1
|
Lagod PP, Abdelli LS, Naser SA. An In Vivo Model of Propionic Acid-Rich Diet-Induced Gliosis and Neuro-Inflammation in Mice (FVB/N-Tg(GFAPGFP)14Mes/J): A Potential Link to Autism Spectrum Disorder. Int J Mol Sci 2024; 25:8093. [PMID: 39125662 PMCID: PMC11311704 DOI: 10.3390/ijms25158093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Evidence shows that Autism Spectrum Disorder (ASD) stems from an interplay of genetic and environmental factors, which may include propionic acid (PPA), a microbial byproduct and food preservative. We previously reported that in vitro treatment of neural stem cells with PPA leads to gliosis and neuroinflammation. In this study, mice were exposed ad libitum to a PPA-rich diet for four weeks before mating. The same diet was maintained through pregnancy and administered to the offspring after weaning. The brains of the offspring were studied at 1 and 5 months postpartum. Glial fibrillary acidic protein (astrocytic marker) was significantly increased (1.53 ± 0.56-fold at 1 M and 1.63 ± 0.49-fold at 5 M) in the PPA group brains. Tubulin IIIβ (neuronal marker) was significantly decreased in the 5 M group. IL-6 and TNF-α expression were increased in the brain of the PPA group (IL-6: 2.48 ± 1.25-fold at 5 M; TNF-α: 2.84 ± 1.16-fold at 1 M and 2.64 ± 1.42-fold, at 5 M), while IL-10 was decreased. GPR41 and p-Akt were increased, while PTEN (p-Akt inhibitor) was decreased in the PPA group. The data support the role of a PPA-rich diet in glia over-proliferation and neuro-inflammation mediated by the GPR41 receptor and PTEN/Akt pathway. These findings strongly support our earlier study on the role of PPA in ASD.
Collapse
Affiliation(s)
- Piotr P. Lagod
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA;
| | - Latifa S. Abdelli
- Health Sciences Department, College of Health Professions and Sciences, University of Central Florida, Orlando, FL 32816, USA;
| | - Saleh A. Naser
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA;
| |
Collapse
|
2
|
Touahri Y, Hanna J, Tachibana N, Okawa S, Liu H, David LA, Olender T, Vasan L, Pak A, Mehta DN, Chinchalongporn V, Balakrishnan A, Cantrup R, Dixit R, Mattar P, Saleh F, Ilnytskyy Y, Murshed M, Mains PE, Kovalchuk I, Lefebvre JL, Leong HS, Cayouette M, Wang C, Del Sol A, Brand M, Reese BE, Schuurmans C. Pten regulates endocytic trafficking of cell adhesion and Wnt signaling molecules to pattern the retina. Cell Rep 2024; 43:114005. [PMID: 38551961 PMCID: PMC11290456 DOI: 10.1016/j.celrep.2024.114005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/30/2024] [Accepted: 03/11/2024] [Indexed: 04/28/2024] Open
Abstract
The retina is exquisitely patterned, with neuronal somata positioned at regular intervals to completely sample the visual field. Here, we show that phosphatase and tensin homolog (Pten) controls starburst amacrine cell spacing by modulating vesicular trafficking of cell adhesion molecules and Wnt proteins. Single-cell transcriptomics and double-mutant analyses revealed that Pten and Down syndrome cell adhesion molecule Dscam) are co-expressed and function additively to pattern starburst amacrine cell mosaics. Mechanistically, Pten loss accelerates the endocytic trafficking of DSCAM, FAT3, and MEGF10 off the cell membrane and into endocytic vesicles in amacrine cells. Accordingly, the vesicular proteome, a molecular signature of the cell of origin, is enriched in exocytosis, vesicle-mediated transport, and receptor internalization proteins in Pten conditional knockout (PtencKO) retinas. Wnt signaling molecules are also enriched in PtencKO retinal vesicles, and the genetic or pharmacological disruption of Wnt signaling phenocopies amacrine cell patterning defects. Pten thus controls vesicular trafficking of cell adhesion and signaling molecules to establish retinal amacrine cell mosaics.
Collapse
Affiliation(s)
- Yacine Touahri
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada
| | - Joseph Hanna
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Nobuhiko Tachibana
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Satoshi Okawa
- Computational Biology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg; Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Hedy Liu
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Luke Ajay David
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Thomas Olender
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | - Lakshmy Vasan
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Alissa Pak
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Dhruv Nimesh Mehta
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada
| | - Vorapin Chinchalongporn
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Anjali Balakrishnan
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Robert Cantrup
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Rajiv Dixit
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Pierre Mattar
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada
| | - Fermisk Saleh
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Yaroslav Ilnytskyy
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Monzur Murshed
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3G 1A6, Canada
| | - Paul E Mains
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Julie L Lefebvre
- Department of Molecular Genetics, University of Toronto, Toronto ON M5S 1A8, Canada; Program for Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Hon S Leong
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Michel Cayouette
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada
| | - Chao Wang
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Immunology, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Antonio Del Sol
- Computational Biology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg; CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain; IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Marjorie Brand
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | - Benjamin E Reese
- Department of Psychological and Brain Sciences, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106-5060, USA
| | - Carol Schuurmans
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
3
|
Petrović N, Essack M, Šami A, Perry G, Gojobori T, Isenović ER, Bajić VP. MicroRNA networks linked with BRCA1/2, PTEN, and common genes for Alzheimer's disease and breast cancer share highly enriched pathways that may unravel targets for the AD/BC comorbidity treatment. Comput Biol Chem 2023; 106:107925. [PMID: 37487248 DOI: 10.1016/j.compbiolchem.2023.107925] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 06/29/2023] [Accepted: 07/13/2023] [Indexed: 07/26/2023]
Abstract
MicroRNAs (miRNAs) are involved in the regulation of various cellular processes including pathological conditions. MiRNA networks have been extensively researched in age-related degenerative diseases, such as cancer, Alzheimer's disease (AD), and heart failure. Thus, miRNA has been studied from different approaches, in vivo, in vitro, and in silico including miRNA networks. Networks linking diverse biomedical entities unveil information not readily observable by other means. This work focuses on biological networks related to Breast cancer susceptibility 1 (BRCA1) in AD and breast cancer (BC). Using various bioinformatics approaches, we identified subnetworks common to AD and BC that suggest they are linked. According to our results, miR-107 was identified as a potentially good candidate for both AD and BC treatment (targeting BRCA1/2 and PTEN in both diseases), accompanied by miR-146a and miR-17. The analysis also confirmed the involvement of the miR-17-92 cluster, and miR-124-3p, and highlighted the importance of poorly researched miRNAs such as mir-6785 mir-6127, mir-6870, or miR-8485. After filtering the in silico analysis results, we found 49 miRNA molecules that modulate the expression of at least five genes common to both BC and AD. Those 49 miRNAs regulate the expression of 122 genes in AD and 93 genes in BC, from which 26 genes are common genes for AD and BC involved in neuron differentiation and genesis, cell differentiation and migration, regulation of cell cycle, and cancer development. Additionally, the highly enriched pathway was associated with diabetic complications, pointing out possible interplay among molecules underlying BC, AD, and diabetes pathology.
Collapse
Affiliation(s)
- Nina Petrović
- Laboratory for Radiobiology and Molecular Genetics, Department of Health and Environment, "VINČA "Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia; Department for Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | - Magbubah Essack
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center, Computer (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Ahmad Šami
- Cellular and Molecular Radiation Oncology Laboratory, Department of Radiation Oncology, Universitatsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - George Perry
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Takashi Gojobori
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center, Computer (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Esma R Isenović
- Laboratory for Radiobiology and Molecular Genetics, Department of Health and Environment, "VINČA "Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia
| | - Vladan P Bajić
- Laboratory for Radiobiology and Molecular Genetics, Department of Health and Environment, "VINČA "Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia.
| |
Collapse
|
4
|
Hsu TW, Liang CS, Tsai SJ, Bai YM, Su TP, Chen TJ, Chen MH. Risk of Major Psychiatric Disorders Among Children and Adolescents Surviving Malignancies: A Nationwide Longitudinal Study. J Clin Oncol 2023; 41:2054-2066. [PMID: 36649568 DOI: 10.1200/jco.22.01189] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
PURPOSE Evidence suggests an increased long-term risk of major psychiatric disorders (MPDs) in childhood and adolescent cancer survivors (CACSs). However, definitive conclusions regarding such associations and whether such associations vary for different types of cancers remain unclear. METHODS Using a nationwide data set from 2001 to 2011, we enrolled CACSs and likewise randomly selected individuals without cancer from the general population (1:10 ratio) who were matched to the CACSs with regard to demographic data. We investigated eight organ system-related cancers. The primary outcomes were the risks of seven MPD diagnoses: autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD), schizophrenia, bipolar disorder (BD), major depressive disorder (MDD), obsessive-compulsive disorder (OCD), and post-traumatic stress disorder. RESULTS CACSs (n = 5,121; mean age = 9.08 years) showed increased risks of six MPD diagnoses than controls (n = 51,210), with results as follows (in descending order): ASD (hazard ratio [HR], 10.42; associated 95% CI, 4.58 to 23.69), ADHD (HR, 6.59; 95% CI, 4.91 to 8.86), BD (HR, 2.93; 95% CI, 1.26 to 6.80), MDD (HR, 1.88; 95% CI, 1.26 to 2.79), OCD (HR, 3.37; 95% CI, 1.33 to 8.52), and post-traumatic stress disorder (HR, 6.10; 95% CI, 1.46 to 25.54). CACSs also showed earlier ages at diagnoses of ADHD, schizophrenia, MDD, and OCD than controls. The risks of MPD diagnoses vary according to specific cancer types/categories. Brain cancer and lymphatic/hematopoietic tissue cancer were associated with the greatest number of MPD diagnoses (ie, each was associated with six diagnoses). In addition, ASD and ADHD were associated with most organ system-related cancers (ie, each was associated with five categories). CONCLUSION We found that CACSs were at higher risks of MPD diagnoses than controls. Follow-up care should include psychosocial interventions focusing on early signs of mental health problems and early interventions in this high-risk group.
Collapse
Affiliation(s)
- Tien-Wei Hsu
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Chih-Sung Liang
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, Taipei, Taiwan.,Department of Psychiatry, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Psychiatry, College of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Ya-Mei Bai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Psychiatry, College of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Tung-Ping Su
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Psychiatry, College of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan.,Department of Psychiatry, General Cheng Hsin Hospital, Taipei, Taiwan
| | - Tzeng-Ji Chen
- Department of Family Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Hospital and Health Care Administration, National Yang-Ming Chiao Tung University, Taipei, Taiwan.,Department of Family Medicine, Taipei Veterans General Hospital, Hsinchu Branch, Hsinchu, Taiwan
| | - Mu-Hong Chen
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Psychiatry, College of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
5
|
Su K, Hao W, Lv Z, Wu M, Li J, Hu Y, Zhang Z, Gao J, Feng X. Electroacupuncture of Baihui and Shenting ameliorates cognitive deficits via Pten/Akt pathway in a rat cerebral ischemia injury model. Front Neurol 2022; 13:855362. [PMID: 36062010 PMCID: PMC9437581 DOI: 10.3389/fneur.2022.855362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 07/11/2022] [Indexed: 11/23/2022] Open
Abstract
Cerebral ischemic stroke is a huge threat to the health and life of many people. Electroacupuncture (EA) at Baihui (GV20) and Shenting (GV24) acupoints can notably alleviate cerebral ischemia/reperfusion injury (CIRI). However, the molecular basis underlying the effectiveness of EA at the GV20 and GV24 acupoints for CIRI remains largely unknown. Our present study demonstrated that EA treatment at the GV20 and GV24 acupoints markedly alleviated middle cerebral artery occlusion/reperfusion (MCAO/R)-induced cognitive deficits and cerebral infarction in rats. Proteomics analysis revealed that 195 and 218 proteins were dysregulated in rat hippocampal tissues in the MCAO/R vs. sham group and thhhe EA vs. MCAO/R group, respectively. Moreover, 62 proteins with converse alteration trends in MCAO/R vs. sham and EA vs. MCAO/R groups were identified. These proteins might be implicated in the EA-mediated protective effect against MCAO/R-induced cerebral injury. GO enrichment analysis showed that 39 dysregulated proteins in the MCAO/R vs. sham group and 40 dysregulated proteins in the EA vs. MCAO/R group were related to brain and nerve development. Protein–protein interaction analysis of the abovementioned dysregulated proteins associated with brain and nerve development suggested that Pten/Akt pathway-related proteins might play major roles in regulating EA-mediated protective effects against MCAO/R-induced brain and nerve injury. Western blot assays demonstrated that Pak4, Akt3, and Efnb2 were expressed at low levels in the MCAO/R group vs. the sham group but at high levels in the EA group vs. the MCAO/R group. In conclusion, multiple proteins related to the protective effect of EA at the GV20 and GV24 acupoints against CIRI were identified in our study.
Collapse
Affiliation(s)
- Kaiqi Su
- Department of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
- Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Wenxue Hao
- Department of Rehabilitation, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhuan Lv
- Department of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
- Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Mingli Wu
- Department of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
- Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Jieying Li
- College of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanchao Hu
- Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhenhua Zhang
- Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Jing Gao
- Department of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
- Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- *Correspondence: Jing Gao
| | - Xiaodong Feng
- Department of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
- Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- Xiaodong Feng
| |
Collapse
|
6
|
Cummings K, Watkins A, Jones C, Dias R, Welham A. Behavioural and psychological features of PTEN mutations: a systematic review of the literature and meta-analysis of the prevalence of autism spectrum disorder characteristics. J Neurodev Disord 2022; 14:1. [PMID: 34983360 PMCID: PMC8903687 DOI: 10.1186/s11689-021-09406-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 11/08/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Phosphatase and tensin homologue (PTEN) is a cancer suppressor gene. Constitutional mutations affecting this gene are associated with several conditions, collectively termed PTEN hamartoma tumour syndromes (PHTS). In addition to hamartomas, PTEN aberrations have been associated with a range of non-tumoural phenotypes such as macrocephaly, and research indicates possibly increased rates of developmental delay and autism spectrum disorder (ASD) for people with germline mutations affecting PTEN. METHOD A systematic review of literature reporting behavioural and psychological variables for people with constitutional PTEN mutations/PHTS was conducted using four databases. Following in-depth screening, 25 articles met the inclusion criteria and were used in the review. Fourteen papers reported the proportion of people with PTEN mutations/PTHS meeting criteria for or having characteristics of ASD and were thus used in a pooled prevalence meta-analysis. RESULTS Meta-analysis using a random effects model estimated pooled prevalence of ASD characteristics at 25% (95% CI 16-33%), although this should be interpreted cautiously due to possible biases in existing literature. Intellectual disability and developmental delay (global, motor and speech and language) were also reported frequently. Emotional difficulties and impaired cognitive functioning in specific domains were noted but assessed/reported less frequently. Methods of assessment of psychological/behavioural factors varied widely (with retrospective examination of medical records common). CONCLUSIONS Existing research suggests approximately 25% of people with constitutional PTEN mutations may meet criteria for or have characteristics of ASD. Studies have also begun to establish a range of possible cognitive impairments in affected individuals, especially when ASD is also reported. However, further large-scale studies are needed to elucidate psychological/behavioural corollaries of this mutation, and how they may relate to physiological/physical characteristics.
Collapse
Affiliation(s)
- Katherine Cummings
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Lancaster Road, Leicester, LE1 7HA UK
| | - Alice Watkins
- Neuropsychology Service, Great Ormond Street Hospital, London, WC1N 3JH UK
- Department of Psychology, University of Birmingham, Birmingham, B15 2TT UK
| | - Chris Jones
- Department of Psychology, University of Birmingham, Birmingham, B15 2TT UK
| | - Renuka Dias
- Department of Endocrinology and Diabetes, Birmingham Children’s Hospital, Birmingham Women’s, and Children’s NHS Foundation Trust, Steelhouse Lane, Birmingham, UK B4 6NH
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston Birmingham, UK B15 2TT
| | - Alice Welham
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Lancaster Road, Leicester, LE1 7HA UK
- Department of Psychology, University of Birmingham, Birmingham, B15 2TT UK
| |
Collapse
|
7
|
Nucleocytoplasmic transport of the RNA-binding protein CELF2 regulates neural stem cell fates. Cell Rep 2021; 35:109226. [PMID: 34107259 DOI: 10.1016/j.celrep.2021.109226] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/23/2021] [Accepted: 05/13/2021] [Indexed: 01/12/2023] Open
Abstract
The development of the cerebral cortex requires balanced expansion and differentiation of neural stem/progenitor cells (NPCs), which rely on precise regulation of gene expression. Because NPCs often exhibit transcriptional priming of cell-fate-determination genes, the ultimate output of these genes for fate decisions must be carefully controlled in a timely fashion at the post-transcriptional level, but how that is achieved is poorly understood. Here, we report that de novo missense variants in an RNA-binding protein CELF2 cause human cortical malformations and perturb NPC fate decisions in mice by disrupting CELF2 nucleocytoplasmic transport. In self-renewing NPCs, CELF2 resides in the cytoplasm, where it represses mRNAs encoding cell fate regulators and neurodevelopmental disorder-related factors. The translocation of CELF2 into the nucleus releases mRNA for translation and thereby triggers NPC differentiation. Our results reveal that CELF2 translocation between subcellular compartments orchestrates mRNA at the translational level to instruct cell fates in cortical development.
Collapse
|
8
|
Mechanisms of axon polarization in pyramidal neurons. Mol Cell Neurosci 2020; 107:103522. [PMID: 32653476 DOI: 10.1016/j.mcn.2020.103522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 06/19/2020] [Accepted: 06/29/2020] [Indexed: 01/19/2023] Open
Abstract
Neurons are highly polarized cells that have specialized regions for synaptic input, the dendrites, and synaptic output, the axons. This polarity is critical for appropriate neural circuit formation and function. One of the central gaps in our knowledge is understanding how developing neurons initiate axon polarity. Given the critical nature of this polarity on neural circuit formation and function, neurons have evolved multiple mechanisms comprised of extracellular and intracellular cues that allow them to initiate and form axons. These mechanisms engage a variety of signaling cascades that provide positive and negative cues to ensure axon polarization. This review highlights our current knowledge of the molecular underpinnings of axon polarization in pyramidal neurons and their relevance to the development of the brain.
Collapse
|
9
|
Kang SC, Jaini R, Hitomi M, Lee H, Sarn N, Thacker S, Eng C. Decreased nuclear Pten in neural stem cells contributes to deficits in neuronal maturation. Mol Autism 2020; 11:43. [PMID: 32487265 PMCID: PMC7268763 DOI: 10.1186/s13229-020-00337-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 04/13/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND PTEN, a syndromic autism spectrum disorder (ASD) risk gene, is mutated in approximately 10% of macrocephalic ASD cases. Despite the described genetic association between PTEN and ASD and ensuing studies, we continue to have a limited understanding of how PTEN disruption drives ASD pathogenesis and maintenance. METHODS We derived neural stem cells (NSCs) from the dentate gyrus (DG) of Ptenm3m4 mice, a model that recapitulates PTEN-ASD phenotypes. We subsequently characterized the expression of stemness factors, proliferation, and differentiation of neurons and glia in Ptenm3m4 NSCs using immunofluorescent and immunoblotting approaches. We also measured Creb phosphorylation by Western blot analysis and expression of Creb-regulated genes with qRT-PCR. RESULTS The m3m4 mutation decreases Pten localization to the nucleus and its global expression over time. Ptenm3m4 NSCs exhibit persistent stemness characteristics associated with increased proliferation and a resistance to neuronal maturation during differentiation. Given the increased proliferation of Ptenm3m4 NSCs, a significant increase in the population of immature neurons relative to mature neurons occurs, an approximately tenfold decrease in the ratio between the homozygous mutant and wildtype. There is an opposite pattern of differentiation in some Ptenm3m4 glia, specifically an increase in astrocytes. These aberrant differentiation patterns associate with changes in Creb activation in Ptenm3m4/m3m4 NSCs. We specifically observed loss of Creb phosphorylation at S133 in Ptenm3m4/m3m4 NSCs and a subsequent decrease in expression of Creb-regulated genes important to neuronal function (i.e., Bdnf). Interestingly, Bdnf treatment is able to partially rescue the stunted neuronal maturation phenotype in Ptenm3m4/m3m4 NSCs. CONCLUSIONS Constitutional disruption of Pten nuclear localization with subsequent global decrease in Pten expression generates abnormal patterns of differentiation, a stunting of neuronal maturation. The propensity of Pten disruption to restrain neurons to a more progenitor-like state may be an important feature contributing to PTEN-ASD pathogenesis.
Collapse
Affiliation(s)
- Shin Chung Kang
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Ritika Jaini
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.,Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Masahiro Hitomi
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Hyunpil Lee
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Nick Sarn
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Stetson Thacker
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA. .,Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, 9500 Euclid Avenue, Cleveland, OH, 44195, USA. .,Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA. .,Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, 44195, USA. .,Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
10
|
Kelestemur T, Beker MC, Caglayan AB, Caglayan B, Altunay S, Kutlu S, Kilic E. Normobaric oxygen treatment improves neuronal survival functional recovery and axonal plasticity after newborn hypoxia-ischemia. Behav Brain Res 2019; 379:112338. [PMID: 31733311 DOI: 10.1016/j.bbr.2019.112338] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/16/2019] [Accepted: 10/30/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Newborn hypoxia ischemia (HI) is one of the most prevalent cases in the emergency and can result from fetal hypoxia during delivery. In HI, restricted blood supply to the fetal brain may cause epilepsy or mental disorders. METHODS In the present study, seven-day-old pups were subjected HI and treated with different normobaric oxygen (NBO) concentrations (21%, 70% or 100%). In the acute phase, we analyzed infarct area, disseminate neuronal injury and surviving neurons. In addition, we studied the regulation of PTEN and MMP-9 proteins which were suggested to be activated by HI in the ischemic tissue. Moreover, long-term effects of NBO treatments were evaluated with open field, rotarod and Barnes maze tests. We also examined axonal plasticity with EGFP-AAV injection. RESULTS Here, we demonstrate that hyperoxic NBO concentration causes an increase in cellular survival and a decrease in the number of apoptotic cells, meanwhile inhibiting the proteins involved in cellular death mechanisms. Moreover, we found that hyperoxia decreases anxiety, promotes motor coordination and improve spatial learning and memory. Notably that axonal sprouting was promoted by hyperoxia. CONCLUSION Our data suggest that NBO is a promising approach for the treatment of newborn HI, which encourage proof-of-concept studies in newborn.
Collapse
Affiliation(s)
- Taha Kelestemur
- School of Medicine, Department of Physiology, Istanbul Medipol University, 34810, Istanbul, Turkey; Regenerative and Restorative Medical Research Center (REMER), Istanbul Medipol University, 34810, Istanbul, Turkey
| | - Mustafa C Beker
- School of Medicine, Department of Physiology, Istanbul Medipol University, 34810, Istanbul, Turkey; Regenerative and Restorative Medical Research Center (REMER), Istanbul Medipol University, 34810, Istanbul, Turkey
| | - Ahmet B Caglayan
- Regenerative and Restorative Medical Research Center (REMER), Istanbul Medipol University, 34810, Istanbul, Turkey; International School of Medicine, Department of Physiology, Istanbul Medipol University, 34810, Istanbul, Turkey
| | - Berrak Caglayan
- Regenerative and Restorative Medical Research Center (REMER), Istanbul Medipol University, 34810, Istanbul, Turkey; International School of Medicine, Department of Medical Biology, Istanbul Medipol University, 34810, Istanbul, Turkey
| | - Serdar Altunay
- School of Medicine, Department of Physiology, Istanbul Medipol University, 34810, Istanbul, Turkey; Regenerative and Restorative Medical Research Center (REMER), Istanbul Medipol University, 34810, Istanbul, Turkey
| | - Selim Kutlu
- School of Medicine, Department of Physiology, Necmettin Erbakan University, 42080, Konya, Turkey
| | - Ertugrul Kilic
- School of Medicine, Department of Physiology, Istanbul Medipol University, 34810, Istanbul, Turkey; Regenerative and Restorative Medical Research Center (REMER), Istanbul Medipol University, 34810, Istanbul, Turkey.
| |
Collapse
|
11
|
Zhang B, Zhang Y, Deng F, Fang S. Ligustrazine prevents basilar artery remodeling in two-kidney-two-clip renovascular hypertension rats via suppressing PI3K/Akt signaling. Microvasc Res 2019; 128:103938. [PMID: 31682800 DOI: 10.1016/j.mvr.2019.103938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 09/19/2019] [Accepted: 10/21/2019] [Indexed: 01/19/2023]
Abstract
OBJECTIVE In the present study, we used a two-kidney-two-clip (2k2c) stroke-prone renovascular hypertension rat model (RHRSP) to investigate the protective effects of ligustrazine (TMP) on cerebral arteries and to examine PI3K/Akt pathway behavior under this protection. METHODS The cerebral artery remodeling was induced by 2k2c-induced renovascular hypertension. Brain basilar artery tissues were isolated and their histological changes were detected through H&E and EVG staining, α-SMA IHC staining, and transmission electron microscopy at four, eight, and twelve weeks after 2k2c surgery, both with and without TMP treatment. Meanwhile, the ET-1, Ang II, and NO levels in basilar arteries and plasma were determined. Furthermore, the PTEN expression and the activation of PI3K/Akt in basilar artery tissues were detected through IHC and Western Blot. In addition, the primary basilar artery smooth muscle cells (BASMCs) were cultured and TMP protection of BASMCs stimulated with ET-1/Ang II in the presence or absence of insulin-like growth factor 1 (IGF-1) was determined. RESULTS TMP attenuated basilar artery remodeling, decreased ET-1 and Ang II levels and increased NO level in basilar arteries and plasma of RHRSP rats. Moreover, TMP reduced BASMCs proliferation upon ET-1/Ang II stimulation. We also found that TMP could effectively suppress the activation of PI3K/Akt in 2k2c-RHRSP rat basilar artery and ET-1/Ang II stimulated BASMCs. Most importantly, IGF-1, as an activator of PI3K/Akt, could damage the protective effect of TMP. CONCLUSIONS TMP exerts its protective effects and prevents basilar artery remodeling in RHRSP rats at least partly through the inhibition of PI3K/Akt pathway.
Collapse
MESH Headings
- Angiotensin II/metabolism
- Animals
- Cell Proliferation/drug effects
- Cells, Cultured
- Disease Models, Animal
- Endothelin-1/metabolism
- Hypertension, Renovascular/drug therapy
- Hypertension, Renovascular/enzymology
- Hypertension, Renovascular/pathology
- Hypertension, Renovascular/physiopathology
- Ligation
- Male
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/physiopathology
- Muscle, Smooth, Vascular/ultrastructure
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Nitric Oxide/metabolism
- Phosphatidylinositol 3-Kinase/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- Pyrazines/pharmacology
- Rats, Sprague-Dawley
- Renal Artery/surgery
- Signal Transduction
- Temporal Arteries/drug effects
- Temporal Arteries/enzymology
- Temporal Arteries/physiopathology
- Temporal Arteries/ultrastructure
- Vascular Remodeling/drug effects
Collapse
Affiliation(s)
- Beilin Zhang
- Department of Neurology, The First Teaching Hospital of Jilin University, Changchun, Jilin, China
| | - Ying Zhang
- Department of Neurology, The First Teaching Hospital of Jilin University, Changchun, Jilin, China
| | - Fang Deng
- Department of Neurology, The First Teaching Hospital of Jilin University, Changchun, Jilin, China
| | - Shaokuan Fang
- Department of Neurology, The First Teaching Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
12
|
Abstract
Gliomas are heterogeneous tumours derived from glial cells and remain the deadliest form of brain cancer. Although the glioma stem cell sits at the apex of the cellular hierarchy, how it produces the vast cellular constituency associated with frank glioma remains poorly defined. We explore glioma tumorigenesis through the lens of glial development, starting with the neurogenic-gliogenic switch and progressing through oligodendrocyte and astrocyte differentiation. Beginning with the factors that influence normal glial linage progression and diversity, a pattern emerges that has useful parallels in the development of glioma and may ultimately provide targetable pathways for much-needed new therapeutics.
Collapse
|
13
|
Zahedi Abghari F, Moradi Y, Akouchekian M. PTEN gene mutations in patients with macrocephaly and classic autism: A systematic review. Med J Islam Repub Iran 2019; 33:10. [PMID: 31086789 PMCID: PMC6504940 DOI: 10.34171/mjiri.33.10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Indexed: 11/05/2022] Open
Abstract
Background: Autism Spectrum Disorder (ASD) is a neurological disorder characterized by massive damage in various fields of development. Impaired social interaction and communication skills, unusual behavior or interests, and repetitive activities are considerably disabling in these patients. There are several challenges in diagnosis of ASD patients such as co-existing epilepsy, difference in clinician attitudes and possibly multifactorial etiology of autistic behavior among children and adults. Research in recent years has emphasized a possible connection between mutations in PTEN and macrocephaly (head circumference > 97th centile). Methods: Articles in English Language were searched from international databases including Medline (PubMed), Google Scholar, Scopus, and CINHAL from January 1998 to January 2016. Results: The results showed that among 2940 patients with behavioral disorders, 2755 individuals had ASD, and 35 cases with macrocephaly had mutations in PTEN. About 77% of the articles (7/9) analyzed mutations in PTEN in patients with head circumference more than 2SD away from the mean, but did not check mutations in this gene in other ASD patients without macrocephaly. To the best of our knowledge, this study is the first systematic review on human PTEN mutations and classical autistic behavior. Conclusion: We conclude that the presence of macrocephaly may not be sufficient to examine the PTEN mutation in this group; however, surveying this gene in all cases of macrocephaly seems to be necessary.
Collapse
Affiliation(s)
- Fateme Zahedi Abghari
- Department of Medical Genetics and Molecular Biology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Yousef Moradi
- Social Determinants of Health Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mansoureh Akouchekian
- Department of Medical Genetics and Molecular Biology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Igarashi A, Itoh K, Yamada T, Adachi Y, Kato T, Murata D, Sesaki H, Iijima M. Nuclear PTEN deficiency causes microcephaly with decreased neuronal soma size and increased seizure susceptibility. J Biol Chem 2018; 293:9292-9300. [PMID: 29735527 DOI: 10.1074/jbc.ra118.002356] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/20/2018] [Indexed: 12/25/2022] Open
Abstract
Defects in phosphatase and tensin homolog (PTEN) are associated with neurological disorders and tumors. PTEN functions at two primary intracellular locations: the plasma membrane and the nucleus. At the membrane, PTEN functions as a phosphatidylinositol (3,4,5)-trisphosphate phosphatase and suppresses PI 3-kinase signaling that drives cell growth and tumorigenesis. However, the in vivo function of nuclear PTEN is unclear. Here, using CRISPR/Cas9, we generated a mouse model in which PTEN levels in the nucleus are decreased. Nuclear PTEN-deficient mice were born with microcephaly and maintained a small brain during adulthood. The size of neuronal soma was significantly smaller in the cerebellum, cerebral cortex, and hippocampus. Also, these mice were prone to seizure. No changes in PI 3-kinase signaling were observed. By contrast, the size of other organs was unaffected. Therefore, nuclear PTEN is essential for the health of the brain by promoting the growth of neuronal soma size during development.
Collapse
Affiliation(s)
- Atsushi Igarashi
- From the Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Kie Itoh
- From the Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Tatsuya Yamada
- From the Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Yoshihiro Adachi
- From the Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Takashi Kato
- From the Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Daisuke Murata
- From the Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Hiromi Sesaki
- From the Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Miho Iijima
- From the Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
15
|
Balci TB, Davila J, Lewis D, Boafo A, Sell E, Richer J, Nikkel SM, Armour CM, Tomiak E, Lines MA, Sawyer SL. Broad spectrum of neuropsychiatric phenotypes associated with white matter disease in PTEN hamartoma tumor syndrome. Am J Med Genet B Neuropsychiatr Genet 2018; 177:101-109. [PMID: 29152901 DOI: 10.1002/ajmg.b.32610] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/30/2017] [Indexed: 11/11/2022]
Abstract
White matter lesions have been described in patients with PTEN hamartoma tumor syndrome (PHTS). How these lesions correlate with the neurocognitive features associated with PTEN mutations, such as autism spectrum disorder (ASD) or developmental delay, has not been well established. We report nine patients with PTEN mutations and white matter changes on brain magnetic resonance imaging (MRI), eight of whom were referred for reasons other than developmental delay or ASD. Their clinical presentations ranged from asymptomatic macrocephaly with normal development/intellect, to obsessive compulsive disorder, and debilitating neurological disease. To our knowledge, this report constitutes the first detailed description of PTEN-related white matter changes in adult patients and in children with normal development and intelligence. We present a detailed assessment of the neuropsychological phenotype of our patients and discuss the relationship between the wide array of neuropsychiatric features and observed white matter findings in the context of these individuals.
Collapse
Affiliation(s)
- Tugce B Balci
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Jorge Davila
- Department of Medical Imaging, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Denice Lewis
- Department of Psychiatry, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada.,Department of Family Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Addo Boafo
- Department of Psychiatry, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Erick Sell
- Division of Neurology, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Julie Richer
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Sarah M Nikkel
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada.,Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Christine M Armour
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada.,Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Eva Tomiak
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada.,Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Matthew A Lines
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada.,Division of Metabolics and Newborn Screening, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Sarah L Sawyer
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada.,Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
16
|
Yang T, Moore M, He F. Pten regulates neural crest proliferation and differentiation during mouse craniofacial development. Dev Dyn 2017; 247:304-314. [PMID: 29115005 DOI: 10.1002/dvdy.24605] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 10/20/2017] [Accepted: 11/01/2017] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The phosphatase and tensin homolog deleted on chromosome TEN (Pten) is implicated in a broad range of developmental events and diseases. However, its role in neural crest and craniofacial development has not been well illustrated. RESULTS Using genetically engineered mouse models, we showed that inactivating Pten specifically in neural crest cells causes malformation of craniofacial structures. Pten conditional knockout mice exhibit perinatal lethality with overgrowth of craniofacial structures. At the cellular level, Pten deficiency increases cell proliferation rate and enhances osteoblast differentiation. Our data further revealed that inactivating Pten elevates PI3K/Akt signaling activity in neural crest derivatives, and confirmed that attenuation of PI3K/Akt activity led to decreased neural crest cell proliferation and differentiation both in vitro and in vivo. CONCLUSIONS Our study revealed that Pten is essential for craniofacial morphogenesis in mice. Inactivating Pten in neural crest cells increases proliferation rate and promotes their differentiation toward osteoblasts. Our data further indicate that Pten acts via modulating PI3K/Akt activity during these processes. Developmental Dynamics 247:304-314, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tianfang Yang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana
| | - Matthew Moore
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana
| | - Fenglei He
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana
| |
Collapse
|
17
|
Knafo S, Esteban JA. PTEN: Local and Global Modulation of Neuronal Function in Health and Disease. Trends Neurosci 2017; 40:83-91. [PMID: 28081942 DOI: 10.1016/j.tins.2016.11.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 11/23/2016] [Accepted: 11/29/2016] [Indexed: 11/27/2022]
Abstract
Phosphatase and tensin homolog deleted on chromosome ten (PTEN) was recently revealed to be a synaptic player during plasticity events in addition to its well-established role as a general controlling factor in cell proliferation and neuronal growth during development. Alterations of these direct actions of PTEN at synapses may lead to synaptic dysfunction with behavioral and cognitive consequences. A recent paradigmatic example of this situation, Alzheimer's disease (AD), is associated with excessive recruitment of PTEN into synapses leading to pathological synaptic depression. By contrast, some forms of autism are characterized by failure to weaken synaptic connections, which may be related to insufficient PTEN signaling. Understanding the modulation of synaptic function by PTEN in these pathologies may contribute to the development of new therapies.
Collapse
Affiliation(s)
- Shira Knafo
- Biophysics Institute, CSIC-UPV/EHU, Campus Universidad del País Vasco, Barrio Sarriena s/n, 48940 Leioa, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Basque Country, Spain.
| | - José A Esteban
- Department of Molecular Neurobiology, Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|
18
|
He X, Thacker S, Romigh T, Yu Q, Frazier TW, Eng C. Cytoplasm-predominant Pten associates with increased region-specific brain tyrosine hydroxylase and dopamine D2 receptors in mouse model with autistic traits. Mol Autism 2015; 6:63. [PMID: 26579216 PMCID: PMC4647625 DOI: 10.1186/s13229-015-0056-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 11/09/2015] [Indexed: 11/13/2022] Open
Abstract
Background Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders characterized by impairment in social communication/interaction and inflexible/repetitive behavior. Several lines of evidence support genetic factors as a predominant cause of ASD. Among those autism susceptibility genes that have been identified, the PTEN tumor suppressor gene, initially identified as predisposing to Cowden heritable cancer syndrome, was found to be mutated in a subset of ASD patients with extreme macrocephaly. However, the ASD-relevant molecular mechanism mediating the effect of PTEN mutations remains elusive. Methods We developed a Pten knock-in murine model to study the effects of Pten germline mutations, specifically altering subcellular localization, in ASD. Proteins were isolated from the hemispheres of the male littermates, and Western blots were performed to determine protein expression levels of tyrosine hydroxylase (TH). Immunohistochemical stains were carried out to validate the localization of TH and dopamine D2 receptors (D2R). PC12 cells ectopically expressing either wild-type or missense mutant PTEN were then compared for the differences in TH expression. Results Mice carrying Pten mutations have high TH and D2R in the striatum and prefrontal cortex. They also have increased phosphorylation of cAMP response element-binding protein (CREB) and TH. Mechanistically, PTEN downregulates TH production in PC12 cells via inhibiting the phosphoinositide 3-kinase (PI3K)/CREB signaling pathway, while PTEN reduces TH phosphorylation via suppressing MAPK pathway. Unlike wild-type PTEN but similar to the mouse knock-in mutant Pten, three naturally occurring missense mutations of PTEN that we previously identified in ASD patients, H93R, F241S, and D252G, were not able to suppress TH when overexpressed in PC12 cells. In addition, two other PTEN missense mutations, C124S (pan phosphatase dead) and G129E (lipid phosphatase dead), failed to suppress TH when ectopically expressed in PC12 cells. Conclusions Our data reveal a non-canonical PTEN-TH pathway in the brain that may work as a core regulator of dopamine signaling, which when dysfunctional is pathogenic in ASD. Electronic supplementary material The online version of this article (doi:10.1186/s13229-015-0056-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xin He
- Genomic Medicine Institute, Cleveland Clinic, 9500 Euclid Avenue, Mailstop NE-50, Cleveland, OH 44195 USA ; Lerner Research Institute, Cleveland Clinic, Cleveland, OH USA
| | - Stetson Thacker
- Genomic Medicine Institute, Cleveland Clinic, 9500 Euclid Avenue, Mailstop NE-50, Cleveland, OH 44195 USA ; Lerner Research Institute, Cleveland Clinic, Cleveland, OH USA ; HHMI Graduate Program, Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH USA
| | - Todd Romigh
- Genomic Medicine Institute, Cleveland Clinic, 9500 Euclid Avenue, Mailstop NE-50, Cleveland, OH 44195 USA ; Lerner Research Institute, Cleveland Clinic, Cleveland, OH USA
| | - Qi Yu
- Genomic Medicine Institute, Cleveland Clinic, 9500 Euclid Avenue, Mailstop NE-50, Cleveland, OH 44195 USA ; Lerner Research Institute, Cleveland Clinic, Cleveland, OH USA
| | - Thomas W Frazier
- Genomic Medicine Institute, Cleveland Clinic, 9500 Euclid Avenue, Mailstop NE-50, Cleveland, OH 44195 USA ; Lerner Research Institute, Cleveland Clinic, Cleveland, OH USA ; HHMI Graduate Program, Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH USA ; Center for Autism, Pediatrics Institute, Cleveland Clinic, Cleveland, OH USA ; Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH USA
| | - Charis Eng
- Genomic Medicine Institute, Cleveland Clinic, 9500 Euclid Avenue, Mailstop NE-50, Cleveland, OH 44195 USA ; Lerner Research Institute, Cleveland Clinic, Cleveland, OH USA ; HHMI Graduate Program, Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH USA ; Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH USA ; Stanley Shalom Zielony Institute of Nursing Excellence, Cleveland Clinic, Cleveland, OH USA ; Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH USA ; CASE Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH USA
| |
Collapse
|