1
|
Sun M, Zhang X, Feng X, Liang L. PKM2 accelerated the progression of chronic fatigue syndrome via promoting the H4K12la/ NF-κB induced neuroinflammation and mitochondrial damage. Sci Rep 2025; 15:10772. [PMID: 40155479 PMCID: PMC11953386 DOI: 10.1038/s41598-025-93313-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 03/05/2025] [Indexed: 04/01/2025] Open
Abstract
This study aims to explore the effects and potential mechanisms of PKM2-mediated neuroinflammation leading to mitochondrial damage and its role in the progression of chronic fatigue syndrome (CFS). Bioinformatics methods were applied to predict and analyze PKM2 and downstream signaling factors. In vivo experiments were conducted with mice divided into four groups after different treatments: control group, model group, Model + PKM2-OE group, and Model + PKM2-KD group. Morris water maze and field tests were used to assess cognitive function, grip strength, and rotation tests to evaluate physical strength. HE and Nissl staining were used to observe cellular conditions in the CA1 region of the hippocampus. Immunohistochemistry was used to detect PKM2 levels in the CA1 region. Western blot was performed to assess protein expression, lactate assay kits measured serum and brain tissue lactate levels, and ELISA detected inflammatory factors in brain tissue. Bioinformatics analysis showed that PKM2 could promote the expression of glycolytic factors, leading to H4K12la histone lactylation modification, which enhances the expression of inflammatory factors such as NF-κB, resulting in mitochondrial damage. Compared to the control group, the cognitive function of the model group significantly declined, while the cognitive function of the Model + PKM2-OE group improved. However, cognitive function worsened in the Model + PKM2-KD group compared to the model group. The physical strength of the control group was normal, and no significant differences were observed in the model, Model + PKM2-OE, and Model + PKM2-KD groups. Cell quantity and arrangement in the control group were normal, while the model group showed fewer and disorganized cells. The Model + PKM2-OE group showed further deterioration compared to the model group, whereas the Model + PKM2-KD group showed improvement. Compared to the control group, the model group had increased expression of PKM2, H4K12la, H4, IL-1β, and TNFα. Compared to the model group, these markers were even higher in the Model + PKM2-OE group, but significantly reduced in the Model + PKM2-KD group. Serum lactate levels increased in the model group compared to the control group, but there was no significant difference between the Model + PKM2-OE and Model + PKM2-KD groups. Brain tissue lactate levels increased in the model group, further elevated in the Model + PKM2-OE group, but decreased in the Model + PKM2-KD group. PKM2 in hippocampal cells enhances glycolysis, lactate accumulation, and H4K12la/NF-κB-mediated neuroinflammation, leading to mitochondrial damage and accelerating the progression of chronic fatigue syndrome.
Collapse
Affiliation(s)
- Meng Sun
- Department of Interventional vascular Surgery, Affiliated Hospital of Hebei University, B aoding 071000, Baoding City, Hebei, China
| | - Xinwen Zhang
- Department of Integrative Medicine, Affiliated Hospital of Hebei University, Baoding 07, Baoding City, 1000, Hebei, China
| | - Xinli Feng
- Department of Emergency Medicine, Affiliated Hospital of Hebei University, Baoding 07, Baoding City, 1000, Hebei, China.
- , 212 Yuhua East Road, Baoding City, 071000, Hebei Province, China.
| | - Lu Liang
- Department of Emergency Medicine, Affiliated Hospital of Hebei University, Baoding 07, Baoding City, 1000, Hebei, China.
- , 212 Yuhua East Road, Baoding City, 071000, Hebei Province, China.
| |
Collapse
|
2
|
Parveen R, Ali S, Fatima S. Clay-Polymer Nanocomposites Mediated Inhibition of Protein Aggregation: Possible Role in the Prevention of Proteinopathies. Protein Pept Lett 2025; 32:139-151. [PMID: 37855298 DOI: 10.2174/0109298665274059231002071951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND The transformation of proteins from their native conformation into highly ordered fibrillar structures due to their misfolding and aggregation under particular conditions are described as beta-sheet enriched amyloid fibrils. The accumulation of these fibrils in different body parts is the major cause of several neurological and non-neurological conditions (proteinopathies). OBJECTIVES To prevent these proteinopathies, inhibition of protein aggregation is considered a promising strategy. Therefore, in this study, we synthesized montmorillonite (MMT) based poly- orthophenylenediamine (PoPD) nanocomposites (NCs) and characterized their size and morphology due to their remarkable biological properties. Further, the effect of these nanocomposites on inhibition of fibril formation was assessed. METHODS These nanocomposites were evaluated for their anti-amyloidogenic potential on two model proteins of amyloidopathies, i.e., human lysozyme and human serum albumin (HL & HSA), by using several biophysical methods, such as Thioflavin T (ThT) and 1-anilino-8-naphthalene sulfonate (ANS) fluorescence, congo red dye binding assay (CR). Secondary structural content was evaluated by Circular dichroism (CD) spectroscopy. RESULTS Results demonstrated that synthesized nanocomposites significantly inhibited fibril formation in dose-dependent manner that corresponds to their ability to arrest fibrillation. It is suggested that they may adsorb proteins to protect them against aggregation when they are subjected to aggregating conditions. CONCLUSION This study offers an opportunity to understand the mechanism of inhibition of fibril formation by nanocomposites, showing that they inhibit amyloid formation and amyloid diseases. Thus, the study concludes that these nanocomposites are promising candidates as therapeutic molecules for proteinopathies and are envisaged to enrich the area of personalized medicine, augmenting the human healthcare system.
Collapse
Affiliation(s)
- Romana Parveen
- Department of Biotechnology, Jamia Millia Islamia University, New Delhi, India
| | - Sher Ali
- VC Office, Era University, Lucknow, India
| | - Sadaf Fatima
- Department of Biotechnology, Jamia Millia Islamia University, New Delhi, India
| |
Collapse
|
3
|
Latham AS, Geer CE, Ackart DF, Weninger KN, Gross CC, Podell BK, Basaraba RJ, Moreno JA. Immune cell infiltration and modulation of the blood-brain barrier in a guinea pig model of tuberculosis: Observations without evidence of bacterial dissemination to the brain. PLoS One 2024; 19:e0307577. [PMID: 39739680 DOI: 10.1371/journal.pone.0307577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 07/08/2024] [Indexed: 01/02/2025] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) infection, is a chronic inflammatory disease. Although typically associated with inflammation of the lungs and other peripheral tissues, increasing evidence has uncovered neurological consequences attributable to Mtb infection. These include deficits in memory and cognition, increased risk for neurodegenerative disease, and progressive neuropathology. Although the neurological effects of the disease, without CNS infection, have been characterized, the mechanism of neurotoxicity is unknown. We hypothesized that alterations to the blood-brain barrier (BBB) allows peripheral immune cells to enter the brain, initiating a neuroinflammatory response. To test this hypothesis, guinea pigs were exposed by aerosol to a laboratory and a clinical Mtb strain for 15 days. Following Mtb infection, proteins critical to BBB function, including claudin V and collagen IV, are modulated without evidence of bacterial dissemination to the brain. This is correlated with increased contact of astrocytic processes to vessels in the brain, as well as increased expression of the water channel protein aquaporin 4 (AQP4) on endfeet. Upon further investigation, we discovered the potential role of glial reactivity, which is increased following infection with both bacterial strains, in the progression of BBB changes and, ultimately, the permeability of peripheral immune cells into the brain. Through these data, we have obtained a preliminary understanding of the mechanisms of cellular stress in the brain following pulmonary Mtb infection which should be further investigated in future studies.
Collapse
Affiliation(s)
- Amanda S Latham
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- Brain Research Center, Colorado State University, Fort Collins, Colorado, United States of America
| | - Charlize E Geer
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - David F Ackart
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Kristin N Weninger
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- Department of Biomedical Science, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Chase C Gross
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Brendan K Podell
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Randall J Basaraba
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Julie A Moreno
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- Brain Research Center, Colorado State University, Fort Collins, Colorado, United States of America
- Center for Healthy Aging, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
4
|
Threatt AN, White J, Klepper N, Brier Z, Dean LS, Ibarra A, Harris M, Jones K, Wahl MJL, Barahona M, Oyewole EO, Pauly M, Moreno JA, Nordgren TM. Aspirin-triggered resolvin D1 modulates pulmonary and neurological inflammation in an IL-22 knock-out organic dust exposure mouse model. Front Immunol 2024; 15:1495581. [PMID: 39776904 PMCID: PMC11705093 DOI: 10.3389/fimmu.2024.1495581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
Agriculture dust contains many organic immunogenic compounds, and organic dust exposure is strongly associated with the development of immune-mediated chronic pulmonary diseases such as chronic obstructive pulmonary disease (COPD). Chronic organic dust exposure from agriculture sources induces chronic lung inflammatory diseases and organic dust exposure has recently been linked to an increased risk of developing dementia. The cytokine interleukin-22 (IL-22) has been established as an important mediator in the resolution and repair of lung tissues. The omega-3 fatty acid metabolite aspirin-triggered Resolvin D1 (AT-RvD1) has shown efficacy in modulating the immune response in both pulmonary and neurological inflammation but has not been explored as a therapeutic in organic dust exposure-induced neuroinflammation. Investigating the link between IL-22 and AT-RvD1 may help in developing effective therapies for these immune-mediated diseases. We aimed to investigate the link between organic dust exposure and neuroinflammation, the role of IL-22 in the pulmonary and neurological immune response to organic dust exposure, and the immune-modulating therapeutic applications of AT-RvD1 in an IL-22 knock-out mouse model of organic dust exposure. C57BL/6J (WT) and IL-22 knock-out (KO) mice were repetitively exposed to aqueous agriculture organic dust extract (DE) 5 days per week for 3 weeks (15 total instillations) and treated with AT-RvD1 either once per week (3 total injections) or 5 times per week (15 total injections) for 3 weeks and allowed to recover for 3 days. We observed a significant pulmonary and neurological immune response to DE characterized by the development of inducible bronchus associated lymphoid tissue in the lung and gliosis in the frontal areas of the brain. We also observed that IL-22 knock-out increased pulmonary and neurological inflammation severity. Animals exposed to DE and treated with AT-RvD1 displayed reduced lung pathology severity and gliosis. Our data demonstrate that DE exposure contributes to neurological inflammation and that IL-22 is crucial to effective tissue repair processes. Our data further suggest that AT-RvD1 may have potential as a novel therapeutic for organic dust exposure-induced, immune-mediated pulmonary and neurological inflammation, improving outcomes of those with these diseases.
Collapse
Affiliation(s)
- Alissa N. Threatt
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Jade White
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Department of Biology, College of Natural Sciences, Colorado State University, Fort Collins, CO, United States
| | - Nathan Klepper
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Department of Animal Sciences, College of Agricultural Sciences, Colorado State University, Fort Collins, CO, United States
| | - Zachary Brier
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Logan S. Dean
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, United States
| | - Ash Ibarra
- Department of Chemistry, College of Natural Sciences, Colorado State University, Fort Collins, CO, United States
| | - Macallister Harris
- Experimental Pathology Facility, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Kaylee Jones
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Maëlis J. L. Wahl
- Department of Biochemistry and Molecular Biology, College of Natural Sciences, Colorado State University, Fort Collins, CO, United States
| | - Melea Barahona
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, United States
| | - Emmanuel O. Oyewole
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Morgan Pauly
- Department of Biochemistry and Molecular Biology, College of Natural Sciences, Colorado State University, Fort Collins, CO, United States
| | - Julie A. Moreno
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Brain Research Center, Colorado State University, Fort Collins, CO, United States
| | - Tara M. Nordgren
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
5
|
Yang R, Zong Y, Zhang C. Potential correlation between chronic periodontitis and Parkinson's disease. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2024; 42:521-530. [PMID: 39049641 PMCID: PMC11338491 DOI: 10.7518/hxkq.2024.2024010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/21/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVES This study aims to investigate possible hub genes, associated pathways, and transcription factors between chronic periodontitis (CP) and Parkinson's disease (PD). METHODS Gene expression profiles of CP (GSE16134, GSE23586, and GSE10334) and PD (GSE20141 and GSE49036) were downloaded from the gene expression omnibus (GEO) database for differential expression analysis and functional clustering analysis. The protein-protein interaction (PPI) network was constructed, and hub genes were screened by four topological analysis algorithms and modular segmentation. Functional clustering analysis was performed. The hub genes were validated by external datasets of CP and PD, and causal relation was further assessed by Mendelian randomization (MR). RESULTS After merging the data, 1 211 differentially expressed genes (DEGs) were screened in the CP datasets; of which, 551 were upregulated and 660 were downregulated. A total of 2 407 DEGs were screened in the PD dataset, of which, 1 438 were upregulated and 969 were downregulated. The PPI network included 145 nodes and 126 edges. Four hub genes (FCGR3B, PRF1, IL18, and CD33) and three transcription factors (HSF1, HSF2, and HSF4) were finally screened. The relevant pathway was predominantly natural killer (NK) cell-mediated toxic effects. The MR results suggest a possible positive causal relationship between CP and the risk of developing PD. CONCLUSIONS This study indicated the probably shared pathophysiology and possible causal relationship between CP and PD and may offer novel concepts and therapeutic targets for future mechanistic investigations.
Collapse
Affiliation(s)
- Rongxia Yang
- Dept. of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yingrui Zong
- Dept. of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Chen Zhang
- Dept. of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
6
|
Risen SJ, Boland SW, Sharma S, Weisman GM, Shirley PM, Latham AS, Hay AJD, Gilberto VS, Hines AD, Brindley S, Brown JM, McGrath S, Chatterjee A, Nagpal P, Moreno JA. Targeting Neuroinflammation by Pharmacologic Downregulation of Inflammatory Pathways Is Neuroprotective in Protein Misfolding Disorders. ACS Chem Neurosci 2024; 15:1533-1547. [PMID: 38507813 DOI: 10.1021/acschemneuro.3c00846] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
Neuroinflammation plays a crucial role in the development of neurodegenerative protein misfolding disorders. This category of progressive diseases includes, but is not limited to, Alzheimer's disease, Parkinson's disease, and prion diseases. Shared pathogenesis involves the accumulation of misfolded proteins, chronic neuroinflammation, and synaptic dysfunction, ultimately leading to irreversible neuronal loss, measurable cognitive deficits, and death. Presently, there are few to no effective treatments to halt the advancement of neurodegenerative diseases. We hypothesized that directly targeting neuroinflammation by downregulating the transcription factor, NF-κB, and the inflammasome protein, NLRP3, would be neuroprotective. To achieve this, we used a cocktail of RNA targeting therapeutics (SB_NI_112) shown to be brain-penetrant, nontoxic, and effective inhibitors of both NF-κB and NLRP3. We utilized a mouse-adapted prion strain as a model for neurodegenerative diseases to assess the aggregation of misfolded proteins, glial inflammation, neuronal loss, cognitive deficits, and lifespan. Prion-diseased mice were treated either intraperitoneally or intranasally with SB_NI_112. Behavioral and cognitive deficits were significantly protected by this combination of NF-κB and NLRP3 downregulators. Treatment reduced glial inflammation, protected against neuronal loss, prevented spongiotic change, rescued cognitive deficits, and significantly lengthened the lifespan of prion-diseased mice. We have identified a nontoxic, systemic pharmacologic that downregulates NF-κB and NLRP3, prevents neuronal death, and slows the progression of neurodegenerative diseases. Though mouse models do not always predict human patient success and the study was limited due to sample size and number of dosing methods utilized, these findings serve as a proof of principle for continued translation of the therapeutic SB_NI_112 for prion disease and other neurodegenerative diseases. Based on the success in a murine prion model, we will continue testing SB_NI_112 in a variety of neurodegenerative disease models, including Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Sydney J Risen
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
- Brain Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Sean W Boland
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
- Brain Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Sadhana Sharma
- Sachi Bioworks Inc., Colorado Technology Center, 685 South Arthur Avenue, Louisville, Colorado 80027, United States
| | - Grace M Weisman
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Payton M Shirley
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Amanda S Latham
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Arielle J D Hay
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Vincenzo S Gilberto
- Sachi Bioworks Inc., Colorado Technology Center, 685 South Arthur Avenue, Louisville, Colorado 80027, United States
| | - Amelia D Hines
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Stephen Brindley
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Jared M Brown
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Stephanie McGrath
- Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Anushree Chatterjee
- Sachi Bioworks Inc., Colorado Technology Center, 685 South Arthur Avenue, Louisville, Colorado 80027, United States
| | - Prashant Nagpal
- Sachi Bioworks Inc., Colorado Technology Center, 685 South Arthur Avenue, Louisville, Colorado 80027, United States
| | - Julie A Moreno
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
- Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
- Brain Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
7
|
Latham AS, Moreno JA, Geer CE. Biological agents and the aging brain: glial inflammation and neurotoxic signaling. FRONTIERS IN AGING 2023; 4:1244149. [PMID: 37649972 PMCID: PMC10464498 DOI: 10.3389/fragi.2023.1244149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/01/2023] [Indexed: 09/01/2023]
Abstract
Neuroinflammation is a universal characteristic of brain aging and neurological disorders, irrespective of the disease state. Glial inflammation mediates this signaling, through astrocyte and microglial polarization from neuroprotective to neurotoxic phenotypes. Glial reactivity results in the loss of homeostasis, as these cells no longer provide support to neurons, in addition to the production of chronically toxic pro-inflammatory mediators. These glial changes initiate an inflammatory brain state that injures the central nervous system (CNS) over time. As the brain ages, glia are altered, including increased glial cell numbers, morphological changes, and either a pre-disposition or inability to become reactive. These alterations induce age-related neuropathologies, ultimately leading to neuronal degradation and irreversible damage associated with disorders of the aged brain, including Alzheimer's Disease (AD) and other related diseases. While the complex interactions of these glial cells and the brain are well studied, the role additional stressors, such as infectious agents, play on age-related neuropathology has not been fully elucidated. Both biological agents in the periphery, such as bacterial infections, or in the CNS, including viral infections like SARS-CoV-2, push glia into neuroinflammatory phenotypes that can exacerbate pathology within the aging brain. These biological agents release pattern associated molecular patterns (PAMPs) that bind to pattern recognition receptors (PRRs) on glial cells, beginning an inflammatory cascade. In this review, we will summarize the evidence that biological agents induce reactive glia, which worsens age-related neuropathology.
Collapse
Affiliation(s)
- Amanda S. Latham
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Brain Research Center, Colorado State University, Fort Collins, CO, United States
| | - Julie A. Moreno
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Brain Research Center, Colorado State University, Fort Collins, CO, United States
| | - Charlize E. Geer
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|