1
|
Scott DS, Subramanian M, Yamamoto J, Tamminga CA. Schizophrenia pathology reverse-translated into mouse shows hippocampal hyperactivity, psychosis behaviors and hyper-synchronous events. Mol Psychiatry 2025; 30:1746-1757. [PMID: 39407000 PMCID: PMC12015171 DOI: 10.1038/s41380-024-02781-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024]
Abstract
Decades of research into the function of the medial temporal lobe has driven curiosity around clinical outcomes associated with hippocampal dysfunction, including psychosis. Post-mortem analyses of brain tissue from human schizophrenia brain show decreased expression of the NMDAR subunit GluN1 confined to the dentate gyrus with evidence of downstream hippocampal hyperactivity in CA3 and CA1. Little is known about the mechanisms of the emergence of hippocampal hyperactivity as a putative psychosis biomarker. We have developed a reverse-translation mouse to study critical neural features. We had previously studied a dentate gyrus (DG)-specific GluN1 KO, which displays hippocampal hyperactivity and a psychosis-relevant behavioral phenotype. Here, we expressed an inhibitory DREADD (pAAV-CaMKIIa-hM4D(Gi)-mCherry) in granule cells of the mouse dentate gyrus, and continuously inhibited the region for 21 days in adolescent (6 weeks) and adult (10 weeks) C57BL/6 J mice with DREADD agonist Compound 21 (C21). Following this period, we quantified activity in the hippocampal subfields by assessing cFos expression, hippocampally mediated behaviors, and hippocampal local field potential with an intracerebral probe with continual monitoring over time. DG inhibition during adolescence generates an increase in hippocampal activity in CA3 and CA1, impairs social cognition and spatial working memory, as well as shows evidence of increased activity in local field potentials as spontaneous synchronous bursts of activity, which we term hyper-synchronous events (HSEs) in hippocampus. The same DG inhibition delivered during adulthood in the mouse lacks these outcomes. These results suggest a sensitive period in development in which the hippocampus is susceptible to DG inhibition resulting in hippocampal hyperactivity and psychosis-like behavioral outcomes.
Collapse
Affiliation(s)
- Daniel S Scott
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- O'Donnell Brain Institute, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Jun Yamamoto
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
- O'Donnell Brain Institute, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Carol A Tamminga
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
- O'Donnell Brain Institute, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
2
|
Ramsaran AI, Ventura S, Gallucci J, De Snoo ML, Josselyn SA, Frankland PW. A sensitive period for the development of episodic-like memory in mice. Curr Biol 2025:S0960-9822(25)00317-3. [PMID: 40215964 DOI: 10.1016/j.cub.2025.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/26/2025] [Accepted: 03/14/2025] [Indexed: 04/25/2025]
Abstract
Episodic-like memory is a later-developing cognitive function supported by the hippocampus. In mice, the formation of extracellular perineuronal nets in subfield cornu ammonis (CA) 1 of the dorsal hippocampus controls the emergence of episodic-like memory during the fourth post-natal week. Whether the timing of episodic-like memory onset is hard-wired, or flexibly set by early-life experiences during a critical or sensitive period for hippocampal maturation, is unknown. Here, we show that the trajectories for episodic-like memory development vary for mice given different sets of experiences spanning the second and third post-natal weeks. Specifically, episodic-like memory precision developed later in mice that experienced early-life adversity, while it developed earlier in mice that experienced early-life enrichment. Moreover, we demonstrate that early-life experiences set the timing of episodic-like memory development by modulating the pace of perineuronal net formation in dorsal CA1, which is dependent on the brain-derived neurotrophic factor (BDNF)-tropomysin receptor kinase B (TrkB) signaling pathway. These results indicate that the hippocampus undergoes a sensitive period during which early-life experiences determine the timing for episodic-like memory development.
Collapse
Affiliation(s)
- Adam I Ramsaran
- Neurosciences & Mental Health Program, The Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada; Department of Psychology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Silvia Ventura
- Neurosciences & Mental Health Program, The Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada
| | - Julia Gallucci
- Neurosciences & Mental Health Program, The Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada
| | - Mitchell L De Snoo
- Neurosciences & Mental Health Program, The Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sheena A Josselyn
- Neurosciences & Mental Health Program, The Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada; Department of Psychology, University of Toronto, Toronto, ON M5S 1A8, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Paul W Frankland
- Neurosciences & Mental Health Program, The Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada; Department of Psychology, University of Toronto, Toronto, ON M5S 1A8, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Child & Brain Development Program, Canadian Institute for Advanced Research, 661 University Ave., Toronto, ON M5G 1M1, Canada.
| |
Collapse
|
3
|
Thies AM, Pochinok I, Marquardt A, Dorofeikova M, Hanganu-Opatz IL, Pöpplau JA. Trajectories of working memory and decision making abilities along juvenile development in mice. Front Neurosci 2025; 19:1524931. [PMID: 40092072 PMCID: PMC11906447 DOI: 10.3389/fnins.2025.1524931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 02/17/2025] [Indexed: 03/19/2025] Open
Abstract
Rodents commonly serve as model organisms for the investigation of human mental disorders by capitalizing on behavioral commonalities. However, our understanding of the developmental dynamics of complex cognitive abilities in rodents remains incomplete. In this study, we examined spatial working memory as well as odor-and texture-based decision making in mice using a delayed non-match to sample task and a two-choice set-shifting task, respectively. Mice were investigated during different stages of development: pre-juvenile, juvenile, and young adult age. We show that, while working memory abilities in mice improve with age, decision making performance peaks during juvenile age by showing a sex-independent trajectory. Moreover, cFos expression, as a first proxy for neuronal activity, shows distinct age-and brain area-specific changes that relate to task-specific behavioral performance. The distinct developmental trajectories of working memory and decision making in rodents resemble those previously reported for humans.
Collapse
Affiliation(s)
- Ann Marlene Thies
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Irina Pochinok
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annette Marquardt
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maria Dorofeikova
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ileana L Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jastyn A Pöpplau
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
4
|
Ramsaran AI, Ventura S, Gallucci J, De Snoo ML, Josselyn SA, Frankland PW. A sensitive period for the development of episodic-like memory in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.06.622296. [PMID: 39574753 PMCID: PMC11580884 DOI: 10.1101/2024.11.06.622296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Episodic-like memory is a later-developing cognitive function supported by the hippocampus. In mice, the formation of extracellular perineuronal nets in subfield CA1 of the dorsal hippocampus controls the emergence of episodic-like memory during the fourth postnatal week (Ramsaran et al., 2023). Whether the timing of episodic-like memory onset is hard-wired, or flexibly set by early-life experiences during a critical or sensitive period for hippocampal maturation, is unknown. Here, we show that the trajectories for episodic-like memory development vary for mice given different sets of experiences spanning the second and third postnatal weeks. Specifically, episodic-like memory precision developed later in mice that experienced early-life adversity, while it developed earlier in mice that experienced early-life enrichment. Moreover, we demonstrate that early-life experiences set the timing of episodic-like memory development by modulating the pace of perineuronal net formation in dorsal CA1. These results indicate that the hippocampus undergoes a sensitive period during which early-life experiences determine the timing for episodic-like memory development.
Collapse
Affiliation(s)
- Adam I Ramsaran
- Neurosciences & Mental Health Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Silvia Ventura
- Neurosciences & Mental Health Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Julia Gallucci
- Neurosciences & Mental Health Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mitchell L De Snoo
- Neurosciences & Mental Health Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario Canada
| | - Sheena A Josselyn
- Neurosciences & Mental Health Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Paul W Frankland
- Neurosciences & Mental Health Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Child & Brain Development Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Zheng X, Ma R, He E, Peng X, Ma W, Zhang X, Li Y, Li H, Li Y, Gong Z. Study on the Role of Dnmt3a Expression in the Dentate Gyrus of the Hippocampus in Reward Memory. ALPHA PSYCHIATRY 2024; 25:641-647. [PMID: 39553491 PMCID: PMC11562246 DOI: 10.5152/alphapsychiatry.2024.241602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/15/2024] [Indexed: 11/19/2024]
Abstract
Objective Emotional memory has been associated with many psychiatric diseases. Understanding emotional memory could be beneficial in comprehending and discovering new therapies for diseases related to emotional memory, such as depression and post-traumatic stress disorder (PTSD). Our previous study revealed that Dnmt3a expression in the dentate gyrus (DG) contributes to fear memory. However, is there a correlation between Dnmt3a expression in the DG and reward memory? This study aims to explore the relationship between Dnmt3a expression and reward memory. Methods We induced fear memory (Fear group) or reward memory (Reward group) using fear conditioning and social interaction in females, respectively. We then measured the expression levels of Dnmt3a and c-fos after the retrieval of different types of memory. Additionally, we used a recombinant Adeno-Associated Virus (rAAV) to overexpress Dnmt3a in the DG and conducted conditioned place preference (CPP) tests to assess changes in reward memory. Results We observed a significant increase in Dnmt3a and c-fos expression in the Fear group compared with the Reward group. Overexpression of Dnmt3a in the DG led to an increase in time spent in the white box during CPP tests. Conclusion Dnmt3a expression levels varied after the retrieval of fear or reward memory, and overexpression of Dnmt3a in the DG enhanced reward memory. These findings suggest that Dnmt3a expression in the DG plays a role in reward memory.
Collapse
Affiliation(s)
- Xiaoye Zheng
- Department of Human Anatomy, Dali University School of Medicine, Dali, China
| | - Ruixue Ma
- Department of Human Anatomy, Dali University School of Medicine, Dali, China
| | - Ershu He
- Department of Human Anatomy, Dali University School of Medicine, Dali, China
| | - Xin Peng
- Department of Human Anatomy, Dali University School of Medicine, Dali, China
| | - Wenhao Ma
- Department of Human Anatomy, Dali University School of Medicine, Dali, China
| | - Xueyan Zhang
- Department of Human Anatomy, Dali University School of Medicine, Dali, China
| | - Ying Li
- Department of Human Anatomy, Dali University School of Medicine, Dali, China
| | - Hanwei Li
- Department of Human Anatomy, Dali University School of Medicine, Dali, China
| | - Yanjiao Li
- Department of Human Anatomy, Dali University School of Medicine, Dali, China
| | - Zhiting Gong
- Department of Human Anatomy, Dali University School of Medicine, Dali, China
| |
Collapse
|
6
|
Mortessagne P, Cartier E, Balia M, Fèvre M, Corailler F, Herry C, Abrous DN, Battefeld A, Pacary E. Genetic labeling of embryonically-born dentate granule neurons in young mice using the Penk Cre mouse line. Sci Rep 2024; 14:5022. [PMID: 38424161 PMCID: PMC10904803 DOI: 10.1038/s41598-024-55299-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/22/2024] [Indexed: 03/02/2024] Open
Abstract
The dentate gyrus (DG) of the hippocampus is a mosaic of dentate granule neurons (DGNs) accumulated throughout life. While many studies focused on the morpho-functional properties of adult-born DGNs, much less is known about DGNs generated during development, and in particular those born during embryogenesis. One of the main reasons for this gap is the lack of methods available to specifically label and manipulate embryonically-born DGNs. Here, we have assessed the relevance of the PenkCre mouse line as a genetic model to target this embryonically-born population. In young animals, PenkCre expression allows to tag neurons in the DG with positional, morphological and electrophysiological properties characteristic of DGNs born during the embryonic period. In addition, PenkCre+ cells in the DG are distributed in both blades along the entire septo-temporal axis. This model thus offers new possibilities to explore the functions of this underexplored population of embryonically-born DGNs.
Collapse
Affiliation(s)
- Pierre Mortessagne
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000, Bordeaux, France
| | - Estelle Cartier
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000, Bordeaux, France
| | - Maddalena Balia
- Univ. Bordeaux, CNRS, IMN, UMR 5293, 33000, Bordeaux, France
| | - Murielle Fèvre
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000, Bordeaux, France
| | - Fiona Corailler
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000, Bordeaux, France
| | - Cyril Herry
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000, Bordeaux, France
| | - Djoher Nora Abrous
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000, Bordeaux, France.
| | - Arne Battefeld
- Univ. Bordeaux, CNRS, IMN, UMR 5293, 33000, Bordeaux, France
| | - Emilie Pacary
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000, Bordeaux, France.
| |
Collapse
|