1
|
Tantawanich P, Phunruangsakao C, Izumi SI, Hayashibe M. A Systematic Review of Bimanual Motor Coordination in Brain-Computer Interface. IEEE Trans Neural Syst Rehabil Eng 2024; PP:266-285. [PMID: 40030619 DOI: 10.1109/tnsre.2024.3522168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Advancements in neuroscience and artificial intelligence are propelling rapid progress in brain-computer interfaces (BCIs). These developments hold significant potential for decoding motion intentions from brain signals, enabling direct control commands without reliance on conventional neural pathways. Growing interest exists in decoding bimanual motor tasks, crucial for activities of daily living. This stems from the need to restore motor function, especially in individuals with deficits. This review aims to summarize neurological advancements in bimanual BCIs, encompassing neuroimaging techniques, experimental paradigms, and analysis algorithms. Thirty-six articles were reviewed, adhering to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The literature search result revealed diverse experimental paradigms, protocols, and research directions, including enhancing the decoding accuracy, advancing versatile prosthesis robots, and enabling real-time applications. Notably, within BCI studies on bimanual movement coordination, a shared objective is to achieve naturalistic movement and practical applications with neurorehabilitation potential.
Collapse
|
2
|
Deo DR, Willett FR, Avansino DT, Hochberg LR, Henderson JM, Shenoy KV. Brain control of bimanual movement enabled by recurrent neural networks. Sci Rep 2024; 14:1598. [PMID: 38238386 PMCID: PMC10796685 DOI: 10.1038/s41598-024-51617-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/07/2024] [Indexed: 01/22/2024] Open
Abstract
Brain-computer interfaces have so far focused largely on enabling the control of a single effector, for example a single computer cursor or robotic arm. Restoring multi-effector motion could unlock greater functionality for people with paralysis (e.g., bimanual movement). However, it may prove challenging to decode the simultaneous motion of multiple effectors, as we recently found that a compositional neural code links movements across all limbs and that neural tuning changes nonlinearly during dual-effector motion. Here, we demonstrate the feasibility of high-quality bimanual control of two cursors via neural network (NN) decoders. Through simulations, we show that NNs leverage a neural 'laterality' dimension to distinguish between left and right-hand movements as neural tuning to both hands become increasingly correlated. In training recurrent neural networks (RNNs) for two-cursor control, we developed a method that alters the temporal structure of the training data by dilating/compressing it in time and re-ordering it, which we show helps RNNs successfully generalize to the online setting. With this method, we demonstrate that a person with paralysis can control two computer cursors simultaneously. Our results suggest that neural network decoders may be advantageous for multi-effector decoding, provided they are designed to transfer to the online setting.
Collapse
Affiliation(s)
- Darrel R Deo
- Department of Neurosurgery, Stanford University, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| | - Francis R Willett
- Howard Hughes Medical Institute at Stanford University, Stanford, CA, USA
| | - Donald T Avansino
- Howard Hughes Medical Institute at Stanford University, Stanford, CA, USA
| | - Leigh R Hochberg
- School of Engineering, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
- VA RR&D Center for Neurorestoration and Neurotechnology, Rehabilitation R&D Service, Providence VA Medical Center, Providence, RI, USA
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jaimie M Henderson
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Bio-X Institute, Stanford University, Stanford, CA, USA
| | - Krishna V Shenoy
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute at Stanford University, Stanford, CA, USA
- Bio-X Institute, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Neurobiology, Stanford University, Stanford, CA, USA
| |
Collapse
|
3
|
Lin J, Lai D, Wan Z, Feng L, Zhu J, Zhang J, Wang Y, Xu K. Representation and decoding of bilateral arm motor imagery using unilateral cerebral LFP signals. Front Hum Neurosci 2023; 17:1168017. [PMID: 37388414 PMCID: PMC10304012 DOI: 10.3389/fnhum.2023.1168017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/24/2023] [Indexed: 07/01/2023] Open
Abstract
Introduction In the field of upper limb brain computer interfaces (BCIs), the research focusing on bilateral decoding mostly based on the neural signals from two cerebral hemispheres. In addition, most studies used spikes for decoding. Here we examined the representation and decoding of different laterality and regions arm motor imagery in unilateral motor cortex based on local field potentials (LFPs). Methods The LFP signals were recorded from a 96-channel Utah microelectrode array implanted in the left primary motor cortex of a paralyzed participant. There were 7 kinds of tasks: rest, left, right and bilateral elbow and wrist flexion. We performed time-frequency analysis on the LFP signals and analyzed the representation and decoding of different tasks using the power and energy of different frequency bands. Results The frequency range of <8 Hz and >38 Hz showed power enhancement, whereas 8-38 Hz showed power suppression in spectrograms while performing motor imagery. There were significant differences in average energy between tasks. What's more, the movement region and laterality were represented in two dimensions by demixed principal component analysis. The 135-300 Hz band signal had the highest decoding accuracy among all frequency bands and the contralateral and bilateral signals had more similar single-channel power activation patterns and larger signal correlation than contralateral and ipsilateral signals, bilateral and ipsilateral signals. Discussion The results showed that unilateral LFP signals had different representations for bilateral motor imagery on the average energy of the full array and single-channel power levels, and different tasks could be decoded. These proved the feasibility of multilateral BCI based on the unilateral LFP signal to broaden the application of BCI technology. Clinical trial registration https://www.chictr.org.cn/showproj.aspx?proj=130829, identifier ChiCTR2100050705.
Collapse
Affiliation(s)
- Jiafan Lin
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Key Laboratory for Biomedical Engineering of Ministry of Education, School of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Dongrong Lai
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Key Laboratory for Biomedical Engineering of Ministry of Education, School of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Zijun Wan
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Key Laboratory for Biomedical Engineering of Ministry of Education, School of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | | | - Junming Zhu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China
| | - Yueming Wang
- State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China
- College of Computer Science and Technology, Zhejiang University, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, China
| | - Kedi Xu
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Key Laboratory for Biomedical Engineering of Ministry of Education, School of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
- State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Deo DR, Willett FR, Avansino DT, Hochberg LR, Henderson JM, Shenoy KV. Translating deep learning to neuroprosthetic control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.21.537581. [PMID: 37131830 PMCID: PMC10153231 DOI: 10.1101/2023.04.21.537581] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Advances in deep learning have given rise to neural network models of the relationship between movement and brain activity that appear to far outperform prior approaches. Brain-computer interfaces (BCIs) that enable people with paralysis to control external devices, such as robotic arms or computer cursors, might stand to benefit greatly from these advances. We tested recurrent neural networks (RNNs) on a challenging nonlinear BCI problem: decoding continuous bimanual movement of two computer cursors. Surprisingly, we found that although RNNs appeared to perform well in offline settings, they did so by overfitting to the temporal structure of the training data and failed to generalize to real-time neuroprosthetic control. In response, we developed a method that alters the temporal structure of the training data by dilating/compressing it in time and re-ordering it, which we show helps RNNs successfully generalize to the online setting. With this method, we demonstrate that a person with paralysis can control two computer cursors simultaneously, far outperforming standard linear methods. Our results provide evidence that preventing models from overfitting to temporal structure in training data may, in principle, aid in translating deep learning advances to the BCI setting, unlocking improved performance for challenging applications.
Collapse
|