1
|
Kordecka K, Kublik E, Foik AT. Comparison of Physiological Brain Responses Evoked by Visual and Electrical Stimulation. Invest Ophthalmol Vis Sci 2025; 66:1. [PMID: 40310627 PMCID: PMC12054683 DOI: 10.1167/iovs.66.5.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/28/2025] [Indexed: 05/02/2025] Open
Abstract
Purpose Noninvasive current stimulation (nCS or electrical stimulation) is a rapidly developing technique to support recovery from eye and brain dysfunctions. One of the most commonly used forms of nCS for treating the visual system is transcranial and transcorneal alternating current stimulation. This technique can exert neuromodulatory effects on the brain through eye stimulation. The mechanism of such stimulation is still poorly understood. Materials and Methods To understand the pattern of activation evoked by nCS, a series of electrical impulses were delivered directly to the rat eye, alternating with the visual stimulus (VS), and subsequent responses were tested in the Superior colliculus and the primary visual cortex. Additionally, we tested two stimulation electrode placements, eyeball-eyeball, and eyeball-neck. Results The results indicate that nCS and VS evoke different activation patterns in the recorded structures. In particular, the electrically evoked potentials are characterized by shorter latency and a different shape than the corresponding visually evoked potentials. The transcorneal alternating current stimulation (tACS) evoked shorter sinks and sources in all recorded structures than the visual stimulation. This suggests emerging of a different pattern of extracellular current flow in response to different stimulations. Conclusions We demonstrate that the eye-eye paradigm of electrical stimulation elicited responses more similar to those evoked by VS. Individual transcorneal electrical impulses evoke a consistent pattern of neuronal activation across the visual system. This consistency is particularly promising for the development of neurotherapy aimed at restoring or improving vision, nCS can effectively activate visual circuits despite variations in stimulus delivery and shape.
Collapse
Affiliation(s)
- Katarzyna Kordecka
- International Centre for Translational Eye Research (ICTER), Institute of Physical Chemistry, PAS, Warsaw, Poland
- Institute of Physical Chemistry, PAS, Warsaw, Poland
| | - Ewa Kublik
- Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Andrzej T. Foik
- International Centre for Translational Eye Research (ICTER), Institute of Physical Chemistry, PAS, Warsaw, Poland
- Institute of Physical Chemistry, PAS, Warsaw, Poland
| |
Collapse
|
2
|
Hsu C, Liu T, Juan C. Oscillatory Transcranial Electrical Stimulation and the Amplitude-Modulated Frequency Dictate the Quantitative Features of Phosphenes. Eur J Neurosci 2025; 61:e16658. [PMID: 39777808 PMCID: PMC11708813 DOI: 10.1111/ejn.16658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 11/27/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025]
Abstract
Previous research demonstrated that transcranial alternating current stimulation (tACS) can induce phosphene perception. However, tACS involves rhythmic changes in the electric field and alternating polarity (excitatory vs. inhibitory phases), leaving the precise mechanism behind phosphene perception unclear. To disentangle the effects of rhythmic changes from those of alternating polarity, this study employs oscillatory transcranial direct current stimulation (otDCS), in which the current oscillation remains confined to either a positive or negative polarity, thereby eliminating the influence of polarity switching. We applied scalp electrical stimulations using both polarity-switching (tACS) and non-polarity-switching (otDCS) methods, with anodal or cathodal polarities, targeting the occipital lobe. All stimulations were performed using sinusoidal or amplitude modulation (AM) waveforms at threshold or suprathreshold intensities. Our results show that tACS results in faster response times compared to cathodal otDCS, but not anodal otDCS, while anodal otDCS elicits greater brightness perception than both cathodal otDCS and tACS. Additionally, AM frequency induced a higher threshold than the sinusoidal frequency, and response times were slower in the AM condition across all positive, negative, and polarity-switching stimulations. However, stimulation intensity in the anodal AM condition could influence speed ratings, unlike in cathodal or tACS conditions. Our findings reveal that both tACS and otDCS induce phosphenes, with significant differences between polarities and current oscillation types, indicating that both mechanisms are critical in phosphene induction. This study provides evidence linking phosphene occurrence to oscillatory current activity and highlights the robustness and impact of AM coding in visual perception.
Collapse
Affiliation(s)
- Che‐Yi Hsu
- Institute of Cognitive NeuroscienceNational Central UniversityTaiwan
| | - Tzu‐Ling Liu
- Institute of Cognitive NeuroscienceNational Central UniversityTaiwan
| | - Chi‐Hung Juan
- Institute of Cognitive NeuroscienceNational Central UniversityTaiwan
- Cognitive Intelligence and Precision Healthcare Research CenterNational Central UniversityTaiwan
| |
Collapse
|
3
|
Park AS, Thompson B. Non-invasive brain stimulation and vision rehabilitation: a clinical perspective. Clin Exp Optom 2024; 107:594-602. [PMID: 38772676 DOI: 10.1080/08164622.2024.2349565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/23/2024] Open
Abstract
Non-invasive brain stimulation techniques allow targeted modulation of brain regions and have emerged as a promising tool for vision rehabilitation. This review presents an overview of studies that have examined the use of non-invasive brain stimulation techniques for improving vision and visual functions. A description of the proposed neural mechanisms that underpin non-invasive brain stimulation effects is also provided. The clinical implications of non-invasive brain stimulation in vision rehabilitation are examined, including their safety, effectiveness, and potential applications in specific conditions such as amblyopia, post-stroke hemianopia, and central vision loss associated with age-related macular degeneration. Additionally, the future directions of research in this field are considered, including the need for larger and more rigorous clinical trials to validate the efficacy of these techniques. Overall, this review highlights the potential for brain stimulation techniques as a promising avenue for improving visual function in individuals with impaired vision and underscores the importance of continued research in this field.
Collapse
Affiliation(s)
- Adela Sy Park
- Centre for Eye & Vision Research, Hong Kong, Hong Kong
| | - Benjamin Thompson
- School of Optometry and Vision Science, University of Waterloo, Waterloo, Canada
| |
Collapse
|
4
|
Jia S, Mei X, Chen L, Chan LH, Tsang C, Suen V, Li T, Zaw MW, Liu A, Thompson B, Sabel B, Woo G, Leung CKS, Yip SP, Chang DHF, Cheong AMY. Glaucoma Rehabilitation using ElectricAI Transcranial Stimulation (GREAT)-study protocol for randomized controlled trial using combined perceptual learning and transcranial electrical stimulation for vision enhancement. Trials 2024; 25:501. [PMID: 39039582 PMCID: PMC11264395 DOI: 10.1186/s13063-024-08314-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/03/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND Glaucoma patients with irreversible visual field loss often experience decreased quality of life, impaired mobility, and mental health challenges. Perceptual learning (PL) and transcranial electrical stimulation (tES) have emerged as promising interventions for vision rehabilitation, showing potential in restoring residual visual functions. The Glaucoma Rehabilitation using ElectricAI Transcranial stimulation (GREAT) project aims to investigate whether combining PL and tES is more effective than using either method alone in maximizing the visual function of glaucoma patients. Additionally, the study will assess the impact of these interventions on brain neural activity, blood biomarkers, mobility, mental health, quality of life, and fear of falling. METHODS The study employs a three-arm, double-blind, randomized, superiority-controlled design. Participants are randomly allocated in a 1:1:1 ratio to one of three groups receiving: (1) real PL and real tES, (2) real PL and sham tES, and (3) placebo PL and sham tES. Each participant undergoes 10 sessions per block (~ 1 h each), with a total of three blocks. Assessments are conducted at six time points: baseline, interim 1, interim 2, post-intervention, 1-month post-intervention, and 2-month post-intervention. The primary outcome is the mean deviation of the 24-2 visual field measured by the Humphrey visual field analyzer. Secondary outcomes include detection rate in the suprathreshold visual field, balance and gait functions, and electrophysiological and biological responses. This study also investigates changes in neurotransmitter metabolism, biomarkers, self-perceived quality of life, and psychological status before and after the intervention. DISCUSSION The GREAT project is the first study to assess the effectiveness of PL and tES in the rehabilitation of glaucoma. Our findings will offer comprehensive assessments of the impact of these treatments on a wide range of brain and vision-related metrics including visual field, neural activity, biomarkers, mobility, mental health, fear of falling, and quality of life. TRIAL REGISTRATION ClinicalTrials.gov NCT05874258 . Registered on May 15, 2023.
Collapse
Affiliation(s)
- Shuwen Jia
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Xiaolin Mei
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Lilin Chen
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Lok Hin Chan
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Celia Tsang
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Venus Suen
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Tingni Li
- Centre for Eye and Vision Research Limited, Hong Kong Science Park, Hong Kong Special Administrative Region, China
| | - Myo Win Zaw
- Centre for Eye and Vision Research Limited, Hong Kong Science Park, Hong Kong Special Administrative Region, China
| | - Amanda Liu
- Centre for Eye and Vision Research Limited, Hong Kong Science Park, Hong Kong Special Administrative Region, China
| | - Ben Thompson
- Centre for Eye and Vision Research Limited, Hong Kong Science Park, Hong Kong Special Administrative Region, China
- School of Optometry and Vision Science, University of Waterloo, Waterloo, Canada
| | - Bernhard Sabel
- Institute of Medical Psychology, University of Magdeburg, Magdeburg, Germany
| | - George Woo
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Christopher K S Leung
- Department of Ophthalmology, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Shea-Ping Yip
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Dorita H F Chang
- Department of Psychology, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Allen M Y Cheong
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China.
- Centre for Eye and Vision Research Limited, Hong Kong Science Park, Hong Kong Special Administrative Region, China.
- Research Centre for SHARP Vision, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China.
| |
Collapse
|
5
|
Khalili MR, Shadmani A, Sanie-Jahromi F. Application of electrostimulation and magnetic stimulation in patients with optic neuropathy: A mechanistic review. Dev Neurobiol 2024; 84:236-248. [PMID: 38844425 DOI: 10.1002/dneu.22949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 03/20/2024] [Accepted: 05/20/2024] [Indexed: 07/17/2024]
Abstract
Visual impairment caused by optic neuropathies is irreversible because retinal ganglion cells (RGCs), the specialized neurons of the retina, do not have the capacity for self-renewal and self-repair. Blindness caused by optic nerve neuropathies causes extensive physical, financial, and social consequences in human societies. Recent studies on different animal models and humans have established effective strategies to prevent further RGC degeneration and replace the cells that have deteriorated. In this review, we discuss the application of electrical stimulation (ES) and magnetic field stimulation (MFS) in optic neuropathies, their mechanisms of action, their advantages, and limitations. ES and MFS can be applied effectively in the field of neuroregeneration. Although stem cells are becoming a promising approach for regenerating RGCs, the inhibitory environment of the CNS and the long visual pathway from the optic nerve to the superior colliculus are critical barriers to overcome. Scientific evidence has shown that adjuvant treatments, such as the application of ES and MFS help direct thetransplanted RGCs to extend their axons and form new synapses in the central nervous system (CNS). In addition, these techniques improve CNS neuroplasticity and decrease the inhibitory effects of the CNS. Possible mechanisms mediating the effects of electrical current on biological tissues include the release of anti-inflammatory cytokines, improvement of microcirculation, stimulation of cell metabolism, and modification of stem cell function. ES and MFS have the potential to promote angiogenesis, direct axon growth toward the intended target, and enhance appropriate synaptogenesis in optic nerve regeneration.
Collapse
Affiliation(s)
- Mohammad Reza Khalili
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Athar Shadmani
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, California, USA
| | - Fatemeh Sanie-Jahromi
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Bertoni S, Franceschini S, Mancarella M, Puccio G, Ronconi L, Marsicano G, Gori S, Campana G, Facoetti A. Action video games and posterior parietal cortex neuromodulation enhance both attention and reading in adults with developmental dyslexia. Cereb Cortex 2024; 34:bhae152. [PMID: 38610090 DOI: 10.1093/cercor/bhae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
The impact of action video games on reading performance has been already demonstrated in individuals with and without neurodevelopmental disorders. The combination of action video games and posterior parietal cortex neuromodulation by a transcranial random noise stimulation could enhance brain plasticity, improving attentional control and reading skills also in adults with developmental dyslexia. In a double blind randomized controlled trial, 20 young adult nonaction video game players with developmental dyslexia were trained for 15 h with action video games. Half of the participants were stimulated with bilateral transcranial random noise stimulation on the posterior parietal cortex during the action video game training, whereas the others were in the placebo (i.e. sham) condition. Word text reading, pseudowords decoding, and temporal attention (attentional blink), as well as electroencephalographic activity during the attentional blink, were measured before and after the training. The action video game + transcranial random noise stimulation group showed temporal attention, word text reading, and pseudoword decoding enhancements and P300 amplitude brain potential changes. The enhancement in temporal attention performance was related with the efficiency in pseudoword decoding improvement. Our results demonstrate that the combination of action video game training with parietal neuromodulation increases the efficiency of visual attention deployment, probably reshaping goal-directed and stimulus-driven fronto-parietal attentional networks interplay in young adults with neurodevelopmental conditions.
Collapse
Affiliation(s)
- Sara Bertoni
- Department of Human and Social Sciences, University of Bergamo, Piazzale Sant'Agostino 2, Bergamo 24129, Italy
| | - Sandro Franceschini
- Developmental and Cognitive Neuroscience Lab, Department of General Psychology, University of Padua, Via Venezia 8, Padua 35131, Italy
| | - Martina Mancarella
- Katholieke Universiteit Leuven, Leopold Vanderkelenstraat 32, Leuven 3000, Belgium
| | - Giovanna Puccio
- Developmental and Cognitive Neuroscience Lab, Department of General Psychology, University of Padua, Via Venezia 8, Padua 35131, Italy
| | - Luca Ronconi
- School of Psychology, Vita-Salute San Raffaele University, Via Olgettina 58, Milan 20132, Italy
| | - Gianluca Marsicano
- Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Viale Rasi e Spinelli 176, Cesena 47521, Italy
- Department of Psychology, University of Bologna, Viale Berti Pichat 5, Bologna 40121, Italy
| | - Simone Gori
- Department of Human and Social Sciences, University of Bergamo, Piazzale Sant'Agostino 2, Bergamo 24129, Italy
| | - Gianluca Campana
- PercUp Lab, Department of General Psychology, University of Padua, Via Venezia 8, Padua 35131, Italy
| | - Andrea Facoetti
- Developmental and Cognitive Neuroscience Lab, Department of General Psychology, University of Padua, Via Venezia 8, Padua 35131, Italy
| |
Collapse
|
7
|
Wang J, Choi KY, Thompson B, Chan HHL, Cheong AMY. The effect of montages of transcranial alternating current stimulation on occipital responses-a sham-controlled pilot study. Front Psychiatry 2024; 14:1273044. [PMID: 38328519 PMCID: PMC10849049 DOI: 10.3389/fpsyt.2023.1273044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 12/13/2023] [Indexed: 02/09/2024] Open
Abstract
Background Transcranial alternative current stimulation (tACS) refers to a promising non-invasive technique to improve brain functions. However, owing to various stimulation parameters in the literature, optimization of the stimulation is warranted. In this study, the authors aimed to compare the effect of tACS electrode montages on occipital responses. Methods In three montage sessions (i.e., Oz-Cz, Oz-cheek, and sham), 10 healthy young adults participated, receiving 20-min 2-mA alpha-tACS. Pattern-reversal visual evoked potentials (VEPs) were measured before tACS (T0), immediately after (T20), and 20 min (T40) after tACS. Normalized changes in time-domain features (i.e., N75, P100 amplitudes, and P100 latency) and frequency-domain features [i.e., power spectral density in alpha (PSDα) and beta (PSDβ) bands] were evaluated. Results In contrast to our hypothesis, the occipital response decreased immediately (T20) after receiving the 20-min tACS in all montages in terms of P100 amplitude (p = 0.01). This reduction returned to baseline level (T0) in Oz-cheek and sham conditions but sustained in the Oz-Cz condition (T40, p = 0.03) after 20 min of tACS. The effects on N75 amplitude and P100 latency were statistically insignificant. For spectral analysis, both PSDα and PSDβ were significantly increased after tACS at T20, in which the effect sustained until T40. However, there was no differential effect by montages. There was no significant difference in the occurrence of sensations across the montages. The effectiveness of the blinding is supported by the participants' rate of guessing correctly. Conclusion This study revealed an immediate inhibitory effect of tACS, regardless of the montages. This inhibitory effect sustained in the Oz-Cz montage but faded out in other montages after 20 min.
Collapse
Affiliation(s)
- Jingying Wang
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- College of Health and Human Performance, University of Florida, Gainesville, FL, United States
| | - Kai Yip Choi
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Benjamin Thompson
- School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
- Centre for Eye and Vision Research, Hong Kong Science Park, Hong Kong, Hong Kong SAR, China
| | - Henry Ho Lung Chan
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- Centre for Eye and Vision Research, Hong Kong Science Park, Hong Kong, Hong Kong SAR, China
| | - Allen Ming Yan Cheong
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- Centre for Eye and Vision Research, Hong Kong Science Park, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
8
|
He Q, Zhu X, Fang F. Enhancing visual perceptual learning using transcranial electrical stimulation: Transcranial alternating current stimulation outperforms both transcranial direct current and random noise stimulation. J Vis 2023; 23:2. [PMID: 38054934 PMCID: PMC10702794 DOI: 10.1167/jov.23.14.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/23/2023] [Indexed: 12/07/2023] Open
Abstract
Diverse strategies can be employed to enhance visual skills, including visual perceptual learning (VPL) and transcranial electrical stimulation (tES). Combining VPL and tES is a popular method that holds promise for producing significant improvements in visual acuity within a short time frame. However, there is still a lack of comprehensive evaluation regarding the effects of combining different types of tES and VPL on enhancing visual function, especially with a larger sample size. In the present study, we recruited four groups of subjects (26 subjects each) to learn an orientation discrimination task with five daily training sessions. During training, the occipital region of each subject was stimulated by one type of tES-anodal transcranial direct current stimulation (tDCS), alternating current stimulation (tACS) at 10 Hz, high-frequency random noise stimulation (tRNS), and sham tACS-while the subject performed the training task. We found that, compared with the sham stimulation, both the high-frequency tRNS and the 10-Hz tACS facilitated VPL efficiently in terms of learning rate and performance improvement, but there was little modulatory effect in the anodal tDCS condition. Remarkably, the 10-Hz tACS condition exhibited superior modulatory effects compared with the tRNS condition, demonstrating the strongest modulation among the most commonly used tES types for further enhancing vision when combined with VPL. Our results suggest that alpha oscillations play a vital role in VPL. Our study provides a practical guide for vision rehabilitation.
Collapse
Affiliation(s)
- Qing He
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
- Key Laboratory of Machine Perception, Ministry of Education, Peking University, Beijing, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xinyi Zhu
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
- Key Laboratory of Machine Perception, Ministry of Education, Peking University, Beijing, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Fang Fang
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
- Key Laboratory of Machine Perception, Ministry of Education, Peking University, Beijing, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
9
|
Su K, Wang L, Wang Z, Ma J, Zhang C, Bi H, Wu J. The effect of acupuncture at the Taiyang acupoint on visual function and EEG microstates in myopia. Front Integr Neurosci 2023; 17:1234471. [PMID: 38035147 PMCID: PMC10684943 DOI: 10.3389/fnint.2023.1234471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/06/2023] [Indexed: 12/02/2023] Open
Abstract
Objective Acupuncture has certain effects to improve myopia visual function, but its neural mechanism is unclear. In this study, we acupunctured at the right Taiyang acupoint of myopic patients to analyze the effects of acupuncture on visual function and electroencephalographic activity and to investigate the correlation between improvements in visual function and changes in the brain. Methods In this study, a total of 21 myopic patients were recruited. The contrast sensitivity (CS) of the subjects was examined before and after acupuncture, and electroencephalography (EEG) data of the entire acupuncture process were recorded. Results The study found that compared with before acupuncture, the CS of both eyes in myopic patients at each spatial frequency was increased after acupuncture; compared with the resting state, the contribution of microstate C was decreased during the post-acupuncture state, and the transition probability between microstate A and microstate C was reduced; in addition, the contribution of microstate C was negatively correlated with CS at both 12 and 18 cpd. Conclusion The contrast sensitivity of myopic patients was improved after acupuncture at the Taiyang acupoint (20 min), which may be related to microstate C.
Collapse
Affiliation(s)
- Kangna Su
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Academy of Eye Disease Prevention and Therapy, Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Provincial Clinical Research Center of Ophthalmology and Children Visual Impairment Prevention and Control, Shandong Engineering Technology Research Center of Visual Intelligence, Shandong Academy of Health and Myopia Prevention and Control of Children and Adolescents, Jinan, China
- Ophthalmology Department of Northwest University First Hospital, Xi’an, Shaanxi, China
| | - Lihan Wang
- Shandong Academy of Eye Disease Prevention and Therapy, Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Provincial Clinical Research Center of Ophthalmology and Children Visual Impairment Prevention and Control, Shandong Engineering Technology Research Center of Visual Intelligence, Shandong Academy of Health and Myopia Prevention and Control of Children and Adolescents, Jinan, China
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhongqing Wang
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Academy of Eye Disease Prevention and Therapy, Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Provincial Clinical Research Center of Ophthalmology and Children Visual Impairment Prevention and Control, Shandong Engineering Technology Research Center of Visual Intelligence, Shandong Academy of Health and Myopia Prevention and Control of Children and Adolescents, Jinan, China
| | - Jiayao Ma
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Academy of Eye Disease Prevention and Therapy, Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Provincial Clinical Research Center of Ophthalmology and Children Visual Impairment Prevention and Control, Shandong Engineering Technology Research Center of Visual Intelligence, Shandong Academy of Health and Myopia Prevention and Control of Children and Adolescents, Jinan, China
| | - Chao Zhang
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hongsheng Bi
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Academy of Eye Disease Prevention and Therapy, Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Provincial Clinical Research Center of Ophthalmology and Children Visual Impairment Prevention and Control, Shandong Engineering Technology Research Center of Visual Intelligence, Shandong Academy of Health and Myopia Prevention and Control of Children and Adolescents, Jinan, China
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jianfeng Wu
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Academy of Eye Disease Prevention and Therapy, Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Provincial Clinical Research Center of Ophthalmology and Children Visual Impairment Prevention and Control, Shandong Engineering Technology Research Center of Visual Intelligence, Shandong Academy of Health and Myopia Prevention and Control of Children and Adolescents, Jinan, China
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
10
|
Fedotchev A, Zemlyanaya A. Brain State-Dependent Non-Invasive Neurostimulation with EEG Feedback: Achievements and Prospects (Review). Sovrem Tekhnologii Med 2023; 15:33-41. [PMID: 39967913 PMCID: PMC11832065 DOI: 10.17691/stm2023.15.5.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Indexed: 01/03/2025] Open
Abstract
Non-invasive brain stimulation with electroencephalogram (EEG) feedback is an intensively developing and promising area of neurophysiology. The review considers the literature data over the past 5 years on the achievements and promising directions for the further development of this research line. Modern data on the developed approaches to the practical use of various types of brain state-dependent adaptive neurostimulation with EEG feedback were analyzed. The main attention is paid to the studies using non-invasive magnetic and electrical stimulation, as well as acoustic and audiovisual stimulation. The paper considers the possibilities and prospects for using these technologies in clinical medicine. The results of the authors' own research are presented.
Collapse
Affiliation(s)
- A.I. Fedotchev
- DSc, Leading Researcher, Laboratory of Biosystems Regulating Mechanisms; Institute of Cell Biophysics of the Russian Academy of Sciences, 3 Institutskaya St., Pushchino, Moscow Region, 142290, Russia
| | - A.A. Zemlyanaya
- MD, PhD, Senior Researcher, Department of Exogenic and Organic Disorders and Epilepsy; Moscow Research Institute of Psychiatry — Branch of the Serbsky State Scientific Center for Psychiatry and Narcology of the Ministry of Health of Russia, Bldg. 10, 3 Poteshnaya St., Moscow, 107076, Russia
| |
Collapse
|
11
|
Aghamirzayeva K, Temuçin ÇM, Yıldız FG. Excitability Changes in Occipital Cortex After Continuous Theta-Burst Stimulation. Noro Psikiyatr Ars 2023; 67:228-234. [PMID: 39258130 PMCID: PMC11382566 DOI: 10.29399/npa.28431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/04/2023] [Indexed: 09/12/2024] Open
Abstract
Introduction Modulation of visual cortical structures by repetitive transcranial magnetic stimulation is rarely observed in literature. In this study; the researchers aimed to investigate the neurophysiological alterations by using continuous theta burst stimulation (cTBS) protocol over the occipital cortex in healthy subjects. Methods Twenty-five (15 female, 10 male) (mean age 29.84±4.7 years) healthy individuals were included in sham and real cTBS occipital stimulation sessions. Before and after each session, neurophysiological studies including phosphene threshold and visual evoked potential (VEP) responses were recorded. The P100 latency values and maximum amplitude values between N75-P100 peaks of 100 responses of 1000 uninterrupted continuous visual stimuli were measured. The VEP habituation and phosphene thresholds were compared in sham and real cTBS sessions. Results The phosphene threshold values increased to statistically significant levels after the real cTBS session. Visual evoked potential habituation was observed in both sham and real cTBS sessions in individuals without significant differences. Also, no difference between the P100 latencies and N75-P100 amplitude values in the sham and real cTBS sessions was observed. Conclusion Phosphene threshold measurements demonstrated the modulation of the occipital cortex excitability via cTBS in healthy subjects.
Collapse
Affiliation(s)
| | - Çağrı Mesut Temuçin
- Hacettepe University, School of Medicine, Department of Neurology, Ankara, Turkey
- Hacettepe University, School of Medicine, Department of Neurology, TMS-EMG Unit, Ankara, Turkey
| | - Fatma Gökçem Yıldız
- Hacettepe University, School of Medicine, Department of Neurology, Ankara, Turkey
- Hacettepe University, School of Medicine, Department of Neurology, TMS-EMG Unit, Ankara, Turkey
| |
Collapse
|