1
|
Ma L, Mi N, Wang Z, Bao R, Fang J, Ren Y, Xu X, Zhang H, Tang Y. Knockdown of IRF8 alleviates neuroinflammation through regulating microglial activation in Parkinson's disease. J Chem Neuroanat 2024; 138:102424. [PMID: 38670441 DOI: 10.1016/j.jchemneu.2024.102424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/08/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
Neuroinflammation associated with microglial activation plays a role in the development of Parkinson's disease (PD). The upregulation of interferon regulatory factor 8 (IRF8) in microglia following peripheral nerve injury has been observed to induce microglial activation. This suggests the potential therapeutic significance of IRF8 in PD. This research aims to explore the effects of IRF8 on the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model and lipopolysaccharide (LPS)-induced neuroinflammation, along with its underlying mechanisms. The study examines the differential expression of IRF8 and its effects on neuropathological changes using a PD mouse model and a PD model established from BV2 cells in vitro. IRF8 was found to be prominently expressed in the substantia nigra pars compacta (SNpc) region of PD mice and LPS-stimulated BV2 cells, while the expression of tyrosine hydroxylase (TH) and dopamine (DA) content in the SNpc region of PD mice was notably reduced. MPTP treatment and LPS stimulation intensified microglial activation, inflammation, and activation of the AMPK/mTOR signaling pathway in vivo and in vitro, respectively. Upon IRF8 silencing in the PD mouse and cell models, the knockdown of IRF8 ameliorated MPTP-induced behavioral deficits, increased the counts of TH and Nissl-positive neurons and DA content, reduced the number of Iba-1-positive microglia, and reduced the content of inflammatory factors, possibly by inhibiting the AMPK/mTOR signaling pathway. Similar outcomes were observed in the PD cell model. In conclusion, the suppression of IRF8 alleviates neuroinflammation through regulating microglial activation in PD models in vivo and in vitro by the AMPK/mTOR signaling pathway.
Collapse
Affiliation(s)
- Lili Ma
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Department of Neurology, Jilin City Hospital of Chemical Industry, Jilin City, Jilin, China
| | - Na Mi
- Department of Neurology, Chifeng Municipal Hospital, Chifeng, Inner Mongolia Autonomous Region, China
| | - Zhi Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Rui Bao
- Department of Rehabilitation, The Third Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Jing Fang
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yajing Ren
- School of Medical and Life Sciences, Chengdu University of TCM, Chengdu, Sichuan, China
| | - Xiuzhi Xu
- General Medical Department, Heilongjiang Provincial Hospital, Harbin, Heilongjiang, China
| | - Hongjia Zhang
- Department of Neurology, Jilin City Hospital of Chemical Industry, Jilin City, Jilin, China.
| | - Ying Tang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
2
|
Chaurasia R, Ayajuddin M, Ratnaparkhi GS, Lingadahalli SS, Yenisetti SC. A Simple Immunofluorescence Method to Characterize Neurodegeneration and Tyrosine Hydroxylase Reduction in Whole Brain of a Drosophila Model of Parkinson's Disease. Bio Protoc 2024; 14:e4937. [PMID: 38405079 PMCID: PMC10883891 DOI: 10.21769/bioprotoc.4937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/12/2023] [Accepted: 01/14/2024] [Indexed: 02/27/2024] Open
Abstract
Dopaminergic (DAergic) neurodegeneration in the substantia nigra pars compacta of the human brain is the pathological feature associated with Parkinson's disease (PD). Drosophila also exhibits mobility defects and diminished levels of brain dopamine on exposure to neurotoxicants mimicking PD. Our laboratory demonstrated in a Drosophila model of sporadic PD that there is no decrease in DAergic neuronal number; instead, there is a significant reduction in tyrosine hydroxylase (TH) fluorescence intensity (FI). Here, we present a sensitive assay based on the quantification of FI of the secondary antibody (ab). As the FI is directly proportional to the amount of TH synthesis, its reduction under PD conditions denotes the decrease in the TH synthesis, suggesting DAergic neuronal dysfunction. Therefore, FI quantification is a refined and sensitive method to understand the early stages of DAergic neurodegeneration. FI quantification is performed using the ZEN 2012 SP2 single-user software; a license must be acquired to utilize the imaging system to interactively control image acquisition, image processing, and analysis. This method will be of good use to biologists, as it can also be used with little modification to characterize the extent of degeneration and changes in the level of degeneration in response to drugs in different cell types. Unlike the expensive and cumbersome confocal microscopy, the present method will be an affordable option for fund-constrained neurobiology laboratories. Key features • Allows characterizing the incipient DAergic and other catecholaminergic neurodegeneration, even in the absence of loss of neuronal cell body. • Great alternative for the fund-constrained neurobiology laboratories in developing countries to utilize this method in different cell types and their response to drugs/nutraceuticals.
Collapse
Affiliation(s)
- Rahul Chaurasia
- Drosophila Neurobiology Laboratory,
Department of Zoology, Nagaland University (Central), Lumami 798627 Nagaland,
India
| | - Mohamad Ayajuddin
- Drosophila Neurobiology Laboratory,
Department of Zoology, Nagaland University (Central), Lumami 798627 Nagaland,
India
| | | | - Shashidhara S. Lingadahalli
- Tata Institute of Fundamental Research-National
Centre for Biological Sciences (TIFR-NCBS), Bengaluru, India
| | - Sarat C. Yenisetti
- Drosophila Neurobiology Laboratory,
Department of Zoology, Nagaland University (Central), Lumami 798627 Nagaland,
India
| |
Collapse
|