1
|
Krawczuk D, Mroczko P, Winkel I, Mroczko B. The Diagnostic Value of Cerebrospinal Fluid Neurogranin in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:13578. [PMID: 39769345 PMCID: PMC11677289 DOI: 10.3390/ijms252413578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Synaptic pathology is crucial in neurodegenerative diseases (NDs), and numerous studies show a correlation between synaptic proteins and the rate of cognitive decline in Alzheimer's disease, Parkinson's disease, dementia, and Creutzfeldt-Jacob's disease. Due to the fact that altered synaptic function is considered a core feature of the pathophysiology of neurodegenerative disorders, synaptic proteins, such as neurogranin, may serve as a biomarker of these diseases. Neurogranin is a postsynaptic protein located in the cell bodies and dendrites of neurons, foremost in the cerebral cortex, hippocampus, and striatum. It has been established that neurogranin is involved in synaptic plasticity and long-term potentiation. Literature data indicate that cerebrospinal fluid neurogranin may be useful as a biomarker for more accurate diagnosis and prognosis of neurodegenerative diseases. In this review, the diagnostic value of cerebrospinal fluid neurogranin in most common neurodegenerative diseases is examined.
Collapse
Affiliation(s)
- Daria Krawczuk
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Białystok, Poland;
| | - Piotr Mroczko
- Faculty of Law, University of Bialystok, Mickiewicza 1, 15-213 Białystok, Poland;
| | - Izabela Winkel
- Dementia Disorders Centre, Medical University of Wroclaw, 50-425 Ścinawa, Poland;
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Białystok, Poland;
- Department of Biochemical Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Białystok, Poland
| |
Collapse
|
2
|
Salmon E, Collette F, Bastin C. Cerebral glucose metabolism in Alzheimer's disease. Cortex 2024; 179:50-61. [PMID: 39141935 DOI: 10.1016/j.cortex.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/05/2024] [Accepted: 07/25/2024] [Indexed: 08/16/2024]
Abstract
18F-fluoro-deoxy-glucose positron emission tomography (FDG-PET) is a useful paraclinical exam for the diagnosis of Alzheimer's disease (AD). In this narrative review, we report seminal studies in clinically probable AD that have shown the importance of posterior brain metabolic decrease and the paradoxical variability of the hippocampal metabolism. The FDG-PET pattern was a sensitive indicator of AD in pathologically confirmed cases and it was used for differential diagnosis of dementia conditions. In prodromal AD, the AD FDG-PET pattern was observed in converters and predicted conversion. Automated data analysis techniques provided variable accuracy according to the reported indices and machine learning methods showed variable reliability of results. FDG-PET could confirm AD clinical heterogeneity and image data driven analyses identified hypometabolic subtypes with variable involvement of the hippocampus, reminiscent if the paradoxical FDG uptake. In studies dedicated to clinical and metabolic correlations, episodic memory was related to metabolism in the default mode network (and Papez's circuit) in prodromal and mild AD stages, and specific cognitive processes were associated to precisely distributed brain metabolism. Cerebral metabolic correlates of anosognosia could also be related to current neuropsychological models. AD FDG-PET pattern was reported in preclinical AD stages and related to cognition or to conversion to mild cognitive impairment (MCI). Using other biomarkers, the AD FDG-PET pattern was confirmed in AD participants with positive PET-amyloid. Intriguing observations reported increased metabolism related to brain amyloid and/or tau deposition. Preserved glucose metabolism sometimes appear as a compensation, but it was frequently detrimental and the nature of such a preservation of glucose metabolism remains an open question. Limbic metabolic involvement was frequently related to non-AD biomarkers profile and clinical stability, and it was reported in non-AD pathologies, such as the limbic predominant age-related encephalopathy (LATE). FDG-PET abnormalities observed in the absence of classical AD proteinopathies can be useful to search for pathological mechanisms and differential diagnosis of AD.
Collapse
Affiliation(s)
- Eric Salmon
- GIGA Research, CRC Human Imaging, University of Liege, Liege, Belgium.
| | - Fabienne Collette
- GIGA Research, CRC Human Imaging, University of Liege, Liege, Belgium.
| | - Christine Bastin
- GIGA Research, CRC Human Imaging, University of Liege, Liege, Belgium.
| |
Collapse
|
3
|
García-Gutiérrez F, Hernández-Lorenzo L, Cabrera-Martín MN, Matias-Guiu JA, Ayala JL. Predicting changes in brain metabolism and progression from mild cognitive impairment to dementia using multitask Deep Learning models and explainable AI. Neuroimage 2024; 297:120695. [PMID: 38942101 DOI: 10.1016/j.neuroimage.2024.120695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/18/2024] [Indexed: 06/30/2024] Open
Abstract
BACKGROUND The prediction of Alzheimer's disease (AD) progression from its early stages is a research priority. In this context, the use of Artificial Intelligence (AI) in AD has experienced a notable surge in recent years. However, existing investigations predominantly concentrate on distinguishing clinical phenotypes through cross-sectional approaches. This study aims to investigate the potential of modeling additional dimensions of the disease, such as variations in brain metabolism assessed via [18F]-fluorodeoxyglucose positron emission tomography (FDG-PET), and utilize this information to identify patients with mild cognitive impairment (MCI) who will progress to dementia (pMCI). METHODS We analyzed data from 1,617 participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) who had undergone at least one FDG-PET scan. We identified the brain regions with the most significant hypometabolism in AD and used Deep Learning (DL) models to predict future changes in brain metabolism. The best-performing model was then adapted under a multi-task learning framework to identify pMCI individuals. Finally, this model underwent further analysis using eXplainable AI (XAI) techniques. RESULTS Our results confirm a strong association between hypometabolism, disease progression, and cognitive decline. Furthermore, we demonstrated that integrating data on changes in brain metabolism during training enhanced the models' ability to detect pMCI individuals (sensitivity=88.4%, specificity=86.9%). Lastly, the application of XAI techniques enabled us to delve into the brain regions with the most significant impact on model predictions, highlighting the importance of the hippocampus, cingulate cortex, and some subcortical structures. CONCLUSION This study introduces a novel dimension to predictive modeling in AD, emphasizing the importance of projecting variations in brain metabolism under a multi-task learning paradigm.
Collapse
Affiliation(s)
| | | | - María Nieves Cabrera-Martín
- Department of Nuclear Medicine, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain.
| | - Jordi A Matias-Guiu
- Department of Neurology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain.
| | - José L Ayala
- Department of Computer Architecture and Automation, Universidad Complutense, Madrid, Spain.
| |
Collapse
|
4
|
Wang H, Wang X, Liu F, Zhang G, Zhang G, Zhang Q, Lang ML. DSG-GAN:A dual-stage-generator-based GAN for cross-modality synthesis from PET to CT. Comput Biol Med 2024; 172:108296. [PMID: 38493600 DOI: 10.1016/j.compbiomed.2024.108296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/01/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
PET/CT devices typically use CT images for PET attenuation correction, leading to additional radiation exposure. Alternatively, in a standalone PET imaging system, attenuation and scatter correction cannot be performed due to the absence of CT images. Therefore, it is necessary to explore methods for generating pseudo-CT images from PET images. However, traditional PET-to-CT synthesis models encounter conflicts in multi-objective optimization, leading to disparities between synthetic and real images in overall structure and texture. To address this issue, we propose a staged image generation model. Firstly, we construct a dual-stage generator, which synthesizes the overall structure and texture details of images by decomposing optimization objectives and employing multiple loss functions constraints. Additionally, in each generator, we employ improved deep perceptual skip connections, which utilize cross-layer information interaction and deep perceptual selection to effectively and selectively leverage multi-level deep information and avoid interference from redundant information. Finally, we construct a context-aware local discriminator, which integrates context information and extracts local features to generate fine local details of images and reasonably maintain the overall coherence of the images. Experimental results demonstrate that our approach outperforms other methods, with SSIM, PSNR, and FID metrics reaching 0.8993, 29.6108, and 29.7489, respectively, achieving the state-of-the-art. Furthermore, we conduct visual experiments on the synthesized pseudo-CT images in terms of image structure and texture. The results indicate that the pseudo-CT images synthesized in this study are more similar to real CT images, providing accurate structure information for clinical disease analysis and lesion localization.
Collapse
Affiliation(s)
- Huabin Wang
- Anhui Provincial International Joint Research Center for Advanced Technology in Medical Imaging, School of Computer Science and Technology, Anhui University, Hefei, Anhui 230601, China.
| | - Xiangdong Wang
- Anhui Provincial International Joint Research Center for Advanced Technology in Medical Imaging, School of Computer Science and Technology, Anhui University, Hefei, Anhui 230601, China
| | - Fei Liu
- Anhui Provincial International Joint Research Center for Advanced Technology in Medical Imaging, School of Computer Science and Technology, Anhui University, Hefei, Anhui 230601, China
| | - Grace Zhang
- Faculty of Engineering, Western University, Canada
| | - Gong Zhang
- Anhui Provincial International Joint Research Center for Advanced Technology in Medical Imaging, School of Computer Science and Technology, Anhui University, Hefei, Anhui 230601, China; School of Public Health, Anhui University of Science and Technology, HuaiNan, Anhui 232001, China
| | - Qiang Zhang
- Physical Examination Center of The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010010, China
| | - Michael L Lang
- Department of Physics, University of Winnipeg, 515 Portage Ave., Winnipeg, Manitoba, Canada; Sino Canadian Health Research Institute, Winnipeg, Manitoba, Canada
| |
Collapse
|
5
|
Sheng J, Zhang Q, Zhang Q, Wang L, Yang Z, Xin Y, Wang B. A hybrid multimodal machine learning model for Detecting Alzheimer's disease. Comput Biol Med 2024; 170:108035. [PMID: 38325214 DOI: 10.1016/j.compbiomed.2024.108035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/03/2024] [Accepted: 01/26/2024] [Indexed: 02/09/2024]
Abstract
Alzheimer's disease (AD) diagnosis utilizing single modality neuroimaging data has limitations. Multimodal fusion of complementary biomarkers may improve diagnostic performance. This study proposes a multimodal machine learning framework integrating magnetic resonance imaging (MRI), positron emission tomography (PET) and cerebrospinal fluid (CSF) assays for enhanced AD characterization. The model incorporates a hybrid algorithm combining enhanced Harris Hawks Optimization (HHO) algorithm referred to as ILHHO, with Kernel Extreme Learning Machine (KELM) classifier for simultaneous feature selection and classification. ILHHO enhances HHO's search efficiency by integrating iterative mapping (IM) to improve population diversity and local escaping operator (LEO) to balance exploration-exploitation. Comparative analysis with other improved HHO algorithms, classic meta-heuristic algorithms (MHAs), and state-of-the-art MHAs on IEEE CEC2014 benchmark functions indicates that ILHHO achieves superior optimization performance compared to other comparative algorithms. The synergistic ILHHO-KELM model is evaluated on 202 AD Neuroimaging Initiative (ADNI) subjects. Results demonstrate superior multimodal classification accuracy over single modalities, validating the importance of fusing heterogeneous biomarkers. MRI + PET + CSF achieves 99.2 % accuracy for AD vs. normal control (NC), outperforming conventional and proposed methods. Discriminative feature analysis provides further insights into differential AD-related neurodegeneration patterns detected by MRI and PET. The differential PET and MRI features demonstrate how the two modalities provide complementary biomarkers. The neuroanatomical relevance of selected features supports ILHHO-KELM's potential for extracting sensitive AD imaging signatures. Overall, the study showcases the advantages of capitalizing on complementary multimodal data through advanced feature learning techniques for improving AD diagnosis.
Collapse
Affiliation(s)
- Jinhua Sheng
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, China; Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang, 310018, China.
| | - Qian Zhang
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, China; Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang, 310018, China; School of Data Science and Artificial Intelligence, Wenzhou University of Technology, Wenzhou, Zhejiang, 325035, China
| | - Qiao Zhang
- Beijing Hospital, Beijing, 100730, China; National Center of Gerontology, Beijing, 100730, China; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Luyun Wang
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, China; Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang, 310018, China
| | - Ze Yang
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, China; Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang, 310018, China
| | - Yu Xin
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, China; Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang, 310018, China
| | - Binbing Wang
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, China; Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang, 310018, China
| |
Collapse
|
6
|
Kishore N, Goel N. Deep learning based diagnosis of Alzheimer's disease using FDG-PET images. Neurosci Lett 2023; 817:137530. [PMID: 37858874 DOI: 10.1016/j.neulet.2023.137530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
PURPOSE The aim of this study is to develop a deep neural network to diagnosis Alzheimer's disease and categorize the stages of the disease using FDG-PET scans. Fluorodeoxyglucose positron emission tomography (FDG-PET) is a highly effective diagnostic tool that accurately detects glucose metabolism in the brain of AD patients. MATERIAL AND METHODS In this work, we have developed a deep neural network using FDG-PET to discriminate Alzheimer's disease subjects from stable mild cognitive impairment (sMCI), progressive mild cognitive impairment (pMCI), and cognitively normal (CN) cohorts. A total of 83 FDG-PET scans are collected from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, including 21 subjects with CN, 21 subjects with sMCI, 21 subjects with pMCI, and 20 subjects with AD. RESULTS The method has achieved remarkable accuracy rates of 99.31% for CN vs. AD, 99.88% for CN vs. MCI, 99.54% for AD vs. MCI, and 96.81% for pMCI vs. sMCI. Based on the experimental results. CONCLUSION The results show that the proposed method has a significant generalisation ability as well as good performance in predicting the conversion of MCI to AD even in the absence of direct information. FDG-PET is a well-known biomarker for the identification of Alzheimer's disease using transfer learning.
Collapse
Affiliation(s)
- Nand Kishore
- Department of Information Technology, University Institute of Engineering & Technology, Panjab University, Chandigarh 160014, India
| | - Neelam Goel
- Department of Information Technology, University Institute of Engineering & Technology, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
7
|
Khatri U, Kwon GR. Explainable Vision Transformer with Self-Supervised Learning to Predict Alzheimer's Disease Progression Using 18F-FDG PET. Bioengineering (Basel) 2023; 10:1225. [PMID: 37892955 PMCID: PMC10603890 DOI: 10.3390/bioengineering10101225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that affects millions of people worldwide. Early and accurate prediction of AD progression is crucial for early intervention and personalized treatment planning. Although AD does not yet have a reliable therapy, several medications help slow down the disease's progression. However, more study is still needed to develop reliable methods for detecting AD and its phases. In the recent past, biomarkers associated with AD have been identified using neuroimaging methods. To uncover biomarkers, deep learning techniques have quickly emerged as a crucial methodology. A functional molecular imaging technique known as fluorodeoxyglucose positron emission tomography (18F-FDG-PET) has been shown to be effective in assisting researchers in understanding the morphological and neurological alterations to the brain associated with AD. Convolutional neural networks (CNNs) have also long dominated the field of AD progression and have been the subject of substantial research, while more recent approaches like vision transformers (ViT) have not yet been fully investigated. In this paper, we present a self-supervised learning (SSL) method to automatically acquire meaningful AD characteristics using the ViT architecture by pretraining the feature extractor using the self-distillation with no labels (DINO) and extreme learning machine (ELM) as classifier models. In this work, we examined a technique for predicting mild cognitive impairment (MCI) to AD utilizing an SSL model which learns powerful representations from unlabeled 18F-FDG PET images, thus reducing the need for large-labeled datasets. In comparison to several earlier approaches, our strategy showed state-of-the-art classification performance in terms of accuracy (92.31%), specificity (90.21%), and sensitivity (95.50%). Then, to make the suggested model easier to understand, we highlighted the brain regions that significantly influence the prediction of MCI development. Our methods offer a precise and efficient strategy for predicting the transition from MCI to AD. In conclusion, this research presents a novel Explainable SSL-ViT model that can accurately predict AD progress based on 18F-FDG PET scans. SSL, attention, and ELM mechanisms are integrated into the model to make it more predictive and interpretable. Future research will enable the development of viable treatments for neurodegenerative disorders by combining brain areas contributing to projection with observed anatomical traits.
Collapse
Affiliation(s)
| | - Goo-Rak Kwon
- Department of Information and Communication Engineering, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea;
| |
Collapse
|