1
|
Westerhuis JAW, Dudink J, Wijnands BECA, De Zeeuw CI, Canto CB. Impact of Intrauterine Insults on Fetal and Postnatal Cerebellar Development in Humans and Rodents. Cells 2024; 13:1911. [PMID: 39594658 PMCID: PMC11592629 DOI: 10.3390/cells13221911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Many children suffer from neurodevelopmental aberrations that have long-term effects. To understand the consequences of pathological processes during particular periods in neurodevelopment, one has to understand the differences in the developmental timelines of brain regions. The cerebellum is one of the first brain structures to differentiate during development but one of the last to achieve maturity. This relatively long period of development underscores its vulnerability to detrimental environmental exposures throughout gestation. Moreover, as postnatal functionality of the cerebellum is multifaceted, enveloping sensorimotor, cognitive, and emotional domains, prenatal disruptions in cerebellar development can result in a large variety of neurological and mental health disorders. Here, we review major intrauterine insults that affect cerebellar development in both humans and rodents, ranging from abuse of toxic chemical agents, such as alcohol, nicotine, cannabis, and opioids, to stress, malnutrition, and infections. Understanding these pathological mechanisms in the context of the different stages of cerebellar development in humans and rodents can help us to identify critical and vulnerable periods and thereby prevent the risk of associated prenatal and early postnatal damage that can lead to lifelong neurological and cognitive disabilities. The aim of the review is to raise awareness and to provide information for obstetricians and other healthcare professionals to eventually design strategies for preventing or rescuing related neurodevelopmental disorders.
Collapse
Affiliation(s)
- Judith A. W. Westerhuis
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands; (J.A.W.W.); (C.I.D.Z.)
| | - Jeroen Dudink
- Department of Neonatology, Wilhelmina Children’s Hospital, University Medical Centre Utrecht, 3584 EA Utrecht, The Netherlands; (J.D.); (B.E.C.A.W.)
| | - Bente E. C. A. Wijnands
- Department of Neonatology, Wilhelmina Children’s Hospital, University Medical Centre Utrecht, 3584 EA Utrecht, The Netherlands; (J.D.); (B.E.C.A.W.)
| | - Chris I. De Zeeuw
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands; (J.A.W.W.); (C.I.D.Z.)
- Department of Neuroscience, Erasmus Medical Center, 3015 AA Rotterdam, The Netherlands
| | - Cathrin B. Canto
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands; (J.A.W.W.); (C.I.D.Z.)
- Department of Neuroscience, Erasmus Medical Center, 3015 AA Rotterdam, The Netherlands
| |
Collapse
|
2
|
Mikhalitskaya EV, Vyalova NM, Bokhan NA, Ivanova SA. Alcohol-Induced Activation of Chemokine System and Neuroinflammation Development. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1889-1903. [PMID: 39647818 DOI: 10.1134/s0006297924110038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 12/10/2024]
Abstract
Chemokines are immunoregulatory proteins with pleiotropic functions involved in neuromodulation, neurogenesis, and neurotransmission. The way chemokines affect the CNS plays an important role in modulating various conditions that could have negative impact on CNS functions, including development of alcohol use disorders. In this review, we analyzed the literature data available on the problem of chemokine participation in pathogenesis, clinical presentation, and remission of alcohol use disorders both in animal models and in the study of patients with alcoholism. The presented information confirms the hypothesis that the alcohol-induced chemokine production could modulate chronic neuroinflammation. Thus, the data summarized and shown in this review are focused on the relevant direction of research in the field of psychiatry, which is in demand by both scientists and clinical specialists.
Collapse
Affiliation(s)
- Ekaterina V Mikhalitskaya
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634014, Russia.
| | - Natalya M Vyalova
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634014, Russia
| | - Nikolay A Bokhan
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634014, Russia
| | - Svetlana A Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634014, Russia
| |
Collapse
|
3
|
Leung ECH, Jain P, Michealson MA, Choi H, Ellsworth-Kopkowski A, Valenzuela CF. Recent breakthroughs in understanding the cerebellum's role in fetal alcohol spectrum disorder: A systematic review. Alcohol 2024; 119:37-71. [PMID: 38097146 PMCID: PMC11166889 DOI: 10.1016/j.alcohol.2023.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 06/14/2024]
Abstract
Exposure to alcohol during fetal development can lead to structural and functional abnormalities in the cerebellum, a brain region responsible for motor coordination, balance, and specific cognitive functions. In this systematic review, we comprehensively analyze a vast body of research conducted on vertebrate animals and humans over the past 13 years. We identified studies through PubMed and screened them following PRISMA guidelines. Data extraction and quality analysis were conducted using Covidence systematic review software. A total of 108 studies met our inclusion criteria, with the majority (79 studies) involving vertebrate animal models and 29 studies focusing on human subjects. Animal models included zebrafish, mice, rats, sheep, and non-human primates, investigating the impact of ethanol on cerebellar structure, gene/protein expression, physiology, and cerebellar-dependent behaviors. Additionally, some animal studies explored potential therapeutic interventions against ethanol-induced cerebellar damage. The human studies predominantly adopted cohort designs, exploring the effects of prenatal alcohol exposure on cerebellar structure and function. Certain human studies delved into innovative cerebellar-based diagnostic approaches for fetal alcohol spectrum disorder (FASD). The collective findings from these studies clearly indicate that the cerebellum is involved in various neurophysiological deficits associated with FASD, emphasizing the importance of evaluating both cerebellar structure and function in the diagnostic process for this condition. Moreover, this review sheds light into potential therapeutic strategies that can mitigate prenatal alcohol exposure-induced cerebellar damage.
Collapse
Affiliation(s)
- Eric C H Leung
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Priyanka Jain
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Marisa A Michealson
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Hyesun Choi
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Alexis Ellsworth-Kopkowski
- Health Sciences Library & Informatics Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - C Fernando Valenzuela
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States.
| |
Collapse
|
4
|
Kantati YT, Kodjo MK, Lefranc B, Basille-Dugay M, Hupin S, Schmitz I, Leprince J, Gbeassor M, Vaudry D. Neuroprotective Effect of Sterculia setigera Leaves Hydroethanolic Extract. J Mol Neurosci 2024; 74:44. [PMID: 38630337 DOI: 10.1007/s12031-024-02222-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 04/06/2024] [Indexed: 04/19/2024]
Abstract
Plants are a valuable source of information for pharmacological research and new drug discovery. The present study aimed to evaluate the neuroprotective potential of the leaves of the medicinal plant Sterculia setigera. In vitro, the effect of Sterculia setigera leaves dry hydroethanolic extract (SSE) was tested on cultured cerebellar granule neurons (CGN) survival when exposed to hydrogen peroxide (H2O2) or 6-hydroxydopamine (6-OHDA), using the viability probe fluorescein diacetate (FDA), a lactate dehydrogenase (LDH) activity assay, an immunocytochemical staining against Gap 43, and the quantification of the expression of genes involved in apoptosis, necrosis, or oxidative stress. In vivo, the effect of intraperitoneal (ip) injection of SSE was assessed on the developing brain of 8-day-old Wistar rats exposed to ethanol neurotoxicity by measuring caspase-3 activity on cerebellum homogenates, the expression of some genes in tissue extracts, the thickness of cerebellar cortical layers and motor coordination. In vitro, SSE protected CGN against H2O2 and 6-OHDA-induced cell death at a dose of 10 µg/mL, inhibited the expression of genes Casp3 and Bad, and upregulated the expression of Cat and Gpx7. In vivo, SSE significantly blocked the deleterious effect of ethanol by reducing the activity of caspase-3, inhibiting the expression of Bax and Tp53, preventing the reduction of the thickness of the internal granule cell layer of the cerebellar cortex, and restoring motor functions. Sterculia setigera exerts neuroactive functions as claimed by traditional medicine and should be a good candidate for the development of a neuroprotective treatment against neurodegenerative diseases.
Collapse
Affiliation(s)
- Yendubé T Kantati
- Univ Rouen Normandie, Normandie Univ, NorDiC UMR 1239, 76000, Inserm, Rouen, France
- Laboratory of Physiology/Pharmacology, Physiopathology Bioactive Substances and Innocuity Research Unit (PBSI), Faculty of Sciences, of Lomé, Lomé, Togo, 01BP 1515
| | - Magloire K Kodjo
- Laboratory of Physiology/Pharmacology, Physiopathology Bioactive Substances and Innocuity Research Unit (PBSI), Faculty of Sciences, of Lomé, Lomé, Togo, 01BP 1515
| | - Benjamin Lefranc
- Univ Rouen Normandie, Normandie Univ, NorDiC UMR 1239, 76000, Inserm, Rouen, France
- Univ Rouen Normandie, CNRS, Normandie Univ, HeRacLeS US 51 UAR 2026, 76000, Inserm, Rouen, France
| | - Magali Basille-Dugay
- Univ Rouen Normandie, Normandie Univ, NorDiC UMR 1239, 76000, Inserm, Rouen, France
| | - Sébastien Hupin
- UMR 6014, Normandie Université, COBRA, Université de Rouen, INSA de Rouen-Normandie, CNRS, IRCOF, 3038, Mont Saint Aignan Cedex, FR, France
| | - Isabelle Schmitz
- UMR 6014, Normandie Université, COBRA, Université de Rouen, INSA de Rouen-Normandie, CNRS, IRCOF, 3038, Mont Saint Aignan Cedex, FR, France
- UMR 6270, Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, 76000, Rouen, France
| | - Jérôme Leprince
- Univ Rouen Normandie, Normandie Univ, NorDiC UMR 1239, 76000, Inserm, Rouen, France
- Univ Rouen Normandie, CNRS, Normandie Univ, HeRacLeS US 51 UAR 2026, 76000, Inserm, Rouen, France
| | - Messanvi Gbeassor
- Laboratory of Physiology/Pharmacology, Physiopathology Bioactive Substances and Innocuity Research Unit (PBSI), Faculty of Sciences, of Lomé, Lomé, Togo, 01BP 1515
| | - David Vaudry
- Univ Rouen Normandie, CNRS, Normandie Univ, HeRacLeS US 51 UAR 2026, 76000, Inserm, Rouen, France.
- UMR 1245, Laboratory of Cancer and Brain Genomics, Univ Rouen Normandie, Normandie Univ, 76000, Inserm, Rouen, France.
| |
Collapse
|
5
|
Reyes-Haro D, López-Juárez A, Rodríguez-Contreras A. Editorial: Physiology and pathology of neuroglia. Front Cell Neurosci 2023; 17:1246885. [PMID: 37534041 PMCID: PMC10393125 DOI: 10.3389/fncel.2023.1246885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 07/07/2023] [Indexed: 08/04/2023] Open
Affiliation(s)
- Daniel Reyes-Haro
- Universidad Nacional Autónoma de México, Instituto de Neurobiología - UNAM, Campus Juriquilla, Juriquilla, QRO, Mexico
| | - Alejandro López-Juárez
- Department of Health and Biomedical Sciences, The University of Texas Rio Grande Valley, Brownsville, TX, United States
| | - Adrián Rodríguez-Contreras
- The Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, School of Communication, Northwestern University, Evanston, IL, United States
| |
Collapse
|