1
|
Keat A, Li K, Hau T, Soga T. Comparative Side-Effects of Neurosurgical Treatment of Treatment-Resistant Depression. CNS Neurosci Ther 2024; 30:e70090. [PMID: 39467827 PMCID: PMC11518690 DOI: 10.1111/cns.70090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/25/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024] Open
Abstract
INTRODUCTION Treatment-resistant depression (TRD) is a condition in which patients suffering from depression no longer respond to common methods of treatment, such as anti-depressant medication. Neurosurgical procedures such as ablative surgery, deep brain stimulation, and vagus nerve stimulation have been used in efforts to overcome TRD. OBJECTIVES This review aims to provide an overview of the side effects of neurosurgery performed in clinical studies related to depression. METHODS A literature search was conducted through PubMed, MEDLINE, EMBASE, Ovid, and ClinicalTrials.gov databases. RESULTS This review selected 10 studies for ablative surgery, 12 for deep brain stimulation, and 10 for vagus nerve stimulation, analyzing their side effect profiles of neurosurgery for TRD. The major side effects of each type of neurosurgery were identified, such as incontinence and confusion for ablative surgery, headaches and increased suicide ideation for deep brain stimulation, and voice hoarseness and dyspnea for vagus nerve stimulation. CONCLUSION The review discusses the merits and demerits of neurosurgery as a treatment option for TRD. It also suggests new insights into decreasing the burden of these neurosurgical side effects so that they can be a viable, high-efficacy treatment method for TRD.
Collapse
Affiliation(s)
- Alexandre Lim Eng Keat
- Jeffrey Cheah School of Medicine and Health SciencesMonash University MalaysiaBandar SunwaySelangorMalaysia
| | - Keith Tan Jian Li
- Jeffrey Cheah School of Medicine and Health SciencesMonash University MalaysiaBandar SunwaySelangorMalaysia
| | - Teo Chuin Hau
- Jeffrey Cheah School of Medicine and Health SciencesMonash University MalaysiaBandar SunwaySelangorMalaysia
| | - Tomoko Soga
- Jeffrey Cheah School of Medicine and Health SciencesMonash University MalaysiaBandar SunwaySelangorMalaysia
| |
Collapse
|
2
|
Zhao B, Liang L, Li J, Schaefke B, Wang L, Tseng YT. An escape-enhancing circuit involving subthalamic CRH neurons mediates stress-induced anhedonia in mice. Neurobiol Dis 2024; 200:106649. [PMID: 39187210 DOI: 10.1016/j.nbd.2024.106649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/18/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024] Open
Abstract
Chronic predator stress (CPS) is an important and ecologically relevant tool for inducing anhedonia in animals, but the neural circuits underlying the associated neurobiological changes remain to be identified. Using cell-type-specific manipulations, we found that corticotropin-releasing hormone (CRH) neurons in the medial subthalamic nucleus (mSTN) enhance struggle behaviors in inescapable situations and lead to anhedonia, predominately through projections to the external globus pallidus (GPe). Recordings of in vivo neuronal activity revealed that CPS distorted mSTN-CRH neuronal responsivity to negative and positive stimuli, which may underlie CPS-induced behavioral despair and anhedonia. Furthermore, we discovered presynaptic inputs from the bed nucleus of the stria terminalis (BNST) to mSTN-CRH neurons projecting to the GPe that were enhanced following CPS, and these inputs may mediate such behaviors. This study identifies a neurocircuitry that co-regulates escape response and anhedonia in response to predator stress. This new understanding of the neural basis of defensive behavior in response to predator stress will likely benefit our understanding of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Binghao Zhao
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lisha Liang
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jingfei Li
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Bernhard Schaefke
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Liping Wang
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Yu-Ting Tseng
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
3
|
Aghaei A, Herran K, Fanaei SA, Khalili M, Jayadev P. Lived experiences of neurofibromatosis type 1 patients: Social life, stigma, and intervention strategies. J Health Psychol 2024; 29:811-824. [PMID: 37933158 DOI: 10.1177/13591053231208619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
Neurofibromatosis type 1 (NF1) is a neurogenetic disorder associated with visual-spatial problems, executive dysfunction, and language deficits, making patients experience social isolation, stigma, anxiety, and depression. Here, we explored NF1 patients' lived experiences by conducting semi-structured, in-depth interviews with 21 NF1 patients and 16 care providers. The thematic analysis uncovered dimensions of NF1 patients' social lives at different ecological levels, including their relationships with family, friends, teachers, coworkers, providers, and society. Positive dimensions of NF1 patients' social life (e.g. familial support and sacrifice, responsibility, and self-sufficiency, supportive friends, and professors) counter negative dimensions (e.g. the vulnerability in sexual relationships, social interactions, discriminatory professors, misconceptions about abilities, appearance bias, internalized and social stigma, violence, and low self-esteem). Adaptive strategies used or suggested by NF1 patients at personal (e.g. supportive network, positive reframing, acceptance of their bodies) and social levels (e.g. psychological support, group therapy, public awareness, and governmental support) were identified.
Collapse
|
4
|
D'Imperio A, Ienca M. Deep brain stimulation and suicide attempts in treatment-resistant patients: a case report and neuroethical analysis. Front Psychiatry 2024; 15:1398777. [PMID: 38988738 PMCID: PMC11234500 DOI: 10.3389/fpsyt.2024.1398777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/04/2024] [Indexed: 07/12/2024] Open
Abstract
This case presents the situation of a 66-year-old woman diagnosed with Multiple System Atrophy Parkinsonian Type who underwent deep brain stimulation (DBS) therapy and subsequently made two suicide attempts. Despite receiving treatment and extensive psychotherapy, her condition did not improve, leading to suicidal behavior over the course of a year. Notably, she held unrealistic beliefs about the effectiveness of DBS therapy, expressing dissatisfaction with its outcomes. Family dynamics were complex, with the patient concealing her psychological distress while coping with her worsening health condition. This severe distress culminated in two suicide attempts within a relatively short timeframe. Our psychiatric team promptly intervened, implementing a suicidality protocol and adjusting her medication regimen. Despite a documented prevalence of suicidal ideation and attempts post-DBS in the literature, the exact causes remain uncertain, with the suggested involvement of neuroimmune or neurological pathways. This case contributes to scientific understanding by shedding light on suicide attempts following ineffective DBS interventions, emphasizing the patient's right to be informed about potential suicide risks and the possibility of assisted suicide through a neuroethical analysis. Therefore, our case underlines the importance of psychiatric evaluation and intervention in DBS patients to prevent further suicidality, focusing on a multidisciplinary approach tailored to the patient's autonomy and neuroethical principles.
Collapse
Affiliation(s)
- Ambra D'Imperio
- Département de Psychiatrie, Hôpitaux Universitaires de Genève, Geneva, Switzerland
- Institut für Geschichte und Ethik der Medizin, Technische Universität München, Munich, Switzerland
| | - Marcello Ienca
- Institut für Geschichte und Ethik der Medizin, Technische Universität München, Munich, Switzerland
- College of Humanities, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
5
|
Eser P, Kocabicak E, Bekar A, Temel Y. Insights into neuroinflammatory mechanisms of deep brain stimulation in Parkinson's disease. Exp Neurol 2024; 374:114684. [PMID: 38199508 DOI: 10.1016/j.expneurol.2024.114684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/24/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
Abstract
Parkinson's disease, a progressive neurodegenerative disorder, involves gradual degeneration of the nigrostriatal dopaminergic pathway, leading to neuronal loss within the substantia nigra pars compacta and dopamine depletion. Molecular factors, including neuroinflammation, impaired protein homeostasis, and mitochondrial dysfunction, contribute to the neuronal loss. Deep brain stimulation, a form of neuromodulation, applies electric current through stereotactically implanted electrodes, effectively managing motor symptoms in advanced Parkinson's disease patients. Deep brain stimulation exerts intricate effects on neuronal systems, encompassing alterations in neurotransmitter dynamics, microenvironment restoration, neurogenesis, synaptogenesis, and neuroprotection. Contrary to initial concerns, deep brain stimulation demonstrates antiinflammatory effects, influencing cytokine release, glial activation, and neuronal survival. This review investigates the intricacies of deep brain stimulation mechanisms, including insertional effects, histological changes, and glial responses, and sheds light on the complex interplay between electrodes, stimulation, and the brain. This exploration delves into understanding the role of neuroinflammatory pathways and the effects of deep brain stimulation in the context of Parkinson's disease, providing insights into its neuroprotective capabilities.
Collapse
Affiliation(s)
- Pinar Eser
- Bursa Uludag University School of Medicine, Department of Neurosurgery, Bursa, Turkey.
| | - Ersoy Kocabicak
- Ondokuz Mayis University, Health Practise and Research Hospital, Neuromodulation Center, Samsun, Turkey
| | - Ahmet Bekar
- Bursa Uludag University School of Medicine, Department of Neurosurgery, Bursa, Turkey
| | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
6
|
Holewijn RA, Zoon TJC, Verbaan D, Bergfeld IO, Verwijk E, Geurtsen GJ, van Rooijen G, van den Munckhof P, Bot M, Denys DAJP, De Bie RMA, Schuurman PR. Cognitive and psychiatric outcomes in the GALAXY trial: effect of anaesthesia in deep brain stimulation. J Neurol Neurosurg Psychiatry 2024; 95:214-221. [PMID: 37679030 DOI: 10.1136/jnnp-2023-331791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND This study aims: (1) To compare cognitive and psychiatric outcomes after bilateral awake versus asleep subthalamic nucleus (STN) deep brain stimulation (DBS) surgery for Parkinson's disease (PD). (2) To explore the occurrence of psychiatric diagnoses, cognitive impairment and quality of life after surgery in our whole sample. (3) To validate whether we can predict postoperative cognitive decline. METHODS 110 patients with PD were randomised to receive awake (n=56) or asleep (n=54) STN DBS surgery. At baseline and 6-month follow-up, all patients underwent standardised assessments testing several cognitive domains, psychiatric symptoms and quality of life. RESULTS There were no differences on neuropsychological composite scores and psychiatric symptoms between the groups, but we found small differences on individual tests and cognitive domains. The asleep group performed better on the Rey Auditory Verbal Learning Test delayed memory test (f=4.2, p=0.04), while the awake group improved on the Rivermead Behavioural Memory Test delayed memory test. (f=4.4, p=0.04). The Stroop III score was worse for the awake group (f=5.5, p=0.02). Worse scores were present for Stroop I (Stroop word card) (f=6.3, p=0.01), Stroop II (Stroop color card) (f=46.4, p<0.001), Stroop III (Stroop color-word card) (f=10.8, p=0.001) and Trailmaking B/A (f=4.5, p=0.04). Improvements were seen on quality of life: Parkinson's Disease Questionnaire-39 (f=24.8, p<0.001), and psychiatric scales: Hamilton Depression Rating Scale (f=6.2, p=0.01), and Hamilton Anxiety Rating Scale (f=5.5, p=0.02). CONCLUSIONS This study suggests that the choice between awake and asleep STN DBS does not affect cognitive, mood and behavioural adverse effects, despite a minor difference in memory. STN DBS has a beneficial effect on quality of life, mood and anxiety symptoms. TRIAL REGISTRATION NUMBER NTR5809.
Collapse
Affiliation(s)
- Rozemarije A Holewijn
- Department of Neurosurgery, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Thomas J C Zoon
- Department of Psychiatry, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Dagmar Verbaan
- Department of Neurosurgery, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Isidoor O Bergfeld
- Department of Psychiatry, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Esmée Verwijk
- Amsterdam Neuroscience, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Department of Medical Psychology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Gert J Geurtsen
- Department of Medical Psychology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Geeske van Rooijen
- Department of Psychiatry, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Pepijn van den Munckhof
- Department of Neurosurgery, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Maarten Bot
- Department of Neurosurgery, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Damiaan A J P Denys
- Department of Psychiatry, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Rob M A De Bie
- Department of Neurology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - P Rick Schuurman
- Department of Neurosurgery, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Stevens CM, Ragland AR, Nair S, Fort J. Suicide Attempt in a Poststroke Patient After Undergoing Deep Brain Stimulation: A Case Report. Cureus 2024; 16:e53520. [PMID: 38445158 PMCID: PMC10911984 DOI: 10.7759/cureus.53520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2024] [Indexed: 03/07/2024] Open
Abstract
Deep brain stimulation (DBS) is a type of therapy involving electrical stimulation of the brain and is primarily used to treat movement disorders. While perhaps beneficial, DBS has also been shown to have some potential major side effects, including increased risk for depression and suicide. In the present article, we report a case of a suicide attempt in a depressed patient two months after undergoing DBS for treatment of acute dystonia the patient had suffered from a prior ischemic stroke. This manuscript serves as a reminder of the negative ramifications that can be associated with DBS and why we should be cautious in providing DBS to patients who are either currently depressed or have a history of depression.
Collapse
Affiliation(s)
- Christopher M Stevens
- Interventional Radiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Amanda R Ragland
- Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Sachin Nair
- Psychiatry, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Juliana Fort
- Psychiatry, Louisiana State University Health Sciences Center, Shreveport, USA
| |
Collapse
|
8
|
Mainardi M, Ciprietti D, Pilleri M, Bonato G, Weis L, Cianci V, Biundo R, Ferreri F, Piacentino M, Landi A, Guerra A, Antonini A. Deep brain stimulation of globus pallidus internus and subthalamic nucleus in Parkinson's disease: a multicenter, retrospective study of efficacy and safety. Neurol Sci 2024; 45:177-185. [PMID: 37555874 PMCID: PMC10761504 DOI: 10.1007/s10072-023-06999-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/11/2023] [Indexed: 08/10/2023]
Abstract
BACKGROUND Deep brain stimulation (DBS) is an established therapeutic option in advanced Parkinson's disease (PD). Literature data and recent guidelines remain inconclusive about the best choice as a target between the subthalamic nucleus (STN) and the globus pallidus internus (GPi). MATERIALS AND METHODS We retrospectively reviewed the clinical efficacy outcomes of 48 DBS-implanted patients (33 STN-DBS and 15 GPi-DBS) at a short- (<1 year from the surgery) and long-term (2-5 years) follow-up. Also, clinical safety outcomes, including postoperative surgical complications and severe side effects, were collected. RESULTS We found no difference between STN-DBS and GPi-DBS in improving motor symptoms at short-term evaluation. However, STN-DBS achieved a more prominent reduction in oral therapy (L-DOPA equivalent daily dose, P = .02). By contrast, GPi-DBS was superior in ameliorating motor fluctuations and dyskinesia (MDS-UPDRS IV, P < .001) as well as motor experiences of daily living (MDS-UPDRS II, P = .03). The greater efficacy of GPi-DBS on motor fluctuations and experiences of daily living was also present at the long-term follow-up. We observed five serious adverse events, including two suicides, all among STN-DBS patients. CONCLUSION Both STN-DBS and GPi-DBS are effective in improving motor symptoms severity and complications, but GPi-DBS has a greater impact on motor fluctuations and motor experiences of daily living. These results suggest that the two targets should be considered equivalent in motor efficacy, with GPi-DBS as a valuable option in patients with prominent motor complications. The occurrence of suicides in STN-treated patients claims further attention in target selection.
Collapse
Affiliation(s)
- Michele Mainardi
- Parkinson and Movement Disorders Unit, Study Center for Neurodegeneration (CESNE), Department of Neuroscience, University of Padua, Via Giustiniani 2, 35128, Padua, Italy
| | - Dario Ciprietti
- Parkinson and Movement Disorders Unit, Study Center for Neurodegeneration (CESNE), Department of Neuroscience, University of Padua, Via Giustiniani 2, 35128, Padua, Italy
| | - Manuela Pilleri
- Service of Neurology, Villa Margherita-Santo Stefano Private Hospital, Arcugnano, Italy
| | - Giulia Bonato
- Parkinson and Movement Disorders Unit, Study Center for Neurodegeneration (CESNE), Department of Neuroscience, University of Padua, Via Giustiniani 2, 35128, Padua, Italy
| | - Luca Weis
- Parkinson and Movement Disorders Unit, Study Center for Neurodegeneration (CESNE), Department of Neuroscience, University of Padua, Via Giustiniani 2, 35128, Padua, Italy
| | - Valeria Cianci
- Parkinson and Movement Disorders Unit, Study Center for Neurodegeneration (CESNE), Department of Neuroscience, University of Padua, Via Giustiniani 2, 35128, Padua, Italy
| | - Roberta Biundo
- Parkinson and Movement Disorders Unit, Study Center for Neurodegeneration (CESNE), Department of Neuroscience, University of Padua, Via Giustiniani 2, 35128, Padua, Italy
- Department of General Psychology, University of Padua, Via Giustiniani 2, 35128, Padua, Italy
| | - Florinda Ferreri
- Unit of Neurology, Unit of Clinical Neurophysiology, Department of Neuroscience, University of Padova, 35128, Padova, Italy
| | - Massimo Piacentino
- Department of Neurosurgery, AULSS 8 Berica Ospedale San Bortolo, Viale Rodolfi, 37 36100, Vicenza, Italy
| | - Andrea Landi
- Academic Neurosurgery, Department of Neurosciences, University of Padova, 35128, Padova, Italy
| | - Andrea Guerra
- Parkinson and Movement Disorders Unit, Study Center for Neurodegeneration (CESNE), Department of Neuroscience, University of Padua, Via Giustiniani 2, 35128, Padua, Italy
| | - Angelo Antonini
- Parkinson and Movement Disorders Unit, Study Center for Neurodegeneration (CESNE), Department of Neuroscience, University of Padua, Via Giustiniani 2, 35128, Padua, Italy.
| |
Collapse
|
9
|
Liu A, Jiao Y, Zhang S, Kong H. Improved depressive symptoms in patients with refractory Gilles de la Tourette syndrome after deep brain stimulation of posteroventral globus pallidus interna. Brain Behav 2022; 12:e2635. [PMID: 35620847 PMCID: PMC9304849 DOI: 10.1002/brb3.2635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 01/29/2022] [Accepted: 02/12/2022] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Deep brain stimulation (DBS) has been used on drug-resistant Gilles de la Tourette syndrome (GTS) for more than two decades until now, but the stimulating targets are still under exploration until now. In this study, the authors reported the efficacy of the bilateral posteroventral globus pallidus interna (GPi) DBS on tic severity and neuropsychiatry symptoms of seven individuals with GTS. METHOD Seven patients with drug-resistant GTS were enrolled in this study. The severity of these patients was evaluated with Yale Global Tics Severity Scale (YGTSS), Yale Brown Obsessive Compulsive Scale (YBOCS), Hamilton Depression Rating Scale (HAMD), Hamilton Anxiety Rating Scale (HAMA), and Global Assessment of Functioning Scale (GAF). Bilateral posteroventral GPi were selected as the permanent stimulating targets. Follow-up period was at least 5 years after surgery in the enrolled patients. RESULTS After surgery, one patient reported no improvement during the follow-up period, and a device removal surgery was performed. The other six patients reported minor to significant improvement. The overall YGTSS, YBOCS, HAMA HAMD, and GAF scores of these patients were changed positively after surgery, but only the improvement of the motor tic and HAMD scores had a statistical difference. No surgical complication was reported. CONCLUSIONS Bilateral posteroventral GPi DBS could relieve the motor tics and depressive symptoms of the enrolled patients significantly, but the vocal tics and other psychiatric symptoms presented a progression without statistical difference during the follow-up period. The results of this study suggested that bilateral posteroventral GPi are effective targets for the motor tics in GTS patients, especially with prominent depressive symptoms.
Collapse
Affiliation(s)
- Aijun Liu
- Department of Neurosurgery, the Chinese PLA General Hospital, Haidian, Beijing, China
| | - Yongcheng Jiao
- Department of Neurosurgery, the Chinese PLA General Hospital, Haidian, Beijing, China
| | - Shaohui Zhang
- Department of Neurosurgery, the Chinese PLA General Hospital, Haidian, Beijing, China
| | - Haibo Kong
- Department of Neurosurgery, the Chinese PLA General Hospital, Haidian, Beijing, China
| |
Collapse
|
10
|
Chacón Gámez YM, Brugger F, Biller-Andorno N. Parkinson's Disease and Deep Brain Stimulation Have an Impact on My Life: A Multimodal Study on the Experiences of Patients and Family Caregivers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18189516. [PMID: 34574440 PMCID: PMC8467519 DOI: 10.3390/ijerph18189516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/09/2021] [Accepted: 07/21/2021] [Indexed: 12/21/2022]
Abstract
Parkinson’s disease (PD) has a large impact on patients’ physical and mental health, which also greatly affects their family caregivers. Deep brain stimulation (DBS) has emerged as an effective treatment for PD, but different authors have expressed their concerns about the potential impact of DBS on personality and identity. Our study aims at better understanding how patients and family caregivers experience life with PD and DBS, the impact of both on their personal and social lives, and their perception of the changes that have occurred as a result of the disease and the treatment. Our study applies a multimodal approach by means of narrative semi-structured interviews and drawings. Seven principal themes have been identified: “everyone’s Parkinson’s is different”, “changing as a person during the disease”, “going through Parkinson’s together”, “DBS improved my life”, “I am treated with DBS but I have Parkinson’s still”, “DBS is not perfect”, and “being different after DBS”. PD is perceived as an unpredictable and heterogeneous disease that changes from person to person, as does the effect of DBS. While DBS side-effects may have an impact on patients’ personality, behavior, and self-perception, PD symptoms and drug side-effects also have a great impact on these aspects.
Collapse
Affiliation(s)
- Yolanda María Chacón Gámez
- Institute of Medical Bioethics and History of Medicine, University of Zurich, Wintherthurerstrasse 30, 8006 Zurich, Switzerland;
- Correspondence:
| | - Florian Brugger
- Kantonsspital St. Gallen, Klinik für Neurologie, Haus 04 Rorsacher Strasse 95, 9007 St. Gallen, Switzerland;
| | - Nikola Biller-Andorno
- Institute of Medical Bioethics and History of Medicine, University of Zurich, Wintherthurerstrasse 30, 8006 Zurich, Switzerland;
| |
Collapse
|