSE (NK4A214_group and Veillonella) were identified. Several significantly dysfunctional components were identified, including l-tryptophan biosynthesis in STR, fatty acid biosynthesis in PSE, and Stress_Tolerant and anaerobic in both STR and PSE. CONCLUSION The disturbed gut microbiota and related dysfunctional components are closely associated with the progression of STR and PSE.
Collapse
Affiliation(s)
- Duncan Wei
- Department of PharmacyThe First Affiliated Hospital of Shantou University Medical CollegeShantouGuangdongP. R. China
| | - Xiaopu Chen
- Department of NeurologyThe First Affiliated Hospital of Shantou University Medical CollegeShantouGuangdongP. R. China
| | - Jing Xu
- Department of PharmacyThe First Affiliated Hospital of Shantou University Medical CollegeShantouGuangdongP. R. China
| | - Yongling Yin
- Department of NeurologyShantou University Medical CollegeShantouGuangdongP. R. China
| | - Xiaotang Peng
- Department of NeurologyShantou University Medical CollegeShantouGuangdongP. R. China
| | - Shunxian Li
- Department of NeurologyThe First Affiliated Hospital of Shantou University Medical CollegeShantouGuangdongP. R. China
| | - Wenzhen He
- Department of NeurologyThe First Affiliated Hospital of Shantou University Medical CollegeShantouGuangdongP. R. China
| |
Collapse
|
10
|
Burggren WW, Mendez-Sanchez JF. "Bet hedging" against climate change in developing and adult animals: roles for stochastic gene expression, phenotypic plasticity, epigenetic inheritance and adaptation. Front Physiol 2023; 14:1245875. [PMID: 37869716 PMCID: PMC10588650 DOI: 10.3389/fphys.2023.1245875] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/12/2023] [Indexed: 10/24/2023] Open
Abstract
Animals from embryos to adults experiencing stress from climate change have numerous mechanisms available for enhancing their long-term survival. In this review we consider these options, and how viable they are in a world increasingly experiencing extreme weather associated with climate change. A deeply understood mechanism involves natural selection, leading to evolution of new adaptations that help cope with extreme and stochastic weather events associated with climate change. While potentially effective at staving off environmental challenges, such adaptations typically occur very slowly and incrementally over evolutionary time. Consequently, adaptation through natural selection is in most instances regarded as too slow to aid survival in rapidly changing environments, especially when considering the stochastic nature of extreme weather events associated with climate change. Alternative mechanisms operating in a much shorter time frame than adaptation involve the rapid creation of alternate phenotypes within a life cycle or a few generations. Stochastic gene expression creates multiple phenotypes from the same genotype even in the absence of environmental cues. In contrast, other mechanisms for phenotype change that are externally driven by environmental clues include well-understood developmental phenotypic plasticity (variation, flexibility), which can enable rapid, within-generation changes. Increasingly appreciated are epigenetic influences during development leading to rapid phenotypic changes that can also immediately be very widespread throughout a population, rather than confined to a few individuals as in the case of favorable gene mutations. Such epigenetically-induced phenotypic plasticity can arise rapidly in response to stressors within a generation or across a few generations and just as rapidly be "sunsetted" when the stressor dissipates, providing some capability to withstand environmental stressors emerging from climate change. Importantly, survival mechanisms resulting from adaptations and developmental phenotypic plasticity are not necessarily mutually exclusive, allowing for classic "bet hedging". Thus, the appearance of multiple phenotypes within a single population provides for a phenotype potentially optimal for some future environment. This enhances survival during stochastic extreme weather events associated with climate change. Finally, we end with recommendations for future physiological experiments, recommending in particular that experiments investigating phenotypic flexibility adopt more realistic protocols that reflect the stochastic nature of weather.
Collapse
Affiliation(s)
- Warren W. Burggren
- Developmental Integrative Biology Group, Department of Biological Sciences, University of North Texas, Denton, TX, United States
| | - Jose Fernando Mendez-Sanchez
- Laboratorio de Ecofisiología Animal, Departamento de Biología, Facultad de Ciencias, Universidad Autónoma del Estado de México, Toluca, Mexico
| |
Collapse
|
11
|
Ayubcha C, Amanullah A, Patel KH, Teichner E, Gokhale S, Marquez-Valenzuela U, Werner TJ, Alavi A. Stroke and molecular imaging: a focus on FDG-PET. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2023; 13:51-63. [PMID: 37214267 PMCID: PMC10193198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/23/2023] [Indexed: 05/24/2023]
Abstract
Stroke is the leading cause of disability worldwide, the second most common cause of dementia and the third leading cause of death. Though the etiology of stroke has been explored extensively, there remains open questions in the scientific and clinical study of stroke. Traditional imaging techniques, such as magnetic resonance imaging and computed tomography, have been applied extensively and remain mainstays in clinical practice. Nevertheless, positron emission tomography has proven to be a powerful molecular imaging tool in exploring the scientific aspects of neurological disease, and stroke remains an area of great interest. This review article examines the role of positron emission tomography in the study of stroke including its contributions to elaborating related pathophysiology and delving into possible clinical applications.
Collapse
Affiliation(s)
- Cyrus Ayubcha
- Harvard Medical SchoolBoston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public HealthBoston, MA, USA
| | - Aamir Amanullah
- Department of Radiology, Hospital of University of PennsylvaniaPhiladelphia, PA, USA
- Lewis Katz School of Medicine at Temple UniversityPhiladelphia, PA, USA
| | | | - Eric Teichner
- Department of Radiology, Hospital of University of PennsylvaniaPhiladelphia, PA, USA
- Thomas Jefferson UniversityPhiladelphia, PA, USA
| | - Saket Gokhale
- Department of Radiology, Hospital of University of PennsylvaniaPhiladelphia, PA, USA
- Thomas Jefferson UniversityPhiladelphia, PA, USA
| | | | - Thomas J Werner
- Department of Radiology, Hospital of University of PennsylvaniaPhiladelphia, PA, USA
| | - Abass Alavi
- Department of Radiology, Hospital of University of PennsylvaniaPhiladelphia, PA, USA
| |
Collapse
|