1
|
Burgos-Morelos LP, Rivera-Sánchez JDJ, Santana-Vargas ÁD, Arreola-Mora C, Chávez-Negrete A, Lugo JE, Faubert J, Pérez-Pacheco A. Effect of 3D-MOT training on the execution of manual dexterity skills in a population of older adults with mild cognitive impairment and mild dementia. APPLIED NEUROPSYCHOLOGY. ADULT 2025; 32:328-337. [PMID: 36697411 DOI: 10.1080/23279095.2023.2169884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Computerized cognitive training tools are an alternative to preventive treatments related to cognitive impairment and aging. In this study, the transfer of 3D multiple object tracking (3D-MOT) training on manual dexterity concerning fine and gross motor skills in 38 elderly participants, half of them with mild cognitive impairment (MCI) and the other half with mild dementia (MD) was explored. A total of 36 sessions of the 3D-MOT training program were administered to the subjects. The Montreal Cognitive Assessment (MoCA) test was used to assess the baseline cognitive status of the participants. Two batteries of manual motor skills (GPT and MMDT) were applied before and after the 3D-MOT training program. The results showed an interaction effect of training and improvement in manual dexterity tests, from the first training session until the fifteenth session, and after this range of sessions, the interaction effect was lost. However, the training effect continued to the end of the thirty-six-session program. The experimental results show the effect of cognitive training on the improvement of motor skills in older adults. This type of intervention could have a broad impact on the aging population in terms of their attention, executive functions, and therefore, their quality of life.
Collapse
Affiliation(s)
- Laura P Burgos-Morelos
- Directorate of Research, Hospital General de México "Dr. Eduardo Liceaga", Mexico City, Mexico
| | | | | | - Claudia Arreola-Mora
- Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Adolfo Chávez-Negrete
- Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - J Eduardo Lugo
- Faubert Lab, École d'Optométrie, Université de Montréal, Montreal, Canada
- Facultad de Ciencias Físico-Matemáticas, Benemérita Universidad Autónoma de Puebla, Puebla Pue, Mexico
| | - Jocelyn Faubert
- Faubert Lab, École d'Optométrie, Université de Montréal, Montreal, Canada
| | - Argelia Pérez-Pacheco
- Directorate of Research, Hospital General de México "Dr. Eduardo Liceaga", Mexico City, Mexico
- Research and Technological Development Unit (UIDT), Hospital General de México "Dr. Eduardo Liceaga", Mexico City, Mexico
| |
Collapse
|
2
|
Shinada T, Takahashi M, Uno A, Soga K, Taki Y. Effects of group music sessions on cognitive and psychological functions in healthy older adults. FRONTIERS IN AGING 2025; 6:1513359. [PMID: 39995889 PMCID: PMC11847865 DOI: 10.3389/fragi.2025.1513359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/16/2025] [Indexed: 02/26/2025]
Abstract
Introduction With the rapid aging of the population worldwide and the prevalence of dementia and mental health problems among older adults, it is important to extend healthy life expectancy by maintaining brain and mental health. Playing musical instruments, which requires the integration of auditory, visual, and somatosensory functions, is considered an effective way to prevent the development of dementia. However, the effectiveness of group (band) music sessions in healthy older adults has not been investigated. Our purpose, therefore, was to investigate the effects of group music sessions on cognitive and psychological functions among healthy older adults. Methods In this open-label randomized controlled trial, participants aged 65-74, who had no musical experience, were randomly assigned to either the intervention or control group. The intervention group received in weekly 90-minute sessions with the instrument for 16 weeks. The control group received no intervention. Results The results showed that the Mini-Mental State Examination (MMSE) total score and the Wechsler Memory Scale Logical Memory Ⅱ (WMS-LM Ⅱ) score improved significantly, and the Vigor-Activity subscale score of the Profile of Mood States 2nd Edition (POMS 2) tended to improve. Discussion These findings indicated that group music sessions have a potentially beneficial effect for maintaining and improving cognitive and psychological functions in healthy older adults.
Collapse
Affiliation(s)
| | | | - Akari Uno
- Smart Aging Research Center, Tohoku University, Sendai, Japan
| | - Keishi Soga
- Smart Aging Research Center, Tohoku University, Sendai, Japan
| | - Yasuyuki Taki
- Smart Aging Research Center, Tohoku University, Sendai, Japan
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
3
|
Heng JG, Zhang J, Bonetti L, Lim WPH, Vuust P, Agres K, Chen SHA. Understanding music and aging through the lens of Bayesian inference. Neurosci Biobehav Rev 2024; 163:105768. [PMID: 38908730 DOI: 10.1016/j.neubiorev.2024.105768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/24/2024]
Abstract
Bayesian inference has recently gained momentum in explaining music perception and aging. A fundamental mechanism underlying Bayesian inference is the notion of prediction. This framework could explain how predictions pertaining to musical (melodic, rhythmic, harmonic) structures engender action, emotion, and learning, expanding related concepts of music research, such as musical expectancies, groove, pleasure, and tension. Moreover, a Bayesian perspective of music perception may shed new insights on the beneficial effects of music in aging. Aging could be framed as an optimization process of Bayesian inference. As predictive inferences refine over time, the reliance on consolidated priors increases, while the updating of prior models through Bayesian inference attenuates. This may affect the ability of older adults to estimate uncertainties in their environment, limiting their cognitive and behavioral repertoire. With Bayesian inference as an overarching framework, this review synthesizes the literature on predictive inferences in music and aging, and details how music could be a promising tool in preventive and rehabilitative interventions for older adults through the lens of Bayesian inference.
Collapse
Affiliation(s)
- Jiamin Gladys Heng
- School of Computer Science and Engineering, Nanyang Technological University, Singapore.
| | - Jiayi Zhang
- Interdisciplinary Graduate Program, Nanyang Technological University, Singapore; School of Social Sciences, Nanyang Technological University, Singapore; Centre for Research and Development in Learning, Nanyang Technological University, Singapore
| | - Leonardo Bonetti
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus, Aalborg, Denmark; Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, United Kingdom; Department of Psychiatry, University of Oxford, United Kingdom; Department of Psychology, University of Bologna, Italy
| | | | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus, Aalborg, Denmark
| | - Kat Agres
- Centre for Music and Health, National University of Singapore, Singapore; Yong Siew Toh Conservatory of Music, National University of Singapore, Singapore
| | - Shen-Hsing Annabel Chen
- School of Social Sciences, Nanyang Technological University, Singapore; Centre for Research and Development in Learning, Nanyang Technological University, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; National Institute of Education, Nanyang Technological University, Singapore.
| |
Collapse
|
4
|
Worschech F, Passarotto E, Losch H, Oku T, Lee A, Altenmüller E. What Does It Take to Play the Piano? Cognito-Motor Functions Underlying Motor Learning in Older Adults. Brain Sci 2024; 14:405. [PMID: 38672054 PMCID: PMC11048694 DOI: 10.3390/brainsci14040405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/14/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
The acquisition of skills, such as learning to play a musical instrument, involves various phases that make specific demands on the learner. Knowledge of the cognitive and motor contributions during learning phases can be helpful in developing effective and targeted interventions for healthy aging. Eighty-six healthy older participants underwent an extensive cognitive, motoric, and musical test battery. Within one session, one piano-related and one music-independent movement sequence were both learned. We tested the associations between skill performance and cognito-motor abilities with Bayesian mixed models accounting for individual learning rates. Results showed that performance was positively associated with all cognito-motor abilities. Learning a piano-related task was characterized by relatively strong initial associations between performance and abilities. These associations then weakened considerably before increasing exponentially from the second trial onwards, approaching a plateau. Similar performance-ability relationships were detected in the course of learning a music-unrelated motor task. Positive performance-ability associations emphasize the potential of learning new skills to produce positive cognitive and motor transfer effects. Consistent high-performance tasks that demand maximum effort from the participants could be very effective. However, interventions should be sufficiently long so that the transfer potential can be fully exploited.
Collapse
Affiliation(s)
- Florian Worschech
- Institute of Music Physiology and Musician’s Medicine, Hanover University of Music, Drama and Media, 30175 Hanover, Germany
- Center for Systems Neuroscience, 30559 Hanover, Germany
| | - Edoardo Passarotto
- Institute of Music Physiology and Musician’s Medicine, Hanover University of Music, Drama and Media, 30175 Hanover, Germany
- Department of Neuroscience, University of Padova, 35121 Padova, Italy
| | - Hannah Losch
- Institute of Music Physiology and Musician’s Medicine, Hanover University of Music, Drama and Media, 30175 Hanover, Germany
- Institute for Music Education Research, Hanover University of Music, Drama and Media, 30175 Hanover, Germany
| | - Takanori Oku
- NeuroPiano Institute, Kyoto 600-8086, Japan
- College of Engineering and Design, Shibaura Institute of Technology, Tokyo 135-8548, Japan
| | - André Lee
- Institute of Music Physiology and Musician’s Medicine, Hanover University of Music, Drama and Media, 30175 Hanover, Germany
- Center for Systems Neuroscience, 30559 Hanover, Germany
- Department of Neurology, Klinikum Rechts der Isar Technische Universität München, 80333 Munich, Germany
| | - Eckart Altenmüller
- Institute of Music Physiology and Musician’s Medicine, Hanover University of Music, Drama and Media, 30175 Hanover, Germany
- Center for Systems Neuroscience, 30559 Hanover, Germany
| |
Collapse
|
5
|
Colverson A, Barsoum S, Cohen R, Williamson J. Rhythmic musical activities may strengthen connectivity between brain networks associated with aging-related deficits in timing and executive functions. Exp Gerontol 2024; 186:112354. [PMID: 38176601 DOI: 10.1016/j.exger.2023.112354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/14/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
Brain aging and common conditions of aging (e.g., hypertension) affect networks important in organizing information, processing speed and action programming (i.e., executive functions). Declines in these networks may affect timing and could have an impact on the ability to perceive and perform musical rhythms. There is evidence that participation in rhythmic musical activities may help to maintain and even improve executive functioning (near transfer), perhaps due to similarities in brain regions underlying timing, musical rhythm perception and production, and executive functioning. Rhythmic musical activities may present as a novel and fun activity for older adults to stimulate interacting brain regions that deteriorate with aging. However, relatively little is known about neurobehavioral interactions between aging, timing, rhythm perception and production, and executive functioning. In this review, we account for these brain-behavior interactions to suggest that deeper knowledge of overlapping brain regions associated with timing, rhythm, and cognition may assist in designing more targeted preventive and rehabilitative interventions to reduce age-related cognitive decline and improve quality of life in populations with neurodegenerative disease. Further research is needed to elucidate the functional relationships between brain regions associated with aging, timing, rhythm perception and production, and executive functioning to direct design of targeted interventions.
Collapse
Affiliation(s)
- Aaron Colverson
- Memory and Aging Center, Weill Institute for Neurosciences, University of California, 1651 4th street, San Francisco, CA, United States of America.
| | - Stephanie Barsoum
- Center for Cognitive Aging and Memory, College of Medicine, University of Florida, PO Box 100277, Gainesville, FL 32610-0277, United States of America
| | - Ronald Cohen
- Center for Cognitive Aging and Memory, College of Medicine, University of Florida, PO Box 100277, Gainesville, FL 32610-0277, United States of America
| | - John Williamson
- Center for Cognitive Aging and Memory, College of Medicine, University of Florida, PO Box 100277, Gainesville, FL 32610-0277, United States of America
| |
Collapse
|
6
|
von Schnehen A, Hobeika L, Houot M, Recher A, Puisieux F, Huvent-Grelle D, Samson S. Sensorimotor Impairment in Aging and Neurocognitive Disorders: Beat Synchronization and Adaptation to Tempo Changes. J Alzheimers Dis 2024; 100:945-959. [PMID: 38995777 PMCID: PMC11307093 DOI: 10.3233/jad-231433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2024] [Indexed: 07/14/2024]
Abstract
Background Understanding the nature and extent of sensorimotor decline in aging individuals and those with neurocognitive disorders (NCD), such as Alzheimer's disease, is essential for designing effective music-based interventions. Our understanding of rhythmic functions remains incomplete, particularly in how aging and NCD affect sensorimotor synchronization and adaptation to tempo changes. Objective This study aimed to investigate how aging and NCD severity impact tapping to metronomes and music, with and without tempo changes. Methods Patients from a memory clinic participated in a tapping task, synchronizing with metronomic and musical sequences, some of which contained sudden tempo changes. After exclusions, 51 patients were included in the final analysis. Results Participants' Mini-Mental State Examination scores were associated with tapping consistency. Additionally, age negatively influenced consistency when synchronizing with a musical beat, whereas consistency remained stable across age when tapping with a metronome. Conclusions The results indicate that the initial decline of attention and working memory with age may impact perception and synchronization to a musical beat, whereas progressive NCD-related cognitive decline results in more widespread sensorimotor decline, affecting tapping irrespective of audio type. These findings underline the importance of customizing rhythm-based interventions to the needs of older adults and individuals with NCD, taking into consideration their cognitive as well as their rhythmic aptitudes.
Collapse
Affiliation(s)
- Andres von Schnehen
- ULR 4072 – PSITEC – Psychologie: Interactions, Temps, Emotions, Cognition, Lille University, Lille, France
| | - Lise Hobeika
- ULR 4072 – PSITEC – Psychologie: Interactions, Temps, Emotions, Cognition, Lille University, Lille, France
- Institut du Cerveau – Paris Brain Institute – ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Sorbonne Université, Paris, France
- Institut Pasteur, Inserm, Institut de l’Audition, Université Paris Cité, Paris, France
| | - Marion Houot
- Centre of Excellence of Neurodegenerative Disease (CoEN), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
- Department of Neurology, Institute of Memory and Alzheimer’s Disease (IM2A), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
- Clinical Investigation Centre, Institut du Cerveau et de la Moelle épinière (ICM), Pitié-Salpêtrière Hospital, Paris, France
| | - Arnaud Recher
- STMS, IRCAM, Sorbonne Université, CNRS, Ministère de la Culture, Paris, France
| | - François Puisieux
- Hôpital Gériatrique les Bateliers, Pôle de Gérontologie, CHU Lille, Lille, France
| | | | - Séverine Samson
- ULR 4072 – PSITEC – Psychologie: Interactions, Temps, Emotions, Cognition, Lille University, Lille, France
- Institut du Cerveau – Paris Brain Institute – ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Sorbonne Université, Paris, France
- Institut Pasteur, Inserm, Institut de l’Audition, Université Paris Cité, Paris, France
- Epilepsy Unit, AP-HP, GHU Pitié-Salpêtrière-Charles Foix, Paris, France
| |
Collapse
|
7
|
Wang X, Soshi T, Yamashita M, Kakihara M, Tsutsumi T, Iwasaki S, Sekiyama K. Effects of a 10-week musical instrument training on cognitive function in healthy older adults: implications for desirable tests and period of training. Front Aging Neurosci 2023; 15:1180259. [PMID: 37649718 PMCID: PMC10463729 DOI: 10.3389/fnagi.2023.1180259] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 07/25/2023] [Indexed: 09/01/2023] Open
Abstract
Introduction Previous studies have shown that musical instrument training programs of 16 or more weeks improve verbal memory (Logical Memory Test delayed recall), processing speed (Digit Symbol Coding Test), and executive function (Trail Making Test Part B) of musically untrained healthy older adults. However, it is unclear whether shorter-period instrument training can yield similar effects. We sought to (1) verify those results and (2) clarify if intervention effects could be detected using other measures such as reaction time. Methods Healthy older adults (mean age = 73.28 years) were pseudo-randomly assigned to an untrained control group (n = 30) or an intervention group (n = 30) that received a weekly 10-session musical instrument training program (using melodica). We conducted neuropsychological tests on which intervention effects or association with musical training were reported in previous studies. We newly included two reaction time tasks to assess verbal working memory (Sternberg task) and rhythm entrainment (timing task). Intervention effects were determined using a "group × time" analysis of variance (ANOVA). Results The intervention effects were detected on the reaction time in Sternberg task and phonological verbal fluency. Although intervention effects had been reported on Logical Memory test, Digit Symbol Coding Test and Trail Making Test in previous studies with longer training periods, the present study did not show such effects. Instead, the test-retest practice effect, indicated by significant improvement in the control group, was significant on these tests. Discussion The present results indicated the usefulness of working memory assessments (Verbal Fluency Test and Sternberg task) in detecting the effects of short-term melodica training in healthy older adults. The practice effect detected on those three tasks may be due to the shorter interval between pre- and post-intervention assessments and may have obscured intervention effects. Additionally, the findings suggested the requirement for an extended interval between pre- and post-tests to capture rigorous intervention effects, although this should be justified by a manipulation of training period.
Collapse
Affiliation(s)
- Xueyan Wang
- Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Kyoto, Japan
| | - Takahiro Soshi
- Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Kyoto, Japan
| | - Masatoshi Yamashita
- Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Kyoto, Japan
| | - Marcelo Kakihara
- Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Kyoto, Japan
| | - Takanobu Tsutsumi
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shoko Iwasaki
- Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Kyoto, Japan
| | - Kaoru Sekiyama
- Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Kyoto, Japan
| |
Collapse
|
8
|
Passarotto E, Kopp B, Lee A, Altenmüller E. Musical Expertise and Executive Functions in Experienced Musicians. Brain Sci 2023; 13:908. [PMID: 37371386 DOI: 10.3390/brainsci13060908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Extensive music practice has been suggested to enhance the development of cognitive abilities over and above musical expertise. Executive functions (EFs) have been particularly investigated, given their generalizability across different domains and their crucial role in almost all aspects of cognition. However, the relationship between musical expertise and EFs is still not completely understood, as several studies have reported conflicting results. The present study aims to investigate the relationship between musical expertise and EFs, determining which facets-if any-of EFs might be particularly relevant to extensive music practice. Thirty-five student pianists completed a set of neuropsychological tasks which assessed EFs (the Trail Making Task, Design Fluency, Numerical Stroop, and the Tower of London). They also performed a short musical excerpt inspired by the piano literature. Musical expertise was assessed by considering three parameters, namely the highest academic degree in music, the lifetime amount of music practice, and the quality of the sample-based musical performance. The results indicate that postgraduate piano students did not show advantages in EFs compared to undergraduate piano students. More extensive lifetime practice in music was solely associated with faster visual reaction times on the Numerical Stroop task. The Trail Making and Design Fluency scores were significant predictors of the quality of the sample-based musical performance. In conclusion, the present data suggests that EFs and the amount of music practice do not seem to be correlated in student pianists. Nevertheless, some facets of EFs and the quality of musical performance may share substantial amounts of variance.
Collapse
Affiliation(s)
- Edoardo Passarotto
- Institute of Music Physiology and Musicians' Medicine, University of Music, Drama and Media Hannover, 30175 Hanover, Germany
| | - Bruno Kopp
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany
| | - André Lee
- Institute of Music Physiology and Musicians' Medicine, University of Music, Drama and Media Hannover, 30175 Hanover, Germany
- Department of Neurology, Klinikum Rechts der Isar, Technical University of Munich; 80333 Munich, Germany
| | - Eckart Altenmüller
- Institute of Music Physiology and Musicians' Medicine, University of Music, Drama and Media Hannover, 30175 Hanover, Germany
| |
Collapse
|
9
|
Marie D, Müller CA, Altenmüller E, Van De Ville D, Jünemann K, Scholz DS, Krüger TH, Worschech F, Kliegel M, Sinke C, James CE. Music interventions in 132 healthy older adults enhance cerebellar grey matter and auditory working memory, despite general brain atrophy. NEUROIMAGE: REPORTS 2023. [DOI: 10.1016/j.ynirp.2023.100166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
10
|
Lister JJ, Hudak EM, Andel R, Edwards JD. The Effects of Piano Training on Auditory Processing, Cognition, and Everyday Function. JOURNAL OF COGNITIVE ENHANCEMENT 2023. [DOI: 10.1007/s41465-023-00256-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
11
|
James CE, Stucker C, Junker-Tschopp C, Fernandes AM, Revol A, Mili ID, Kliegel M, Frisoni GB, Brioschi Guevara A, Marie D. Musical and psychomotor interventions for cognitive, sensorimotor, and cerebral decline in patients with Mild Cognitive Impairment (COPE): a study protocol for a multicentric randomized controlled study. BMC Geriatr 2023; 23:76. [PMID: 36747142 PMCID: PMC9900212 DOI: 10.1186/s12877-022-03678-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/03/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Regular cognitive training can boost or maintain cognitive and brain functions known to decline with age. Most studies administered such cognitive training on a computer and in a lab setting. However, everyday life activities, like musical practice or physical exercise that are complex and variable, might be more successful at inducing transfer effects to different cognitive domains and maintaining motivation. "Body-mind exercises", like Tai Chi or psychomotor exercise, may also positively affect cognitive functioning in the elderly. We will compare the influence of active music practice and psychomotor training over 6 months in Mild Cognitive Impairment patients from university hospital memory clinics on cognitive and sensorimotor performance and brain plasticity. The acronym of the study is COPE (Countervail cOgnitive imPairmEnt), illustrating the aim of the study: learning to better "cope" with cognitive decline. METHODS We aim to conduct a randomized controlled multicenter intervention study on 32 Mild Cognitive Impairment (MCI) patients (60-80 years), divided over 2 experimental groups: 1) Music practice; 2) Psychomotor treatment. Controls will consist of a passive test-retest group of 16 age, gender and education level matched healthy volunteers. The training regimens take place twice a week for 45 min over 6 months in small groups, provided by professionals, and patients should exercise daily at home. Data collection takes place at baseline (before the interventions), 3, and 6 months after training onset, on cognitive and sensorimotor capacities, subjective well-being, daily living activities, and via functional and structural neuroimaging. Considering the current constraints of the COVID-19 pandemic, recruitment and data collection takes place in 3 waves. DISCUSSION We will investigate whether musical practice contrasted to psychomotor exercise in small groups can improve cognitive, sensorimotor and brain functioning in MCI patients, and therefore provoke specific benefits for their daily life functioning and well-being. TRIAL REGISTRATION The full protocol was approved by the Commission cantonale d'éthique de la recherche sur l'être humain de Genève (CCER, no. 2020-00510) on 04.05.2020, and an amendment by the CCER and the Commission cantonale d'éthique de la recherche sur l'être humain de Vaud (CER-VD) on 03.08.2021. The protocol was registered at clinicaltrials.gov (20.09.2020, no. NCT04546451).
Collapse
Affiliation(s)
- C E James
- Geneva School of Health Sciences, Geneva Musical Minds Lab (GEMMI lab), University of Applied Sciences and Arts Western Switzerland HES-SO, Avenue de Champel 47, 1206, Geneva, Switzerland.
- Faculty of Psychology and Educational Sciences, University of Geneva, Boulevard Carl-Vogt 101, 1205, Geneva, Switzerland.
| | - C Stucker
- Geneva School of Health Sciences, Geneva Musical Minds Lab (GEMMI lab), University of Applied Sciences and Arts Western Switzerland HES-SO, Avenue de Champel 47, 1206, Geneva, Switzerland
| | - C Junker-Tschopp
- Geneva School of Social Work, Department of Psychomotricity, University of Applied Sciences and Arts Western Switzerland HES-SO, Rue Prévost-Martin 28, 1205, Geneva, Switzerland
| | - A M Fernandes
- Geneva School of Health Sciences, Geneva Musical Minds Lab (GEMMI lab), University of Applied Sciences and Arts Western Switzerland HES-SO, Avenue de Champel 47, 1206, Geneva, Switzerland
| | - A Revol
- Geneva School of Social Work, Department of Psychomotricity, University of Applied Sciences and Arts Western Switzerland HES-SO, Rue Prévost-Martin 28, 1205, Geneva, Switzerland
| | - I D Mili
- Faculty of Psychology and Educational Sciences, Didactics of Arts and Movement Laboratory, University of Geneva, Switzerland. Boulevard Carl-Vogt 101, 1205, Geneva, Switzerland
| | - M Kliegel
- Faculty of Psychology and Educational Sciences, Center for the Interdisciplinary Study of Gerontology and Vulnerability, University of Geneva, Switzerland, Boulevard du Pont d'Arve 28, 1205, Geneva, Switzerland
| | - G B Frisoni
- University Hospitals and University of Geneva, Memory Center, Rue Gabrielle-Perret-Gentil 6, 1205, Geneva, Switzerland
| | - A Brioschi Guevara
- Leenaards Memory Center, Lausanne University Hospital, Chemin de Mont-Paisible 16, 1011, Lausanne, Switzerland
| | - D Marie
- Geneva School of Health Sciences, Geneva Musical Minds Lab (GEMMI lab), University of Applied Sciences and Arts Western Switzerland HES-SO, Avenue de Champel 47, 1206, Geneva, Switzerland
- CIBM Center for Biomedical Imaging, MRI HUG-UNIGE, University of Geneva, Geneva, Switzerland
| |
Collapse
|
12
|
Wang J, Xu R, Guo X, Guo S, Zhou J, Lu J, Yao D. Different Music Training Modulates Theta Brain Oscillations Associated with Executive Function. Brain Sci 2022; 12:brainsci12101304. [PMID: 36291238 PMCID: PMC9599161 DOI: 10.3390/brainsci12101304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/16/2022] [Accepted: 09/24/2022] [Indexed: 12/03/2022] Open
Abstract
Different music training involves different hand coordination levels and may have a significant influence on brain oscillation for the executive function. However, few research has focused on the plasticity of executive function and the brain oscillation modulated by different musical instrument training modules. In this study, we recruited 18 string musicians, 20 pianists, and 19 non-musicians to perform a bimanual key pressing task during EEG recording. Behavioral results revealed that pianists have the highest accuracy and the shortest response time, followed by string musicians and non-musicians (p < 0.05). Time-frequency analyses of EEG revealed that pianists generated significantly greater theta power than the other groups from 500 ms to 800 ms post-stimulus in mid-central, frontal brain areas, and motor control areas. Functional connectivity analyses found that the pianists showed significantly greater connectivity in the frontal-parietal area in theta band based on phase-locking value analysis, which suggests that piano training improves executive function and enhances the connectivity between prefrontal and mid-central regions. These findings contribute to a better understanding of the effects of different music training on executive function.
Collapse
Affiliation(s)
- Junce Wang
- The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Ruijie Xu
- School of Glasgow, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xiaolong Guo
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Sijia Guo
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Junchen Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jing Lu
- The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
- Correspondence: (J.L.); (D.Y.)
| | - Dezhong Yao
- Research Unit of NeuroInformation 2019RU035, Chinese Academy of Medical Sciences, Chengdu 611731, China
- School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: (J.L.); (D.Y.)
| |
Collapse
|
13
|
Neves L, Correia AI, Castro SL, Martins D, Lima CF. Does music training enhance auditory and linguistic processing? A systematic review and meta-analysis of behavioral and brain evidence. Neurosci Biobehav Rev 2022; 140:104777. [PMID: 35843347 DOI: 10.1016/j.neubiorev.2022.104777] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 02/02/2023]
Abstract
It is often claimed that music training improves auditory and linguistic skills. Results of individual studies are mixed, however, and most evidence is correlational, precluding inferences of causation. Here, we evaluated data from 62 longitudinal studies that examined whether music training programs affect behavioral and brain measures of auditory and linguistic processing (N = 3928). For the behavioral data, a multivariate meta-analysis revealed a small positive effect of music training on both auditory and linguistic measures, regardless of the type of assignment (random vs. non-random), training (instrumental vs. non-instrumental), and control group (active vs. passive). The trim-and-fill method provided suggestive evidence of publication bias, but meta-regression methods (PET-PEESE) did not. For the brain data, a narrative synthesis also documented benefits of music training, namely for measures of auditory processing and for measures of speech and prosody processing. Thus, the available literature provides evidence that music training produces small neurobehavioral enhancements in auditory and linguistic processing, although future studies are needed to confirm that such enhancements are not due to publication bias.
Collapse
Affiliation(s)
- Leonor Neves
- Centro de Investigação e Intervenção Social (CIS-IUL), Instituto Universitário de Lisboa (ISCTE-IUL), Lisboa, Portugal
| | - Ana Isabel Correia
- Centro de Investigação e Intervenção Social (CIS-IUL), Instituto Universitário de Lisboa (ISCTE-IUL), Lisboa, Portugal
| | - São Luís Castro
- Centro de Psicologia da Universidade do Porto (CPUP), Faculdade de Psicologia e de Ciências da Educação da Universidade do Porto (FPCEUP), Porto, Portugal
| | - Daniel Martins
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK; NIHR Maudsley Biomedical Research Centre (BRC), South London and Maudsley NHS Foundation Trust, London, UK
| | - César F Lima
- Centro de Investigação e Intervenção Social (CIS-IUL), Instituto Universitário de Lisboa (ISCTE-IUL), Lisboa, Portugal.
| |
Collapse
|
14
|
Sachdeva S, Persaud S, Patel M, Popard P, Colverson A, Doré S. Effects of Sound Interventions on the Permeability of the Blood-Brain Barrier and Meningeal Lymphatic Clearance. Brain Sci 2022; 12:brainsci12060742. [PMID: 35741627 PMCID: PMC9221168 DOI: 10.3390/brainsci12060742] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 01/25/2023] Open
Abstract
The meningeal lymphatic, or glymphatic, system is receiving increasing attention from the scientific community. Recent work includes noninvasive techniques to demonstrate relationships between blood-brain barrier (BBB) activity and the glymphatic system in the human central nervous system. One potential technique is the use of music/sound to enhance BBB permeability regarding the movement of small molecules in and out of the brain. However, there is minimal knowledge regarding the methodical investigation(s) of the uses of music/sound on BBB permeability and glymphatic clearance and the outcomes of these investigation(s). This review contains evidence discussing relationships between music/sound, BBB permeability, and meningeal lymphatic clearance. An overview of the anatomy and physiology of the system is presented. We discuss the uses of music/sound to modulate brain and body functions, highlighting music's effects on mood and autonomic, cognitive, and neuronal function. We also propose implications for follow-up work. The results showed that music and sound interventions do, in fact, contribute to the opening of the BBB and subsequently increase the function of the meningeal lymphatic system. Evidence also suggests that music/sound has the ability to reduce the collateral effects of brain injuries. Unfortunately, music/sound is rarely used in the clinical setting as a medical intervention. Still, recent research shows the potential positive impacts that music/sound could have on various organ systems.
Collapse
Affiliation(s)
- Sean Sachdeva
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (S.S.); (S.P.); (M.P.); (P.P.)
| | - Sushmita Persaud
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (S.S.); (S.P.); (M.P.); (P.P.)
| | - Milani Patel
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (S.S.); (S.P.); (M.P.); (P.P.)
| | - Peyton Popard
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (S.S.); (S.P.); (M.P.); (P.P.)
| | - Aaron Colverson
- Musicology/Ethnomusicology Program, School of Music, College of the Arts, University of Florida, Gainesville, FL 32603, USA;
| | - Sylvain Doré
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (S.S.); (S.P.); (M.P.); (P.P.)
- Departments of Pharmaceutics, Psychology, and Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Correspondence:
| |
Collapse
|
15
|
Winston JL, Jazwinski BM, Corey DM, Colombo PJ. Music Training, and the Ability of Musicians to Harmonize, Are Associated With Enhanced Planning and Problem-Solving. Front Psychol 2022; 12:805186. [PMID: 35153926 PMCID: PMC8828942 DOI: 10.3389/fpsyg.2021.805186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/13/2021] [Indexed: 11/26/2022] Open
Abstract
Music training is associated with enhanced executive function but little is known about the extent to which harmonic aspects of musical training are associated with components of executive function. In the current study, an array of cognitive tests associated with one or more components of executive function, was administered to young adult musicians and non-musicians. To investigate how harmonic aspects of musical training relate to executive function, a test of the ability to compose a four-part harmony was developed and administered to musicians. We tested the working hypothesis that musicians would outperform non-musicians on measures of executive function, and that among musicians, the ability to harmonize would correlate positively with measures of executive function. Results indicate that musicians outperformed non-musicians on the Tower of London task, a measure of planning and problem-solving. Group differences were not detected on tasks more selective for inhibitory control, conflict resolution, or working memory. Among musicians, scores on the harmony assessment were positively correlated with performance of the Tower of London task. Taken together, the current results support a strong relationship between musicianship and planning and problem solving abilities, and indicate that the ability to harmonize is associated with components of executive function contributing to planning and problem solving.
Collapse
Affiliation(s)
- Jenna L Winston
- Department of Psychology, Tulane University, New Orleans, LA, United States
| | | | - David M Corey
- Department of Psychology, Tulane University, New Orleans, LA, United States
| | - Paul J Colombo
- Department of Psychology, Tulane University, New Orleans, LA, United States.,Brain Institute, Tulane University, New Orleans, LA, United States
| |
Collapse
|
16
|
Bugos JA, Wang Y. Piano Training Enhances Executive Functions and Psychosocial Outcomes in Aging: Results of a Randomized Controlled Trial. J Gerontol B Psychol Sci Soc Sci 2022; 77:1625-1636. [DOI: 10.1093/geronb/gbac021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Indexed: 11/14/2022] Open
Abstract
Abstract
Objectives
Preliminary evidence suggests piano training may enhance areas of executive functions and psychosocial outcomes in aging adults. However, little is known regarding specific cognitive outcomes affected and whether or not enhancements are sustainable. We conducted a randomized controlled trial to evaluate the effects of piano training on cognitive performance, psychosocial well-being, and physiological stress and immune-function, in older adults.
Methods
Older adults (N=155, 60-80 years) completed an initial three-hour assessment of standardized cognitive and psychosocial measures. Participants were randomly assigned to one of three groups: piano training, computer-assisted cognitive training, or a no treatment control group. Training groups completed a 16-week program with two group training sessions per week for 90 minutes each session. All participants completed a standard battery of executive functions (working memory, processing speed, verbal fluency), psychosocial measures (musical and general self-efficacy, mood), and physiological measures (cortisol and immune-function) at pretesting, posttesting, and at a three-month follow-up time point.
Results
Results showed that piano training and computer-assisted cognitive training enhanced working memory and processing speed as compared to controls. Piano training significantly increased verbal fluency skills in category switching, as compared to computer-assisted cognitive training and no treatment controls. Participants in piano training demonstrated enhanced general and musical self-efficacy post-training; however, no significant differences were found for physiological measures.
Discussion
Piano training resulted in a unique advantage in category switching as compared to computer-assisted cognitive training and no treatment controls. Music training programs may mitigate or prevent cognitive deficits in verbal skills.
Collapse
Affiliation(s)
| | - Yan Wang
- University of Massachusetts Lowell
| |
Collapse
|
17
|
Domain-specific and domain-general contributions to reading musical notation. Atten Percept Psychophys 2021; 83:2983-2994. [PMID: 34341940 DOI: 10.3758/s13414-021-02349-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2021] [Indexed: 02/03/2023]
Abstract
Musical practice may benefit not only domain-specific abilities, such as pitch discrimination and music performance, but also domain-general abilities, like executive functioning and memory. Behavioral and neural changes in visual processing have been associated with music-reading experience. However, it is still unclear whether there is a domain-specific visual ability to process musical notation. This study investigates the specificity of the visual skills relevant to simple decisions about musical notation. Ninety-six participants varying in music-reading experience answered a short survey to quantify experience with musical notation and completed a test battery that assessed musical notation reading fluency and accuracy at the level of individual note or note sequence. To characterize how this ability may relate to domain-general abilities, we also estimated general intelligence (as measured with the Raven's Progressive Matrices) and general object-recognition ability (as measure by a recently proposed construct o). We obtained reliable measurements on our various tasks and found evidence for a domain-specific ability of the perception of musical notation. This music-reading ability and domain-general abilities were found to contribute to performance on specific tasks differently, depending on the level of experience reading music.
Collapse
|
18
|
Rouse HJ, Jin Y, Hueluer G, Huo M, Bugos JA, Veal B, Torres M, Peterson L, Dobbs D, Meng H. Music Engagement and Episodic Memory among Middle-Aged and Older Adults: A National Cross-Sectional Analysis. J Gerontol B Psychol Sci Soc Sci 2021; 77:558-566. [PMID: 33721884 DOI: 10.1093/geronb/gbab044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES To determine whether music engagement influences middle-aged and older adults' performance on episodic memory tasks. METHODS Secondary data analysis of a sample (N = 4,592) of cognitively healthy adults from the 2016 Health and Retirement Study were used for this study. Multivariable regression models were used to analyze the cross-sectional differences in performance on tasks of episodic memory between participants who listened to music (n= 3,659) or sang or played an instrument (n= 989). RESULTS On average, participants recalled 10.3 words out of a possible 20. Regression analyses showed that both music listening and singing or playing an instrument were independently associated with significantly better episodic memory. DISCUSSION The findings provide the first population-based evidence that music engagement is associated with better episodic memory among middle-aged and older adults. Future studies should examine whether the association is causal or has a dose response.
Collapse
Affiliation(s)
- Hillary J Rouse
- School of Aging Studies, University of South Florida, Tampa, FL, USA
| | - Ying Jin
- College of Public Health, University of South Florida, Tampa, FL, USA
| | - Gizem Hueluer
- School of Aging Studies, University of South Florida, Tampa, FL, USA
| | - Meng Huo
- Department of Human Ecology, University of California Davis, Davis, CA, USA
| | | | - Britney Veal
- School of Aging Studies, University of South Florida, Tampa, FL, USA
| | - Mia Torres
- School of Aging Studies, University of South Florida, Tampa, FL, USA
| | - Lindsay Peterson
- School of Aging Studies, University of South Florida, Tampa, FL, USA
| | - Debra Dobbs
- School of Aging Studies, University of South Florida, Tampa, FL, USA
| | - Hongdao Meng
- School of Aging Studies, University of South Florida, Tampa, FL, USA
| |
Collapse
|
19
|
James CE, Altenmüller E, Kliegel M, Krüger THC, Van De Ville D, Worschech F, Abdili L, Scholz DS, Jünemann K, Hering A, Grouiller F, Sinke C, Marie D. Train the brain with music (TBM): brain plasticity and cognitive benefits induced by musical training in elderly people in Germany and Switzerland, a study protocol for an RCT comparing musical instrumental practice to sensitization to music. BMC Geriatr 2020; 20:418. [PMID: 33087078 PMCID: PMC7576734 DOI: 10.1186/s12877-020-01761-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 09/08/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Recent data suggest that musical practice prevents age-related cognitive decline. But experimental evidence remains sparse and no concise information on the neurophysiological bases exists, although cognitive decline represents a major impediment to healthy aging. A challenge in the field of aging is developing training regimens that stimulate neuroplasticity and delay or reverse symptoms of cognitive and cerebral decline. To be successful, these regimens should be easily integrated in daily life and intrinsically motivating. This study combines for the first-time protocolled music practice in elderly with cutting-edge neuroimaging and behavioral approaches, comparing two types of musical education. METHODS We conduct a two-site Hannover-Geneva randomized intervention study in altogether 155 retired healthy elderly (64-78) years, (63 in Geneva, 92 in Hannover), offering either piano instruction (experimental group) or musical listening awareness (control group). Over 12 months all participants receive weekly training for 1 hour, and exercise at home for ~ 30 min daily. Both groups study different music styles. Participants are tested at 4 time points (0, 6, and 12 months & post-training (18 months)) on cognitive and perceptual-motor aptitudes as well as via wide-ranging functional and structural neuroimaging and blood sampling. DISCUSSION We aim to demonstrate positive transfer effects for faculties traditionally described to decline with age, particularly in the piano group: executive functions, working memory, processing speed, abstract thinking and fine motor skills. Benefits in both groups may show for verbal memory, hearing in noise and subjective well-being. In association with these behavioral benefits we anticipate functional and structural brain plasticity in temporal (medial and lateral), prefrontal and parietal areas and the basal ganglia. We intend exhibiting for the first time that musical activities can provoke important societal impacts by diminishing cognitive and perceptual-motor decline supported by functional and structural brain plasticity. TRIAL REGISTRATION The Ethikkomission of the Leibniz Universität Hannover approved the protocol on 14.08.17 (no. 3604-2017), the neuroimaging part and blood sampling was approved by the Hannover Medical School on 07.03.18. The full protocol was approved by the Commission cantonale d'éthique de la recherche de Genève (no. 2016-02224) on 27.02.18 and registered at clinicaltrials.gov on 17.09.18 ( NCT03674931 , no. 81185).
Collapse
Affiliation(s)
- Clara E James
- Geneva School of Health Sciences, Geneva Musical Minds Lab (GEMMI Lab), University of Applied Sciences and Arts Western Switzerland HES-SO, Avenue de Champel 47, 1206, Geneva, Switzerland. .,Faculty of Psychology and Educational Sciences, University of Geneva, Boulevard du Pont-d'Arve 40, 1205, Geneva, Switzerland.
| | - Eckart Altenmüller
- Institute for Music Physiology and Musicians' Medecine, Hannover University of Music, Drama and Media, Neues Haus 1, 30175, Hannover, Germany.,Center for Systems Neuroscience, Bünteweg 2, 30559, Hannover, Germany
| | - Matthias Kliegel
- Faculty of Psychology and Educational Sciences, University of Geneva, Boulevard du Pont-d'Arve 40, 1205, Geneva, Switzerland.,Center for the Interdisciplinary Study of Gerontology and Vulnerability, University of Geneva, Switzerland, Boulevard du Pont d'Arve 28, 1205, Genève, Switzerland
| | - Tillmann H C Krüger
- Center for Systems Neuroscience, Bünteweg 2, 30559, Hannover, Germany.,Department of Psychiatry, Social Psychiatry and Psychotherapy, Section of Clinical Psychology & Sexual Medicine, Hannover Medical School, Centre of Mental Health, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Dimitri Van De Ville
- Swiss Federal Institute of Technology Lausanne (EPFL), Route Cantonale, 1015, Lausanne, Switzerland.,Faculty of Medecine of the University of Geneva, Switzerland, Campus Biotech, Chemin des Mines 9, 1211, Geneva, Switzerland
| | - Florian Worschech
- Institute for Music Physiology and Musicians' Medecine, Hannover University of Music, Drama and Media, Neues Haus 1, 30175, Hannover, Germany.,Center for Systems Neuroscience, Bünteweg 2, 30559, Hannover, Germany
| | - Laura Abdili
- Geneva School of Health Sciences, Geneva Musical Minds Lab (GEMMI Lab), University of Applied Sciences and Arts Western Switzerland HES-SO, Avenue de Champel 47, 1206, Geneva, Switzerland
| | - Daniel S Scholz
- Institute for Music Physiology and Musicians' Medecine, Hannover University of Music, Drama and Media, Neues Haus 1, 30175, Hannover, Germany.,Center for Systems Neuroscience, Bünteweg 2, 30559, Hannover, Germany
| | - Kristin Jünemann
- Center for Systems Neuroscience, Bünteweg 2, 30559, Hannover, Germany.,Department of Psychiatry, Social Psychiatry and Psychotherapy, Section of Clinical Psychology & Sexual Medicine, Hannover Medical School, Centre of Mental Health, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Alexandra Hering
- Faculty of Psychology and Educational Sciences, University of Geneva, Boulevard du Pont-d'Arve 40, 1205, Geneva, Switzerland.,Center for the Interdisciplinary Study of Gerontology and Vulnerability, University of Geneva, Switzerland, Boulevard du Pont d'Arve 28, 1205, Genève, Switzerland
| | - Frédéric Grouiller
- Swiss Center for Affective Sciences, University of Geneva, 1205 Geneva, Switzerland. Campus Biotech, Chemin des Mines 9, 1202, Geneva, Switzerland
| | - Christopher Sinke
- Center for Systems Neuroscience, Bünteweg 2, 30559, Hannover, Germany.,Department of Psychiatry, Social Psychiatry and Psychotherapy, Section of Clinical Psychology & Sexual Medicine, Hannover Medical School, Centre of Mental Health, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Damien Marie
- Geneva School of Health Sciences, Geneva Musical Minds Lab (GEMMI Lab), University of Applied Sciences and Arts Western Switzerland HES-SO, Avenue de Champel 47, 1206, Geneva, Switzerland
| |
Collapse
|