1
|
Stamer WD, Chiu T, Lu DW, Wang TH, Rojanapongpun P, Ruangvaravate N, Jo YH, Moster MR, Fingeret M, Cothran NL, Steen J, Gaddie IB, Uçakhan-Gündüz Ö, Shamseldin Shalaby W, Hutnik CML. Real-world impact of latanoprostene bunod ophthalmic solution 0.024% in glaucoma therapy: a narrative review. FRONTIERS IN OPHTHALMOLOGY 2025; 5:1554777. [PMID: 40224211 PMCID: PMC11985852 DOI: 10.3389/fopht.2025.1554777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/03/2025] [Indexed: 04/15/2025]
Abstract
Latanoprostene bunod ophthalmic solution (LBN) 0.024% is a topical nitric oxide (NO)-donating prostaglandin F2α (PGF2α) analog first approved in November 2017 for reduction of intraocular pressure (IOP) in patients with ocular hypertension (OHT) or open-angle glaucoma (OAG). This narrative review describes the unique mechanism of action of LBN and summarizes available real-world data. Upon instillation, LBN is metabolized into latanoprost acid and butanediol mononitrate, which is further reduced to NO and an inactive metabolite. Latanoprost acid increases aqueous humor outflow primarily through the uveoscleral (unconventional) pathway, whereas NO increases outflow through the trabecular (conventional) pathway. Eight studies were identified: 2 studies in newly diagnosed, treatment-naïve patients with OHT or OAG, 4 studies of adjunctive therapy in patients with glaucoma receiving other IOP-lowering therapies, and 2 studies in which patients with glaucoma switched to LBN monotherapy or adjunctive therapy. Decreases in IOP after initiating LBN in newly diagnosed patients or adding/switching to LBN were generally consistent with reductions observed in clinical trials and sustained throughout the studies. Rates of discontinuation due to inadequate IOP lowering ranged from 12.2% to 17.1%. LBN was generally well tolerated in real-world studies; the most common adverse events were consistent with the known safety profile of LBN. Data from real-world studies provide important insights regarding the potential effectiveness and tolerability of LBN in the clinical setting and suggest that LBN is well tolerated and associated with significant, clinically meaningful, and durable reductions in IOP.
Collapse
Affiliation(s)
- W. Daniel Stamer
- Department of Ophthalmology, School of Medicine, Duke University, Durham, NC, United States
| | - Thomas Chiu
- The Chinese University of Hong Kong, Hong Kong Eye Hospital, Hong Kong, Hong Kong SAR, China
| | - Da-Wen Lu
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Tsing Hong Wang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Prin Rojanapongpun
- Chulalongkorn University & King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | | | - Youn Hye Jo
- Department of Ophthalmology, Seoul Konkuk University Hospital, Seoul, Republic of Korea
| | - Marlene R. Moster
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Ophthalmology, Wills Eye Hospital, Philadelphia, PA, United States
| | - Murray Fingeret
- State University of New York, College of Optometry, New York, NY, United States
| | - Nora Lee Cothran
- Department of Glaucoma, The Eye Institute of West Florida, Largo, FL, United States
| | - Jessica Steen
- Nova Southeastern University College of Optometry, Fort Lauderdale, FL, United States
| | | | | | - Wesam Shamseldin Shalaby
- Department of Ophthalmology, Wills Eye Hospital, Philadelphia, PA, United States
- Tanta Medical School, Tanta University, Tanta, Gharbia, Egypt
| | | |
Collapse
|
2
|
Jin H, Seo JH, Lee Y, Won S. Genetic risk factors associated with ocular perfusion pressure in primary open-angle glaucoma. Hum Genomics 2025; 19:31. [PMID: 40128813 PMCID: PMC11934579 DOI: 10.1186/s40246-025-00738-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 03/02/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND Primary open-angle glaucoma (POAG) is the leading cause of irreversible vision loss. However, its genetic risk factors, such as the vascular hypothesis of POAG, remain unclear. Here, we aimed to explore the genetic associations between mean ocular perfusion pressure (MOPP) and POAG. We performed genome-wide analysis with gene-based analysis from the UK Biobank (N = 459,195), which includes genetic data and ocular phenotypes. Bidirectional two-sample Mendelian randomisation (MR), multivariable MR, and mediation analysis were conducted using summary statistics from a previous meta-analysis of genome-wide association studies (N = 216,257). RESULTS CEP85L, GRIA4, GRIN2A, LRFN5, MAGI1, POU6F2, RBFOX1, RBMS1, RBMS3, RBPMS, TRHDE, TUBB3, ZFHX3, and ZMAT4 were significantly correlated with various ocular phenotypes. Furthermore, POAG shared strong genetic associations with corneal resistance factor (CRF), intraocular pressure (IOP), refractive error (RE), and MOPP but none with corneal hysteresis (CH). Univariable MR showed a negative causal effect of CH, CRF, and MOPP and a positive causal effect of IOP on POAG occurrence. In multivariable MR, MOPP exhibited a direct causal effect on POAG, which was supported by the mediation analysis results. CONCLUSIONS We successfully determined 14 genetic loci related to CH, CRF, IOP, RE, and MOPP. In univariable and multivaribale MR analyses, a causal effect of MOPP on POAG were observed. In addition, the mediation analysis supported that MOPP exerted direct and indirect causal effects on POAG. This finding indicates that MOPP may serve as a potential causal factor in POAG, providing valuable insights into the pathophysiology of POAG as vascular theory.
Collapse
Affiliation(s)
- Heejin Jin
- Institute of Health and Environment, Seoul National University, Seoul, South Korea
| | - Je Hyun Seo
- Veterans Medical Research Institute, Veterans Health Service Medical Centre, Seoul, South Korea.
| | - Young Lee
- Veterans Medical Research Institute, Veterans Health Service Medical Centre, Seoul, South Korea
| | - Sungho Won
- Institute of Health and Environment, Seoul National University, Seoul, South Korea
- Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul, South Korea
- RexSoft Corps, Seoul, South Korea
| |
Collapse
|
3
|
Özer Ö, Baysal Z, Yildirim Biçer G, Doğan L. The Effect of Latanoprostene Bunod 0.024% on Optical Coherence Tomography Angiography in Newly Diagnosed Open Angle Glaucoma. J Glaucoma 2025; 34:224-231. [PMID: 39591372 DOI: 10.1097/ijg.0000000000002520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 11/17/2024] [Indexed: 11/28/2024]
Abstract
PRCIS Treatment with LBN ophthalmic solution 0.024% reduced IOP by an average of 29.9% and 31.8% in patients with POAG and PXG, respectively, and improved VD in different quadrants in all slabs. Therefore, the importance of LBN in the treatment of glaucoma is likely to be that it increases macular microcirculation, possibly through NO, independent of its IOP-reducing effect. PURPOSE The aim of this study was to investigate the effect of topical latanoprostene bunod 0.024% applied once daily on intraocular pressure and macular vessel density in newly diagnosed primary and pseudoexfoliative open angle glaucoma patients. METHODS A total of 66 patients with newly diagnosed open angle glaucoma were included in this study (group 1). Thirty-four patients had primary (POAG, group 1A) and 32 patients had secondary (pseudoexfoliative glaucoma, PXG, group 1B) open angle glaucoma. Thirty-two healthy participants (group 2) were included in this single-center, prospective study. RESULTS In group 1, the mean IOP decrease in first month of treatment with LBN was 7.7 mm Hg and IOP change was -30.8%. In the superficial slab, the vessel density (VD) in the superior and nasal quadrants was lower in group 1B compared with group 1A in the first month of treatment ( P =0.038, 0.019, respectively). In the choriocapillaris slab, the VD in the superior quadrant at baseline (before treatment) was statistically lower in both groups compared with the VD in the superior quadrant in the first month of treatment ( P <0.001, for both). CONCLUSION In conclusion, treatment with LBN ophthalmic solution 0.024% reduced IOP by an average of 29.9% and 31.8% in patients with POAG and PXG, respectively, and improved VD in different quadrants in all slabs. Therefore, the importance of LBN in the treatment of glaucoma is likely to be that it increases macular microcirculation, possibly through NO, independent of its IOP-reducing effect.
Collapse
Affiliation(s)
- Ömer Özer
- Department of Ophthalmology, Niğde Ömer Halisdemir University, Niğde, Turkey
| | | | | | | |
Collapse
|
4
|
Sgambellone S, Khanfar MA, Marri S, Villano S, Nardini P, Frank A, Reiner-Link D, Stark H, Lucarini L. Histamine H 3 receptor antagonist/nitric oxide donors as novel promising therapeutic hybrid-tools for glaucoma and retinal neuroprotection. Biomed Pharmacother 2024; 180:117454. [PMID: 39321511 DOI: 10.1016/j.biopha.2024.117454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/11/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024] Open
Abstract
Glaucoma is a degenerative optic neuropathy in which the degeneration of optic nerve and blindness occur. The main cause is a malfunction of ciliary processes (protrusions of the ciliary bodies) resulting in increased intraocular pressure (IOP). Ocular hypertension (OHT) causes ischemic events leading to retinal ganglion cell (RGC) depletion and blindness. Histaminergic and nitrergic systems are involved in the regulation of IOP. Therefore, we developed novel hybrid compounds that target histamine H3 receptor (H3R) with nitric oxide (NO) releasing features (ST-1989 and ST-2130). After H3R binding was proven in vitro, we investigated their effects in two OHT models in New Zealand White rabbits. Compound ST-1989 showed the highest NO elevation, together with antioxidative and anti-inflammatory features partly superior to the co-administered H3R antagonist (ciproxifan) and NO donor (molsidomine). This hybrid compound demonstrated IOP reduction in both OHT models induced by intravitreal injection of hypertonic saline and carbomer into the anterior chamber of the eye, respectively. Ocular perfusion and photoreceptor neuroprotection were evaluated in a model of ischemia/reperfusion (I/R) of the ophthalmic artery induced by repeated sub-tenon injections of endothelin-1 (ET-1), twice a week for six weeks. Compound ST-1989 counteracts retinal degeneration reducing ophthalmic artery resistance index and increasing photoreceptor responses, thus rescuing RGCs. Our results indicate that compound ST-1989 is a promising molecule with long-lasting hypotensive effects and good effectiveness in reducing inflammation, oxidative stress, and RGCs apoptosis. In conclusion, these hybrid compounds could be a novel strategy to combat glaucomatous blindness and RGC depletion for ocular diseases involving retinal damage.
Collapse
Affiliation(s)
- Silvia Sgambellone
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Mohammad A Khanfar
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; College of Pharmacy, Alfaisal University, Al Takhassusi Rd, Riyadh 11533, Saudi Arabia
| | - Silvia Marri
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Serafina Villano
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Patrizia Nardini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Annika Frank
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - David Reiner-Link
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Department of Drug Design & Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Laura Lucarini
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy.
| |
Collapse
|
5
|
Patton GN, Lee HJ. Chemical Insights into Topical Agents in Intraocular Pressure Management: From Glaucoma Etiopathology to Therapeutic Approaches. Pharmaceutics 2024; 16:274. [PMID: 38399328 PMCID: PMC10891530 DOI: 10.3390/pharmaceutics16020274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Glaucoma encompasses a group of optic neuropathies characterized by complex and often elusive etiopathology, involvihttng neurodegeneration of the optic nerve in conjunction with abnormal intraocular pressure (IOP). Currently, there is no cure for glaucoma, and treatment strategies primarily aim to halt disease progression by managing IOP. This review delves into the etiopathology, diagnostic methods, and treatment approaches for glaucoma, with a special focus on IOP management. We discuss a range of active pharmaceutical ingredients used in glaucoma therapy, emphasizing their chemical structure, pharmacological action, therapeutic effectiveness, and safety/tolerability profiles. Notably, most of these therapeutic agents are administered as topical formulations, a critical aspect considering patient compliance and drug delivery efficiency. The classes of glaucoma therapeutics covered in this review include prostaglandin analogs, beta blockers, alpha agonists, carbonic anhydrase inhibitors, Rho kinase inhibitors, and miotic (cholinergic) agents. This comprehensive overview highlights the importance of topical administration in glaucoma treatment, offering insights into the current state and future directions of pharmacological management in glaucoma.
Collapse
Affiliation(s)
| | - Hyuck Jin Lee
- Department of Chemistry Education, Kongju National University, Gongju 32588, Chungcheongnam-do, Republic of Korea;
| |
Collapse
|
6
|
Wu CM. New Glaucoma Medications. Int Ophthalmol Clin 2023; 63:13-21. [PMID: 37755441 DOI: 10.1097/iio.0000000000000482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
|
7
|
Wang X, Wang M, Liu H, Mercieca K, Prinz J, Feng Y, Prokosch V. The Association between Vascular Abnormalities and Glaucoma-What Comes First? Int J Mol Sci 2023; 24:13211. [PMID: 37686017 PMCID: PMC10487550 DOI: 10.3390/ijms241713211] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide. While intraocular pressure (IOP) presents a major risk factor, the underlying pathophysiology still remains largely unclear. The correlation between vascular abnormalities and glaucoma has been deliberated for decades. Evidence for a role played by vascular factors in the pathogenesis of glaucomatous neurodegeneration has already been postulated. In addition, the fact that glaucoma causes both structural and functional changes to retinal blood vessels has been described. This review aims to investigate the published evidence concerning the relationship between vascular abnormalities and glaucoma, and to provide an overview of the "chicken or egg" dilemma in glaucoma. In this study, several biomarkers of glaucoma progression from a vascular perspective, including endothelin-1 (ET-1), nitric oxide, vascular endothelial growth factor (VEGF), and matrix metalloproteinases (MMPs), were identified and subsequently assessed for their potential as pharmacological intervention targets.
Collapse
Affiliation(s)
- Xiaosha Wang
- Department of Ophthalmology, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; (X.W.); (M.W.); (H.L.); (J.P.); (Y.F.)
| | - Maoren Wang
- Department of Ophthalmology, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; (X.W.); (M.W.); (H.L.); (J.P.); (Y.F.)
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Hanhan Liu
- Department of Ophthalmology, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; (X.W.); (M.W.); (H.L.); (J.P.); (Y.F.)
| | - Karl Mercieca
- Glaucoma Section, University Hospital Eye Clinic, 53127 Bonn, Germany;
- Faculty of Biology, Medicine and Health, School of Health Sciences, University of Manchester, Manchester M13 9WH, UK
| | - Julia Prinz
- Department of Ophthalmology, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; (X.W.); (M.W.); (H.L.); (J.P.); (Y.F.)
- Department of Ophthalmology, RWTH Aachen University, 52074 Aachen, Germany
| | - Yuan Feng
- Department of Ophthalmology, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; (X.W.); (M.W.); (H.L.); (J.P.); (Y.F.)
| | - Verena Prokosch
- Department of Ophthalmology, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; (X.W.); (M.W.); (H.L.); (J.P.); (Y.F.)
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| |
Collapse
|
8
|
Akter T, Bulbul MRH, Sama-ae I, Azadi MA, Nira KN, Al-Araby SQ, Deen JI, Rafi MKJ, Saha S, Ezaj MMA, Rahman MA. Sour Tamarind Is More Antihypertensive than the Sweeter One, as Evidenced by In Vivo Biochemical Indexes, Ligand-Protein Interactions, Multitarget Interactions, and Molecular Dynamic Simulation. Nutrients 2023; 15:3402. [PMID: 37571339 PMCID: PMC10420995 DOI: 10.3390/nu15153402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 08/13/2023] Open
Abstract
This research investigated the antihypertensive effects of tamarind products and compared their potentials based on an animal model's data verified by molecular docking, multitarget interactions, and dynamic simulation assays. GC-MS-characterized tamarind products were administered to cholesterol-induced hypertensive albino rat models. The two-week-intervened animals were dissected to collect their serum and organs and respectively subjected to analyses of their hypertension-linked markers and tissue architectures. The lead biometabolites of tamarinds interacted with eight target receptors in the molecular docking and dynamic simulation studies and with multitarget in the network pharmacological analyses. The results show that the serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), C-reactive protein (CRP), troponin I, and lipid profiles were maximally reinstated by the phenolic-enriched ripened sour tamarind extract compared to the sweet one, but the seed extracts had a smaller influence. Among the tamarind's biometabolites, ϒ-sitosterol was found to be the best ligand to interact with the guanylate cyclase receptor, displaying the best drug-likeliness with the highest binding energy, -9.3 Kcal. A multitargeted interaction-based degree algorithm and a phylogenetic tree of pathways showed that the NR3C1, REN, PPARG, and CYP11B1 hub genes were consistently modulated by ϒ-sitosterol to reduce hypertension and related risk factors. The dynamic simulation study showed that the P-RMSD values of ϒ-sitosterol-guanylate cyclase were stable between 75.00 and 100.00 ns at the binding pocket. The findings demonstrate that ripened sour tamarind extract may be a prospective antihypertensive nutraceutical or supplement target affirmed through advanced preclinical and clinical studies.
Collapse
Affiliation(s)
- Taslima Akter
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh; (T.A.); (K.N.N.); (S.Q.A.-A.); (J.I.D.); (M.K.J.R.); (S.S.)
| | | | - Imran Sama-ae
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand;
| | - M. A. Azadi
- Department of Zoology, University of Chittagong, Chittagong 4331, Bangladesh;
| | - Kamrun Nahar Nira
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh; (T.A.); (K.N.N.); (S.Q.A.-A.); (J.I.D.); (M.K.J.R.); (S.S.)
| | - Salahuddin Quader Al-Araby
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh; (T.A.); (K.N.N.); (S.Q.A.-A.); (J.I.D.); (M.K.J.R.); (S.S.)
| | - Jobaier Ibne Deen
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh; (T.A.); (K.N.N.); (S.Q.A.-A.); (J.I.D.); (M.K.J.R.); (S.S.)
| | - Md. Khalid Juhani Rafi
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh; (T.A.); (K.N.N.); (S.Q.A.-A.); (J.I.D.); (M.K.J.R.); (S.S.)
| | - Srabonti Saha
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh; (T.A.); (K.N.N.); (S.Q.A.-A.); (J.I.D.); (M.K.J.R.); (S.S.)
| | - Md. Muzahid Ahmed Ezaj
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chittagong 4331, Bangladesh;
| | - Md. Atiar Rahman
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh; (T.A.); (K.N.N.); (S.Q.A.-A.); (J.I.D.); (M.K.J.R.); (S.S.)
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand;
| |
Collapse
|
9
|
Guey S, Hervé D, Kossorotoff M, Ha G, Aloui C, Bergametti F, Arnould M, Guenou H, Hadjadj J, Dubois Teklali F, Riant F, Balligand JL, Uzan G, Villoutreix BO, Tournier-Lasserve E. Biallelic variants in NOS3 and GUCY1A3, the two major genes of the nitric oxide pathway, cause moyamoya cerebral angiopathy. Hum Genomics 2023; 17:24. [PMID: 36941667 PMCID: PMC10026487 DOI: 10.1186/s40246-023-00471-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/09/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Moyamoya angiopathy (MMA) is a rare cerebrovascular condition leading to stroke. Mutations in 15 genes have been identified in Mendelian forms of MMA, but they explain only a very small proportion of cases. Our aim was to investigate the genetic basis of MMA in consanguineous patients having unaffected parents in order to identify genes involved in autosomal recessive MMA. METHODS Exome sequencing (ES) was performed in 6 consecutive consanguineous probands having MMA of unknown etiology. Functional consequences of variants were assessed using western blot and protein 3D structure analyses. RESULTS Causative homozygous variants of NOS3, the gene encoding the endothelial nitric oxide synthase (eNOS), and GUCY1A3, the gene encoding the alpha1 subunit of the soluble guanylate cyclase (sGC) which is the major nitric oxide (NO) receptor in the vascular wall, were identified in 3 of the 6 probands. One NOS3 variant (c.1502 + 1G > C) involves a splice donor site causing a premature termination codon and leads to a total lack of eNOS in endothelial progenitor cells of the affected proband. The other NOS3 variant (c.1942 T > C) is a missense variant located into the flavodoxine reductase domain; it is predicted to be destabilizing and shown to be associated with a reduction of eNOS expression. The GUCY1A3 missense variant (c.1778G > A), located in the catalytic domain of the sGC, is predicted to disrupt the tridimensional structure of this domain and to lead to a loss of function of the enzyme. Both NOS3 mutated probands suffered from an infant-onset and severe MMA associated with posterior cerebral artery steno-occlusive lesions. The GUCY1A3 mutated proband presented an adult-onset MMA associated with an early-onset arterial hypertension and a stenosis of the superior mesenteric artery. None of the 3 probands had achalasia. CONCLUSIONS We show for the first time that biallelic loss of function variants in NOS3 is responsible for MMA and that mutations in NOS3 and GUCY1A3 are causing fifty per cent of MMA in consanguineous patients. These data pinpoint the essential role of the NO pathway in MMA pathophysiology.
Collapse
Affiliation(s)
- Stéphanie Guey
- Inserm UMR-S1141, Université Paris Cité, Paris, France.
- Service de Neurologie, Centre de Référence des Maladies Vasculaires Rares du Cerveau et de L'Oeil, Hôpital Lariboisière, AP-HP, 75010, Paris, France.
| | - Dominique Hervé
- Inserm UMR-S1141, Université Paris Cité, Paris, France
- Service de Neurologie, Centre de Référence des Maladies Vasculaires Rares du Cerveau et de L'Oeil, Hôpital Lariboisière, AP-HP, 75010, Paris, France
| | - Manoëlle Kossorotoff
- Department of Pediatric Neurology, French Center for Pediatric Stroke, AP-HP, University Hospital Necker-Enfants Malades, Paris, France
- Inserm U1266, Paris, France
| | - Guillaume Ha
- INSERM, UMR-S-MD 1197, Hôpital Paul Brousse, Université d'Evry-Val-d'Essonne, Université Paris-Saclay, 94800, Villejuif, France
| | - Chaker Aloui
- Inserm UMR-S1141, Université Paris Cité, Paris, France
| | | | - Minh Arnould
- Inserm UMR-S1141, Université Paris Cité, Paris, France
| | - Hind Guenou
- INSERM, UMR-S-MD 1197, Hôpital Paul Brousse, Université d'Evry-Val-d'Essonne, Université Paris-Saclay, 94800, Villejuif, France
| | - Jessica Hadjadj
- Service de Génétique Moléculaire Neurovasculaire, Hôpitaux Lariboisière-Saint-Louis, AP-HP, 75010, Paris, France
| | | | - Florence Riant
- Inserm UMR-S1141, Université Paris Cité, Paris, France
- Service de Génétique Moléculaire Neurovasculaire, Hôpitaux Lariboisière-Saint-Louis, AP-HP, 75010, Paris, France
| | - Jean-Luc Balligand
- Pole of Pharmacology and Therapeutics (FATH), Institute of Experimental and Clinical Research (IREC), Cliniques Universitaires Saint-Luc, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Georges Uzan
- INSERM, UMR-S-MD 1197, Hôpital Paul Brousse, Université d'Evry-Val-d'Essonne, Université Paris-Saclay, 94800, Villejuif, France
| | | | - Elisabeth Tournier-Lasserve
- Inserm UMR-S1141, Université Paris Cité, Paris, France
- Service de Génétique Moléculaire Neurovasculaire, Hôpitaux Lariboisière-Saint-Louis, AP-HP, 75010, Paris, France
| |
Collapse
|
10
|
Animal Model Contributions to Primary Congenital Glaucoma. J Ophthalmol 2022; 2022:6955461. [PMID: 35663518 PMCID: PMC9162845 DOI: 10.1155/2022/6955461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
Abstract
Primary congenital glaucoma (PCG) is an ocular disease characterized by congenital anterior segmental maldevelopment with progressive optic nerve degeneration. Certain genes, such as cytochrome P450 family 1 subfamily B member 1 and latent TGF-β-binding protein 2, are involved in the pathogenesis of PCG, but the exact pathogenic mechanism has not yet been fully elucidated. There is an urgent need to determine the etiology and pathophysiology of PCG and develop new therapeutic methods to stop disease progression. Animal models can simulate PCG and are essential to study the pathogenesis and treatment of PCG. Various animal species have been used in the study of PCG, including rabbits, rats, mice, cats, zebrafish, and quails. These models are formed spontaneously or by combining with genetic engineering technology. The focus of the present study is to review the characteristics and potential applications of animal models in PCG and provide new approaches to understand the mechanism and develop new treatment strategies for patients with PCG.
Collapse
|
11
|
Holden JM, Al Hussein Al Awamlh S, Croteau LP, Boal AM, Rex TS, Risner ML, Calkins DJ, Wareham LK. Dysfunctional cGMP Signaling Leads to Age-Related Retinal Vascular Alterations and Astrocyte Remodeling in Mice. Int J Mol Sci 2022; 23:3066. [PMID: 35328488 PMCID: PMC8954518 DOI: 10.3390/ijms23063066] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 12/17/2022] Open
Abstract
The nitric oxide-guanylyl cyclase-1-cyclic guanylate monophosphate (NO-GC-1-cGMP) pathway is integral to the control of vascular tone and morphology. Mice lacking the alpha catalytic domain of guanylate cyclase (GC1-/-) develop retinal ganglion cell (RGC) degeneration with age, with only modest fluctuations in intraocular pressure (IOP). Increasing the bioavailability of cGMP in GC1-/- mice prevents neurodegeneration independently of IOP, suggesting alternative mechanisms of retinal neurodegeneration. In continuation to these studies, we explored the hypothesis that dysfunctional cGMP signaling leads to changes in the neurovascular unit that may contribute to RGC degeneration. We assessed retinal vasculature and astrocyte morphology in young and aged GC1-/- and wild type mice. GC1-/- mice exhibit increased peripheral retinal vessel dilation and shorter retinal vessel branching with increasing age compared to Wt mice. Astrocyte cell morphology is aberrant, and glial fibrillary acidic protein (GFAP) density is increased in young and aged GC1-/- mice, with areas of dense astrocyte matting around blood vessels. Our results suggest that proper cGMP signaling is essential to retinal vessel morphology with increasing age. Vascular changed are preceded by alterations in astrocyte morphology which may together contribute to retinal neurodegeneration and loss of visual acuity observed in GC1-/- mice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lauren K. Wareham
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.M.H.); (S.A.H.A.A.); (L.-P.C.); (A.M.B.); (T.S.R.); (M.L.R.); (D.J.C.)
| |
Collapse
|
12
|
Han B, Song M, Li L, Sun X, Lei Y. The Application of Nitric Oxide for Ocular Hypertension Treatment. Molecules 2021; 26:molecules26237306. [PMID: 34885889 PMCID: PMC8659272 DOI: 10.3390/molecules26237306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/18/2021] [Accepted: 11/25/2021] [Indexed: 12/21/2022] Open
Abstract
Despite of various therapeutic methods for treating ocular hypertension and glaucoma, it still remains the leading cause of irreversible blindness. Intraocular pressure (IOP) lowering is the most effective way to slow disease progression and prevent blindness. Among the ocular hypotensive drugs currently in use, only a couple act on the conventional outflow system, which is the main pathway for aqueous humor outflow and the major lesion site resulting in ocular hypertension. Nitric oxide (NO) is a commendable new class of glaucoma drugs that acts on the conventional outflow pathway. An increasing number of nitric oxide donors have been developed for glaucoma and ocular hypertension treatment. Here, we will review how NO lowers IOP and the types of nitric oxide donors that have been developed. And a brief analysis of the advantages and challenges associated with the application will be made. The literature used in this review is based on Pubmed database search using ‘nitric oxide’ and ‘glaucoma’ as key words.
Collapse
|
13
|
Souzeau E, Weisschuh N, Craig JE, Pasutto F, Koch KW. An Assessment of GUCA1C Variants in Primary Congenital Glaucoma. Genes (Basel) 2021; 12:genes12030359. [PMID: 33801495 PMCID: PMC7998521 DOI: 10.3390/genes12030359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 11/16/2022] Open
Affiliation(s)
- Emmanuelle Souzeau
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Bedford Park, SA 5042, Australia;
- Correspondence: ; Tel.: +61-8-8204-5064
| | - Nicole Weisschuh
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, 72076 Tübingen, Germany;
| | - Jamie E. Craig
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Bedford Park, SA 5042, Australia;
| | - Francesca Pasutto
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Karl-Wilhelm Koch
- Department of Neuroscience, Division of Biochemistry, University of Oldenburg, 26129 Oldenburg, Germany;
- Research Center for Neurosensory Sciences, University of Oldenburg, 26129 Oldenburg, Germany
| |
Collapse
|
14
|
Bastia E, Toris C, Bukowski JM, Brambilla S, Galli C, Almirante N, Bergamini MVW, Lucarini L, Navratil T, Impagnatiello F. NCX 1741, a Novel Nitric Oxide-Donating Phosphodiesterase-5 Inhibitor, Exerts Rapid and Long-Lasting Intraocular Pressure-Lowering in Cynomolgus Monkeys. J Ocul Pharmacol Ther 2021; 37:215-222. [PMID: 33595367 DOI: 10.1089/jop.2020.0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Purpose: We studied the IOP-lowering effects of NCX 1741, a novel nitric oxide (NO)-donating derivative of the phosphodiesterase type-5 inhibitor, avanafil, in Cynomolgus monkey with laser-induced ocular hypertension (OHT-monkeys). NCX 1193 (NO-donating moiety), NCX 1744 (NCX 1741 without ester nitrate moiety), and travoprost (PGF2α analogue) were used for comparison. Ocular exposure after NCX 1741 dosing also was addressed. Methods: Vehicle (phosphate buffer pH 6.0, Kolliphor® 5%, DMSO 0.3%, benzalkonium chloride 0.02%), NCX 1741, NCX 1193, NCX 1744, or travoprost were instilled (30 μL; single dose) masked and conscious IOPs were measured by pneumatonometry. LC-MS/MS-based methods were employed to monitor ocular exposure of NCX 1741 and main metabolites after ocular dosing in New Zealand White rabbits. Results: NCX 1741 (2.2%, 0.8 μmol/eye) lowered IOP with an Emax (ΔΔIOP, IOP change vs. pre-dose and vehicle) between 5 and 8 h post-dosing (ΔΔIOP5h, -5.3 ± 2.0 mmHg and ΔΔIOP8h, -6.0 ± 2.1 mmHg). Conversely, equimolar (0.47%, 0.8 μmol/eye) NCX 1193 IOP-lowering effects were maximal 3 h post-dosing (ΔΔIOP3h, -4.7 ± 1.6 mmHg) and declined thereafter (ΔΔIOP5h, -1.6 ± 1.1 mmHg). In a follow-up study, NCX 1741 (1.5%, 0.5 μmol/eye) was more effective than NCX 1744 despite a similar duration. Further, NCX 1741 was as effective as travoprost (0.1%, 0.06 μmol/eye) at 5 and 8 h post-dosing (travoprost, ΔΔIOP5h, -3.4 ± 2.2 mmHg and ΔΔIOP8h, -4.9 ± 1.3 mmHg) but had shorter duration (NCX 1741, ΔΔIOP24h, -1.5 ± 1.1 mmHg; travoprost, ΔΔIOP24h, -7.1 ± 2.8 mmHg). NCX 1741 resulted in significant aqueous humor exposure, as determined by the levels of the main metabolite, avanafil. Conclusions: NCX 1741 rapidly and effectively lowers IOP in OHT-monkeys for several hours post-dosing. How these effects translate in humans is still to be defined.
Collapse
Affiliation(s)
| | - Carol Toris
- University of Nebraska Medical Center, Omaha, Nebraska, USA
| | | | | | | | | | - Michael V W Bergamini
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Laura Lucarini
- Section of Pharmacology, Department of NEUROFARBA, University of Florence, Florence, Italy
| | | | | |
Collapse
|
15
|
Chong RS, Busoy JMF, Tan B, Yeo SW, Lee YS, Barathi AV, Crowston JG, Schmetterer L. A Minimally Invasive Experimental Model of Acute Ocular Hypertension with Acute Angle Closure Characteristics. Transl Vis Sci Technol 2020; 9:24. [PMID: 32832230 PMCID: PMC7414621 DOI: 10.1167/tvst.9.7.24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 05/04/2020] [Indexed: 12/21/2022] Open
Abstract
Purpose To describe a minimally invasive experimental model of acute ocular hypertension (OHT) with characteristics of acute angle closure (AAC). Methods Adult C57/Bl6 mice (n = 31) were subjected to OHT in one eye using a modified circumlimbal suture technique that elevated intraocular pressure (IOP) for 30 minutes. Contralateral un-operated eyes served as controls. IOP, anterior segment optical coherence tomography, and fundus fluorescein angiography (FFA) were performed. The positive scotopic threshold response (pSTR) and a-wave and b-wave amplitudes were also evaluated. Retinal tissues were immunostained for the retinal ganglion cell (RGC) marker RBPMS and the glial marker GFAP. Results OHT eyes developed shallower anterior chambers and dilated pupils. FFA showed focal leakage in 32.2% of OHT eyes, but in none of the control eyes. pSTR was significantly reduced at week 1 in OHT eyes compared to control eyes (57.3 ± 7.2 µV vs. 106.9 ± 24.8 µV; P < 0.05), but a- and b-waves were unaffected. GFAP was upregulated in OHT eyes but not in control eyes or eyes that had been sutured without OHT. RGC density was reduced in OHT eyes after 4 weeks (3857 ± 143.8) vs. control eyes (4469 ± 176.0) (P < 0.05). Conclusions Our minimally invasive model resulted in acute OHT with characteristics of AAC in the absence of non-OHT-related neuroinflammatory changes arising from ocular injury alone. Translational Relevance This model provides a valuable approach to studying specific characteristics of a severe blinding disease in an experimental setting. Focal areas of ischemia were demonstrated, consistent with clinical studies of acute angle closure patients elsewhere, which may indicate the need for further research into how this could affect visual outcome in these patients.
Collapse
Affiliation(s)
- Rachel S Chong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore.,Glaucoma Department, Singapore National Eye Centre, Singapore, Singapore.,Agency for Science, Technology and Research, Singapore, Singapore.,Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Joanna M F Busoy
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Bingyao Tan
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Sia Wey Yeo
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Ying Shi Lee
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Amutha V Barathi
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore.,Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jonathan G Crowston
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore.,Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
| | - Leopold Schmetterer
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore.,Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore.,School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore.,Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria.,SERI-NTU Advanced Ocular Engineering (STANCE), Singapore, Singapore
| |
Collapse
|
16
|
Holappa M, Vapaatalo H, Vaajanen A. Local ocular renin-angiotensin-aldosterone system: any connection with intraocular pressure? A comprehensive review. Ann Med 2020; 52:191-206. [PMID: 32308046 PMCID: PMC7877937 DOI: 10.1080/07853890.2020.1758341] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/15/2020] [Indexed: 12/28/2022] Open
Abstract
The renin-angiotensin system (RAS) is one of the oldest and most extensively studied human peptide cascades, well-known for its role in regulating blood pressure. When aldosterone is included, RAAS is involved also in fluid and electrolyte homeostasis. There are two main axes of RAAS: (1) Angiotensin (1-7), angiotensin converting enzyme 2 and Mas receptor (ACE2-Ang(1-7)-MasR), (2) Angiotensin II, angiotensin converting enzyme 1 and angiotensin II type 1 receptor (ACE1-AngII-AT1R). In its entirety, RAAS comprises dozens of angiotensin peptides, peptidases and seven receptors. The first mentioned axis is known to counterbalance the deleterious effects of the latter axis. In addition to the systemic RAAS, tissue-specific regulatory systems have been described in various organs, evidence that RAAS is both an endocrine and an autocrine system. These local regulatory systems, such as the one present in the vascular endothelium, are responsible for long-term regional changes. A local RAAS and its components have been detected in many structures of the human eye. This review focuses on the local ocular RAAS in the anterior part of the eye, its possible role in aqueous humour dynamics and intraocular pressure as well as RAAS as a potential target for anti-glaucomatous drugs.KEY MESSAGESComponents of renin-angiotensin-aldosterone system have been detected in different structures of the human eye, introducing the concept of a local intraocular renin-angiotensin-aldosterone system (RAAS).Evidence is accumulating that the local ocular RAAS is involved in aqueous humour dynamics, regulation of intraocular pressure, neuroprotection and ocular pathology making components of RAAS attractive candidates when developing new effective ways to treat glaucoma.
Collapse
Affiliation(s)
- Mervi Holappa
- Medical Faculty, Department of Pharmacology, University of Helsinki, Helsinki, Finland
| | - Heikki Vapaatalo
- Medical Faculty, Department of Pharmacology, University of Helsinki, Helsinki, Finland
| | - Anu Vaajanen
- Department of Ophthalmology, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
17
|
Role of GUCA1C in Primary Congenital Glaucoma and in the Retina: Functional Evaluation in Zebrafish. Genes (Basel) 2020; 11:genes11050550. [PMID: 32422965 PMCID: PMC7288452 DOI: 10.3390/genes11050550] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/06/2020] [Accepted: 05/12/2020] [Indexed: 12/29/2022] Open
Abstract
Primary congenital glaucoma (PCG) is a heterogeneous, inherited, and severe optical neuropathy caused by apoptotic degeneration of the retinal ganglion cell layer. Whole-exome sequencing analysis of one PCG family identified two affected siblings who carried a low-frequency homozygous nonsense GUCA1C variant (c.52G > T/p.Glu18Ter/rs143174402). This gene encodes GCAP3, a member of the guanylate cyclase activating protein family, involved in phototransduction and with a potential role in intraocular pressure regulation. Segregation analysis supported the notion that the variant was coinherited with the disease in an autosomal recessive fashion. GCAP3 was detected immunohistochemically in the adult human ocular ciliary epithelium and retina. To evaluate the ocular effect of GUCA1C loss-of-function, a guca1c knockout zebrafish line was generated by CRISPR/Cas9 genome editing. Immunohistochemistry demonstrated the presence of GCAP3 in the non-pigmented ciliary epithelium and retina of adult wild-type fishes. Knockout animals presented up-regulation of the glial fibrillary acidic protein in Müller cells and evidence of retinal ganglion cell apoptosis, indicating the existence of gliosis and glaucoma-like retinal damage. In summary, our data provide evidence for the role of GUCA1C as a candidate gene in PCG and offer new insights into the function of this gene in the ocular anterior segment and the retina.
Collapse
|
18
|
Mehran NA, Sinha S, Razeghinejad R. New glaucoma medications: latanoprostene bunod, netarsudil, and fixed combination netarsudil-latanoprost. Eye (Lond) 2020; 34:72-88. [PMID: 31695162 PMCID: PMC7002400 DOI: 10.1038/s41433-019-0671-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/08/2019] [Accepted: 10/14/2019] [Indexed: 12/19/2022] Open
Abstract
Reduction of intraocular pressure is the only proven method to treat glaucoma. Initial treatment of glaucoma commonly involves using anti-glaucoma medications either as monotherapy or combination therapy. Studies on aqueous humour dynamics have contributed to our understanding of aqueous outflow mechanisms that have led to the discovery of new drugs. Three new drugs (latanoprostene bunod 0.24%, netarsudil 0.02%, and fixed combination netarsudil 0.02% -latanoprost 0.005%) have been introduced recently in the market with novel mechanisms of action. Latanoprostene bunod 0.024% is a nitric oxide-donating prostaglandin F2α analogue which increases the aqueous outflow both by uveoscleral and trabecular pathways. Netarsudil 0.02% is a potent Rho kinase/norepinephrine transporter inhibitor acting by increasing the trabecular outflow, decreasing the aqueous production, and possibly decreasing the episcleral venous pressure. This review highlights the role of these drugs in the management of glaucoma, with an overview of the major clinical trials on their efficacy, safety, and tolerability.
Collapse
Affiliation(s)
- Nikki A Mehran
- Glaucoma Service, Wills Eye Hospital, Philadelphia, PA, United States
| | - Sapna Sinha
- Glaucoma Service, Wills Eye Hospital, Philadelphia, PA, United States
| | - Reza Razeghinejad
- Glaucoma Service, Wills Eye Hospital, Philadelphia, PA, United States.
| |
Collapse
|
19
|
Clinical Role of Epigenetics and Network Analysis in Eye Diseases: A Translational Science Review. J Ophthalmol 2019; 2019:2424956. [PMID: 31976085 PMCID: PMC6959156 DOI: 10.1155/2019/2424956] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/18/2019] [Accepted: 12/09/2019] [Indexed: 12/22/2022] Open
Abstract
Network medicine is a molecular-bioinformatic approach analyzing gene-gene interactions that can perturb the human interactome. This review focuses on epigenetic changes involved in several ocular diseases, such as DNA methylation, histone and nonhistone post-translational modifications, and noncoding RNA regulators. Although changes in aberrant DNA methylation play a major role in the pathogenesis of most ocular diseases, histone modifications are seldom investigated. Hypermethylation in TGM-2 and hypomethylation in MMP-2/CD24 promoter genes may play a crucial role in pterygium development; hypermethylation in regulatory regions of GSTP1 and OGG1 genes appear to be diagnostic biomarkers of cataract; hypomethylation of TGF-β1 promoter may trigger glaucoma onset; hypermethylation of the LOXL1 gene might be associated with pseudoexfoliation syndrome. A large panel of upregulated micro-RNAs (miRNAs), including hsa-hsa-miR-494, hsa-let-7e, hsa-miR-513-1, hsa-miR-513-2, hsa-miR-518c, hsa-miR-129-1, hsa-miR-129-2, hsa-miR-198, hsa-miR-492, hsa-miR-498, hsa-miR-320, hsa-miR-503, and hsa-miR-373, ∗ may have a putative role in the development of retinoblastoma. Hypermethylation of H3K4 and hypomethylation of H3K27 at the TGFBIp locus are putative pathogenic mechanisms involved in corneal dystrophies. Determining how, where, and when specific epigenetic changes trigger ocular diseases may provide useful clinical biomarkers for their prevention, diagnosis, and management, as well as innovative drug targets. PF-04523655, a 19-nucleotide methylated double-stranded siRNA targeting the RTP80 gene, showed a dose-related improvement in best-corrected visual acuity (BCVA) in patients affected by diabetic macular edema. The observed results support a clinical network-based research program aimed to clarify the role of epigenetic regulators in the development of ocular diseases and personalized therapy.
Collapse
|
20
|
The Intraocular Pressure-Lowering Effect of Persimmon leaves ( Diospyros kaki) in a Mouse Model of Glaucoma. Int J Mol Sci 2019; 20:ijms20215268. [PMID: 31652855 PMCID: PMC6862624 DOI: 10.3390/ijms20215268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/03/2019] [Accepted: 10/22/2019] [Indexed: 11/25/2022] Open
Abstract
The aim of this study was to evaluate the pharmacological efficacy of persimmon leaves in two glaucoma models, microbeads-induced ocular hypertension (OHT) and DBA/2 mouse. Thus, we demonstrated that Ethanol Extract of Diospyros kaki (EEDK) reduced elevated intraocular pressure (IOP) in both mouse models of glaucoma by measurements with a tonometer. In particular, we revealed that retinal ganglion cell loss and optic nerve damage caused by IOP elevation were markedly diminished as assessed by TUNEL assay, H&E staining, and fluorescent staining, while the expression of soluble guanylate cyclase (sGCα-1) increased, when EEDK was administered, as revealed by western blot. Moreover, the b-wave magnitude indicating functional scotopic vision was significantly improved in EEDK-administered DBA/2 mice during the 10-week follow-up study, as observed with electroretinography. Collectively, our results suggested that EEDK could be an effective therapeutic and IOP-lowering agent for preventing and treating retinal degenerative diseases such as glaucoma.
Collapse
|
21
|
Faiq MA, Wollstein G, Schuman JS, Chan KC. Cholinergic nervous system and glaucoma: From basic science to clinical applications. Prog Retin Eye Res 2019; 72:100767. [PMID: 31242454 PMCID: PMC6739176 DOI: 10.1016/j.preteyeres.2019.06.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 02/08/2023]
Abstract
The cholinergic system has a crucial role to play in visual function. Although cholinergic drugs have been a focus of attention as glaucoma medications for reducing eye pressure, little is known about the potential modality for neuronal survival and/or enhancement in visual impairments. Citicoline, a naturally occurring compound and FDA approved dietary supplement, is a nootropic agent that is recently demonstrated to be effective in ameliorating ischemic stroke, traumatic brain injury, Parkinson's disease, Alzheimer's disease, cerebrovascular diseases, memory disorders and attention-deficit/hyperactivity disorder in both humans and animal models. The mechanisms of its action appear to be multifarious including (i) preservation of cardiolipin, sphingomyelin, and arachidonic acid contents of phosphatidylcholine and phosphatidylethanolamine, (ii) restoration of phosphatidylcholine, (iii) stimulation of glutathione synthesis, (iv) lowering glutamate concentrations and preventing glutamate excitotoxicity, (v) rescuing mitochondrial function thereby preventing oxidative damage and onset of neuronal apoptosis, (vi) synthesis of myelin leading to improvement in neuronal membrane integrity, (vii) improving acetylcholine synthesis and thereby reducing the effects of mental stress and (viii) preventing endothelial dysfunction. Such effects have vouched for citicoline as a neuroprotective, neurorestorative and neuroregenerative agent. Retinal ganglion cells are neurons with long myelinated axons which provide a strong rationale for citicoline use in visual pathway disorders. Since glaucoma is a form of neurodegeneration involving retinal ganglion cells, citicoline may help ameliorate glaucomatous damages in multiple facets. Additionally, trans-synaptic degeneration has been identified in humans and experimental models of glaucoma suggesting the cholinergic system as a new brain target for glaucoma management and therapy.
Collapse
Affiliation(s)
- Muneeb A Faiq
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, United States
| | - Gadi Wollstein
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, United States
| | - Joel S Schuman
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, United States
| | - Kevin C Chan
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, United States; Department of Radiology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, United States; Center for Neural Science, Faculty of Arts and Science, New York University, New York, NY, United States.
| |
Collapse
|
22
|
Latanoprostene Bunod 0.024% in Subjects With Open-angle Glaucoma or Ocular Hypertension: Pooled Phase 3 Study Findings. J Glaucoma 2019; 27:7-15. [PMID: 29194198 DOI: 10.1097/ijg.0000000000000831] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE To compare the diurnal intraocular pressure (IOP)-lowering effect of latanoprostene bunod (LBN) 0.024% with timolol maleate 0.5% in subjects with open-angle glaucoma (OAG) or ocular hypertension (OHT). PATIENTS AND METHODS Pooled analysis of two phase 3, randomized, multicenter, double-masked, parallel-group, noninferiority trials (APOLLO and LUNAR), each with open-label safety extension phases. Adults with OAG or OHT were randomized 2:1 to double-masked treatment with LBN once daily (qd) or timolol twice daily (bid) for 3 months followed by open-label LBN treatment for 3 (LUNAR) or 9 (APOLLO) months. IOP was measured at 8 AM, 12 PM, and 4 PM at week 2, week 6, and months 3, 6, 9, and 12. RESULTS Of the 840 subjects randomized, 774 (LBN, n=523; timolol crossover to LBN, n=251) completed the efficacy phase, and 738 completed the safety extension phase. Mean IOP was significantly lower with LBN versus timolol at all 9 evaluation timepoints during the efficacy phase (P<0.001). A significantly greater proportion of LBN-treated subjects attained a mean IOP ≤18 mm Hg and IOP reduction ≥25% from baseline versus timolol-treated subjects (P<0.001). The IOP reduction with LBN was sustained through the safety phase; subjects crossed over from timolol to LBN experienced additional significant IOP lowering (P≤0.009). Both treatments were well tolerated, and there were no safety concerns with long-term LBN treatment. CONCLUSIONS In this pooled analysis of subjects with OAG and OHT, LBN 0.024% qd provided greater IOP-lowering compared with timolol 0.5% bid and maintained lowered IOP through 12 months. LBN demonstrated a safety profile comparable to that of prostaglandin analogs.
Collapse
|
23
|
LncRNA NR_003923 promotes cell proliferation, migration, fibrosis, and autophagy via the miR-760/miR-215-3p/IL22RA1 axis in human Tenon's capsule fibroblasts. Cell Death Dis 2019; 10:594. [PMID: 31391457 PMCID: PMC6685939 DOI: 10.1038/s41419-019-1829-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 07/14/2019] [Accepted: 07/23/2019] [Indexed: 02/07/2023]
Abstract
Noncoding RNAs (ncRNAs), including long ncRNAs (lncRNA) have manifested an important role in the pathophysiology of many diseases. Glaucoma is a primary cause of irreversible blindness worldwide. However, the involvement of lncRNAs in glaucoma remains largely unknown. Here, we performed the lncRNA expression assay based on clinical tissues and identified a specific functional lncRNA, NR_003923, and investigated its potential role in glaucoma. Knockdown of NR_003923 in human Tenon’s capsule fibroblast cells (HTFs) inhibited TGF-β-induced cell migration, proliferation, fibrosis, and autophagy. The dual luciferase reporter assay confirmed that miR-760 and miR-215-3p interacted with NR_003923. miR-760 and miR-215-3p inhibitor reversed the effects of NR_003923 and TGF-β-induced cell apoptosis. Moreover, the expression of miR-760 and miR-215-3p was decreased in glaucoma comparing with control. Furthermore, through microarray we found IL22RA1 was increased in glaucoma and both of miR-760 and miR-215-3p bound to the 3′ UTR of IL22RA1. Overexpression of IL22RA1 enhanced HTFs migration and proliferation, while miR-760 and miR-215-3p mimics reversed these promotive biological roles induced by IL22RA1. In conclusion, NR_003923 and IL22RA1 might contribute to glaucoma progression and be a novel and potential biomarkers and therapeutic targets for glaucoma.
Collapse
|
24
|
Hindle AG, Thoonen R, Jasien JV, Grange RMH, Amin K, Wise J, Ozaki M, Ritch R, Malhotra R, Buys ES. Identification of Candidate miRNA Biomarkers for Glaucoma. Invest Ophthalmol Vis Sci 2019; 60:134-146. [PMID: 30629727 PMCID: PMC6329203 DOI: 10.1167/iovs.18-24878] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose Glaucoma, a leading cause of blindness worldwide, often remains undetected until irreversible vision loss has occurred. Treatments focus on lowering intraocular pressure (IOP), the only modifiable and readily measurable risk factor. However, IOP can vary and does not always predict disease progression. MicroRNAs (miRNAs) are promising biomarkers. They are abundant and stable in biological fluids, including plasma and aqueous humor (AqH). We aimed to identify differentially expressed miRNAs in AqH and plasma from glaucoma, exfoliation syndrome (XFS), and control subjects. Methods Plasma and AqH from two ethnic cohorts were harvested from glaucoma or XFS (often associated with glaucoma, n = 33) and control (n = 31) patients undergoing elective surgery. A custom miRNA array measured 372 miRNAs. Molecular target prediction and pathway analysis were performed with Ingenuity Pathway Analysis (IPA) and DIANA bioinformatical tools. Results Levels of miRNAs in plasma, a readily accessible biomarker source, correlated with miRNA levels in AqH. Twenty circulating miRNAs were at least 1.5-fold higher in glaucoma or XFS patients than in controls across two ethnic cohorts: miR-4667-5p (P = 4.1 × 10−5), miR-99b-3p (P = 4.8 × 10−5), miR-637 (P = 5.1 × 10−5), miR-4490 (P = 5.7 × 10−5), miR-1253 (P = 6.0 × 10−5), miR-3190-3p (P = 3.1 × 10−4), miR-3173-3p (P = 0.001), miR-608 (P = 0.001), miR-4725-3p (P = 0.002), miR-4448 (P = 0.002), and miR-323b-5p (P = 0.002), miR-4538 (P = 0.003), miR-3913-3p (P = 0.003), miR-3159 (P = 0.003), miR-4663 (P = 0.003), miR-4767 (P = 0.003), miR-4724-5p (P = 0.003), miR-1306-5p (P = 0.003), miR-181b-3p (P = 0.004), and miR-433-3p (P = 0.004). miR-637, miR-1306-5p, and miR-3159, in combination, allowed discrimination between glaucoma patients and control subjects (AUC = 0.91 ± 0.008, sensitivity 85.0%, specificity 87.5%). Conclusions These results identify specific miRNAs as potential biomarkers and provide insight into the molecular processes underlying glaucoma.
Collapse
Affiliation(s)
- Allyson G Hindle
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts, United States
| | - Robrecht Thoonen
- Cardiovascular Research Center and Cardiology Division of the Department of Medicine, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts, United States
| | - Jessica V Jasien
- Einhorn Clinical Research Center, New York Ear Eye and Ear Infirmary of Mount Sinai, New York, New York, United States
| | - Robert M H Grange
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts, United States
| | | | - Jasen Wise
- Qiagen, Frederick, Maryland, United States
| | | | - Robert Ritch
- Einhorn Clinical Research Center, New York Ear Eye and Ear Infirmary of Mount Sinai, New York, New York, United States
| | - Rajeev Malhotra
- Cardiovascular Research Center and Cardiology Division of the Department of Medicine, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts, United States
| | - Emmanuel S Buys
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
25
|
Impagnatiello F, Bastia E, Almirante N, Brambilla S, Duquesroix B, Kothe AC, Bergamini MVW. Prostaglandin analogues and nitric oxide contribution in the treatment of ocular hypertension and glaucoma. Br J Pharmacol 2019; 176:1079-1089. [PMID: 29669171 PMCID: PMC6451067 DOI: 10.1111/bph.14328] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/23/2018] [Accepted: 03/23/2018] [Indexed: 01/08/2023] Open
Abstract
In patients with ocular hypertension or glaucoma, all treatments aim to lower intraocular pressure (IOP) by modulating aqueous humour (AH) production and/or uveoscleral and trabecular meshwork/Schlemm's canal AH drainage. PG analogues are considered to be the 'gold standard' treatment and are the most frequently used IOP-lowering agents. Recent data support an important role for NO in regulating IOP. Thus, novel PG analogues carrying a NO-donating moiety were recently advanced. Latanoprostene bunod (LBN) and NCX 470, NO-donating derivatives of latanoprost and bimatoprost, respectively, are examples of such compounds. LBN ophthalmic solution, 0.024% (Vyzulta™), showed greater IOP-lowering efficacy compared with that of Xalatan® (latanoprost ophthalmic solution, 0.005%) or 0.5% timolol maleate in clinical settings. NCX 470 was found to be more effective than bimatoprost in animal models of ocular hypertension and glaucoma. Selective EP2 receptor agonists (i.e. taprenepag isopropyl, omidenepag isopropyl and aganepag isopropyl) and non-selective prostanoid receptor agonists (i.e. ONO-9054, sepetaprost isopropyl) that concomitantly stimulate FP and EP3 receptors have also been shown to hold promise as effective IOP-lowering agents. LINKED ARTICLES: This article is part of a themed section on Eicosanoids 35 years from the 1982 Nobel: where are we now? To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.8/issuetoc.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Michael V W Bergamini
- Nicox Ophthalmics, Inc.Fort WorthTXUSA
- Nicox Ophthalmics, Inc.Research Triangle ParkNCUSA
| |
Collapse
|
26
|
Fingeret M, Gaddie IB, Bloomenstein M. Latanoprostene bunod ophthalmic solution 0.024%: a new treatment option for open-angle glaucoma and ocular hypertension. Clin Exp Optom 2019; 102:541-550. [PMID: 30614563 PMCID: PMC6899723 DOI: 10.1111/cxo.12853] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 10/04/2018] [Accepted: 10/06/2018] [Indexed: 01/09/2023] Open
Abstract
Latanoprostene bunod (LBN) ophthalmic solution 0.024% is a novel, once‐daily, nitric oxide‐donating prostaglandin analogue for the lowering of intraocular pressure (IOP) in patients with open‐angle glaucoma and ocular hypertension. The IOP‐lowering actions of LBN are mediated by dual mechanisms of the molecule for increasing aqueous humour outflow. The prostaglandin analogue moiety (latanoprost acid) increases uveoscleral outflow, whereas nitric oxide, released by the nitric oxide‐donating moiety (butanediol mononitrate), increases outflow through the trabecular meshwork and the Schlemm's canal. The clinical efficacy and safety of LBN 0.024% in patients with open‐angle glaucoma or ocular hypertension were established in two similarly designed, double‐masked, pivotal phase 3 studies, APOLLO and LUNAR, the pooled three‐month efficacy phase of which demonstrated significantly greater IOP‐lowering of once‐daily LBN 0.024% over twice‐daily timolol 0.5% at all time points. Additional support for the IOP‐lowering effects of LBN 0.024% was provided by two phase 2 studies in patients with open‐angle glaucoma or ocular hypertension (a dose ranging study versus latanoprost and a 24‐hour IOP crossover study versus timolol) and a phase 1 study of healthy volunteers with IOP in the normal range. In addition, long‐term efficacy and safety were demonstrated in the open‐label safety‐extension phases of the phase 3 pivotal studies and a phase 3 52‐week open‐label study of patients with open‐angle glaucoma (including normal‐tension glaucoma) or ocular hypertension. In conclusion, LBN 0.024% has demonstrated both short‐term and long‐term IOP‐lowering efficacy in patients with open‐angle glaucoma or ocular hypertension, including in healthy volunteers and patients with IOP in the normal range, without apparent clinically‐limiting safety or tolerability concerns.
Collapse
Affiliation(s)
- Murray Fingeret
- VA New York Harbor Health Care System, Brooklyn and St. Albans Campus, Queens, New York, USA
| | | | | |
Collapse
|
27
|
Abstract
The treatment of glaucoma in exfoliation syndrome is similar to primary open-angle glaucoma. Frequently, exfoliation glaucoma (XFG) patients require early polytherapy with topical medications. Little emphasis has been placed on tailoring treatment specifically to XFG. New outflow enhancing agents with novel mechanisms of action, such as Rho Kinase inhibition, NO signaling (both recently FDA-approved drugs) and adenosine α1-receptor stimulation, act directly on the trabecular meshwork. These agents may prove to be effective in lowering intraocular pressure and perhaps altering the pathogenesis of XFG aid in the long-term management of this disease.
Collapse
|
28
|
Discovery and development of next generation sGC stimulators with diverse multidimensional pharmacology and broad therapeutic potential. Nitric Oxide 2018; 78:72-80. [PMID: 29859918 DOI: 10.1016/j.niox.2018.05.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 12/31/2022]
Abstract
Nitric oxide (NO)-sensitive soluble guanylyl cyclase (sGC), an enzyme that catalyzes the conversion of guanosine-5'-triphosphate (GTP) to cyclic guanosine-3',5'-monophophate (cGMP), transduces many of the physiological effects of the gasotransmitter NO. Upon binding of NO to the prosthetic heme group of sGC, a conformational change occurs, resulting in enzymatic activation and increased production of cGMP. cGMP modulates several downstream cellular and physiological responses, including but not limited to vasodilation. Impairment of this signaling system and altered NO-cGMP homeostasis have been implicated in cardiovascular, pulmonary, renal, gastrointestinal, central nervous system, and hepatic pathologies. sGC stimulators, small molecule drugs that synergistically increase sGC enzyme activity with NO, have shown great potential to treat a variety of diseases via modulation of NO-sGC-cGMP signaling. Here, we give an overview of novel, orally available sGC stimulators that Ironwood Pharmaceuticals is developing. We outline the non-clinical and clinical studies, highlighting pharmacological and pharmacokinetic (PK) profiles, including pharmacodynamic (PD) effects, and efficacy in a variety of disease models.
Collapse
|
29
|
Wareham LK, Buys ES, Sappington RM. The nitric oxide-guanylate cyclase pathway and glaucoma. Nitric Oxide 2018; 77:75-87. [PMID: 29723581 DOI: 10.1016/j.niox.2018.04.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/18/2018] [Accepted: 04/23/2018] [Indexed: 01/12/2023]
Abstract
Glaucoma is a prevalent optic neuropathy characterized by the progressive dysfunction and loss of retinal ganglion cells (RGCs) and their optic nerve axons, which leads to irreversible visual field loss. Multiple risk factors for the disease have been identified, but elevated intraocular pressure (IOP) remains the primary risk factor amenable to treatment. Reducing IOP however does not always prevent glaucomatous neurodegeneration, and many patients progress with the disease despite having IOP in the normal range. There is increasing evidence that nitric oxide (NO) is a direct regulator of IOP and that dysfunction of the NO-Guanylate Cyclase (GC) pathway is associated with glaucoma incidence. NO has shown promise as a novel therapeutic with targeted effects that: 1) lower IOP; 2) increase ocular blood flow; and 3) confer neuroprotection. The various effects of NO in the eye appear to be mediated through the activation of the GC- guanosine 3:5'-cyclic monophosphate (cGMP) pathway and its effect on downstream targets, such as protein kinases and Ca2+ channels. Although NO-donor compounds are promising as therapeutics for IOP regulation, they may not be ideal to harness the neuroprotective potential of NO signaling. Here we review evidence that supports direct targeting of GC as a novel pleiotrophic treatment for the disease, without the need for direct NO application. The identification and targeting of other factors that contribute to glaucoma would be beneficial to patients, particularly those that do not respond well to IOP-dependent interventions.
Collapse
Affiliation(s)
- Lauren K Wareham
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Rebecca M Sappington
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
30
|
Childers KC, Garcin ED. Structure/function of the soluble guanylyl cyclase catalytic domain. Nitric Oxide 2018; 77:53-64. [PMID: 29702251 PMCID: PMC6005667 DOI: 10.1016/j.niox.2018.04.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 02/06/2023]
Abstract
Soluble guanylyl cyclase (GC-1) is the primary receptor of nitric oxide (NO) in smooth muscle cells and maintains vascular function by inducing vasorelaxation in nearby blood vessels. GC-1 converts guanosine 5′-triphosphate (GTP) into cyclic guanosine 3′,5′-monophosphate (cGMP), which acts as a second messenger to improve blood flow. While much work has been done to characterize this pathway, we lack a mechanistic understanding of how NO binding to the heme domain leads to a large increase in activity at the C-terminal catalytic domain. Recent structural evidence and activity measurements from multiple groups have revealed a low-activity cyclase domain that requires additional GC-1 domains to promote a catalytically-competent conformation. How the catalytic domain structurally transitions into the active conformation requires further characterization. This review focuses on structure/function studies of the GC-1 catalytic domain and recent advances various groups have made in understanding how catalytic activity is regulated including small molecules interactions, Cys-S-NO modifications and potential interactions with the NO-sensor domain and other proteins.
Collapse
Affiliation(s)
- Kenneth C Childers
- University of Maryland Baltimore County, Department of Chemistry and Biochemistry, Baltimore, USA
| | - Elsa D Garcin
- University of Maryland Baltimore County, Department of Chemistry and Biochemistry, Baltimore, USA.
| |
Collapse
|
31
|
Ehara T, Adams CM, Bevan D, Ji N, Meredith EL, Belanger DB, Powers J, Kato M, Solovay C, Liu D, Capparelli M, Bolduc P, Grob JE, Daniels MH, Ferrara L, Yang L, Li B, Towler CS, Stacy RC, Prasanna G, Mogi M. The Discovery of ( S)-1-(6-(3-((4-(1-(Cyclopropanecarbonyl)piperidin-4-yl)-2-methylphenyl)amino)-2,3-dihydro-1 H-inden-4-yl)pyridin-2-yl)-5-methyl-1 H-pyrazole-4-carboxylic Acid, a Soluble Guanylate Cyclase Activator Specifically Designed for Topical Ocular Delivery as a Therapy for Glaucoma. J Med Chem 2018; 61:2552-2570. [PMID: 29498522 DOI: 10.1021/acs.jmedchem.8b00007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Soluble guanylate cyclase (sGC), the endogenous receptor for nitric oxide (NO), has been implicated in several diseases associated with oxidative stress. In a pathological oxidative environment, the heme group of sGC can be oxidized becoming unresponsive to NO leading to a loss in the ability to catalyze the production of cGMP. Recently a dysfunctional sGC/NO/cGMP pathway has been implicated in contributing to elevated intraocular pressure associated with glaucoma. Herein we describe the discovery of molecules specifically designed for topical ocular administration, which can activate oxidized sGC restoring the ability to catalyze the production of cGMP. These efforts culminated in the identification of compound (+)-23, which robustly lowers intraocular pressure in a cynomolgus model of elevated intraocular pressure over 24 h after a single topical ocular drop and has been selected for clinical evaluation.
Collapse
Affiliation(s)
- Takeru Ehara
- Global Discovery Chemistry , Novartis Institutes for BioMedical Research, Inc. , Cambridge , Massachusetts 02139 , United States
| | - Christopher M Adams
- Global Discovery Chemistry , Novartis Institutes for BioMedical Research, Inc. , Cambridge , Massachusetts 02139 , United States
| | - Doug Bevan
- Global Discovery Chemistry , Novartis Institutes for BioMedical Research, Inc. , Cambridge , Massachusetts 02139 , United States
| | - Nan Ji
- Global Discovery Chemistry , Novartis Institutes for BioMedical Research, Inc. , Cambridge , Massachusetts 02139 , United States
| | - Erik L Meredith
- Global Discovery Chemistry , Novartis Institutes for BioMedical Research, Inc. , Cambridge , Massachusetts 02139 , United States
| | - David B Belanger
- Global Discovery Chemistry , Novartis Institutes for BioMedical Research, Inc. , Cambridge , Massachusetts 02139 , United States
| | - James Powers
- Global Discovery Chemistry , Novartis Institutes for BioMedical Research, Inc. , Cambridge , Massachusetts 02139 , United States
| | - Mitsunori Kato
- Global Discovery Chemistry , Novartis Institutes for BioMedical Research, Inc. , Cambridge , Massachusetts 02139 , United States
| | - Catherine Solovay
- Global Discovery Chemistry , Novartis Institutes for BioMedical Research, Inc. , Cambridge , Massachusetts 02139 , United States
| | - Donglei Liu
- Global Discovery Chemistry , Novartis Institutes for BioMedical Research, Inc. , Cambridge , Massachusetts 02139 , United States
| | - Michael Capparelli
- Global Discovery Chemistry , Novartis Institutes for BioMedical Research, Inc. , Cambridge , Massachusetts 02139 , United States
| | - Philippe Bolduc
- Global Discovery Chemistry , Novartis Institutes for BioMedical Research, Inc. , Cambridge , Massachusetts 02139 , United States
| | - Jonathan E Grob
- Global Discovery Chemistry , Novartis Institutes for BioMedical Research, Inc. , Cambridge , Massachusetts 02139 , United States
| | - Matthew H Daniels
- Global Discovery Chemistry , Novartis Institutes for BioMedical Research, Inc. , Cambridge , Massachusetts 02139 , United States
| | - Luciana Ferrara
- Ophthalmology Research , Novartis Institutes for BioMedical Research, Inc. , Cambridge , Massachusetts 02139 , United States
| | - Louis Yang
- Ophthalmology Research , Novartis Institutes for BioMedical Research, Inc. , Cambridge , Massachusetts 02139 , United States
| | - Byron Li
- Ophthalmology Research , Novartis Institutes for BioMedical Research, Inc. , Cambridge , Massachusetts 02139 , United States
| | - Christopher S Towler
- Chemical and Pharmaceutical Profiling , Novartis Institutes for BioMedical Research, Inc. , Cambridge , Massachusetts 02139 , United States
| | - Rebecca C Stacy
- Translational Medicine , Novartis Institutes for BioMedical Research, Inc. , Cambridge , Massachusetts 02139 , United States
| | - Ganesh Prasanna
- Ophthalmology Research , Novartis Institutes for BioMedical Research, Inc. , Cambridge , Massachusetts 02139 , United States
| | - Muneto Mogi
- Global Discovery Chemistry , Novartis Institutes for BioMedical Research, Inc. , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
32
|
Friebe A, Sandner P, Schmidtko A. Meeting report of the 8 th International Conference on cGMP "cGMP: generators, effectors, and therapeutic implications" at Bamberg, Germany, from June 23 to 25, 2017. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2017; 390:1177-1188. [PMID: 29018913 PMCID: PMC5783999 DOI: 10.1007/s00210-017-1429-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 09/27/2017] [Indexed: 12/12/2022]
Abstract
Although the Nobel Prize for the discovery of nitric oxide (NO) dates back almost 20 years now, the knowledge about cGMP signaling is still constantly increasing. It looks even so that our understanding of the role of the soluble guanylyl cyclase (sGC) and particulate guanylyl cyclase (pGC) in health and disease is in many aspects at the beginning and far from being understood. This holds even true for the therapeutic impact of innovative drugs acting on both the NO/sGC and the pGC pathways. Since cGMP, as second messenger, is involved in the pathogenesis of numerous diseases within the cardiovascular, pulmonary, renal, and endocrine systems and also plays a role in neuronal, sensory, and tumor processes, drug applications might be quite broad. On the 8th International Conference on cGMP, held in Bamberg, Germany, world leading experts came together to discuss these topics. All aspects of cGMP research from the basic understanding of cGMP signaling to clinical applicability were discussed in depth. In addition, present and future therapeutic applications of cGMP-modulating pharmacotherapy were presented ( http://www.cyclicgmp.net/index.html ).
Collapse
Affiliation(s)
- Andreas Friebe
- Institute of Physiology, University of Würzburg, Röntgenring 9, 97070 Würzburg, Germany
| | - Peter Sandner
- Drug Discovery, Bayer AG, Aprather Weg 18a, 42096 Wuppertal, Germany
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Achim Schmidtko
- Institute of Pharmacology, College of Pharmacy, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| |
Collapse
|
33
|
Muenster S, Lieb WS, Fabry G, Allen KN, Kamat SS, Guy AH, Dordea AC, Teixeira L, Tainsh RE, Yu B, Zhu W, Ashpole NE, Malhotra R, Brouckaert P, Bloch DB, Scherrer-Crosbie M, Stamer WD, Kuehn MH, Pasquale LR, Buys ES. The Ability of Nitric Oxide to Lower Intraocular Pressure Is Dependent on Guanylyl Cyclase. Invest Ophthalmol Vis Sci 2017; 58:4826-4835. [PMID: 28973329 PMCID: PMC5624778 DOI: 10.1167/iovs.17-22168] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Purpose While nitric oxide (NO) donors are emerging as treatments for glaucoma, the mechanism by which NO lowers intraocular pressure (IOP) is unclear. NO activates the enzyme guanylyl cyclase (GC) to produce cyclic guanosine monophosphate. We studied the ocular effects of inhaled and topically applied NO gas in mice and lambs, respectively. Methods IOP and aqueous humor (AqH) outflow were measured in WT and GC-1α subunit null (GC-1−/−) mice. Mice breathed 40 parts per million (ppm) NO in O2 or control gas (N2/O2). We also studied the effect of ocular NO gas exposure (80, 250, 500, and 1000 ppm) on IOP in anesthetized lambs. NO metabolites were measured in AqH and plasma. Results In awake WT mice, breathing NO for 40 minutes lowered IOP from 14.4 ± 1.9 mm Hg to 10.9 ± 1.0 mm Hg (n = 11, P < 0.001). Comparable results were obtained in anesthetized WT mice (n = 10, P < 0.001). In awake or anesthetized GC-1−/− mice, IOP did not change under similar experimental conditions (P ≥ 0.08, n = 20). Breathing NO increased in vivo outflow facility in WT but not GC-1−/− mice (+13.7 ± 14.6% vs. −12.1 ± 9.4%, n = 4 each, P < 0.05). In lambs, ocular exposure to NO lowered IOP in a dose-dependent manner (−0.43 mm Hg/ppm NO; n = 5 with 40 total measurements; P = 0.04) without producing corneal pathology or altering pulmonary and systemic hemodynamics. After ocular NO exposure, NO metabolites were increased in AqH (n = 8, P < 0.001) but not in plasma. Conclusions Breathing NO reduced IOP and increased outflow facility in a GC-dependent manner in mice. Exposure of ovine eyes to NO lowers IOP.
Collapse
Affiliation(s)
- Stefan Muenster
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts, United States.,Department of Anesthesiology and Critical Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Wolfgang S Lieb
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts, United States.,Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Gregor Fabry
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts, United States
| | - Kaitlin N Allen
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts, United States
| | - Shivani S Kamat
- Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Ann H Guy
- Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Ana C Dordea
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts, United States
| | - Leandro Teixeira
- Department of Pathological Science, School of Veterinary Medicine, University of Wisconsin, Wisconsin, United States
| | - Robert E Tainsh
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts, United States
| | - Binglan Yu
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts, United States
| | - Wei Zhu
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States
| | - Nicole E Ashpole
- Department of Ophthalmology, Duke University, Durham, North Carolina, United States.,Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States
| | - Rajeev Malhotra
- Cardiovascular Research Center and Cardiology Division of the Department of Medicine, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts, United States
| | - Peter Brouckaert
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium Department of Molecular Biomedical Research, VIB, Ghent, Belgium
| | - Donald B Bloch
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts, United States.,The Center for Immunology and Inflammatory Diseases and the Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts, United States
| | - Marielle Scherrer-Crosbie
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts, United States.,Cardiac Ultrasound Laboratory and Division of Cardiology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts, United States
| | - W Daniel Stamer
- Department of Ophthalmology, Duke University, Durham, North Carolina, United States.,Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States
| | - Markus H Kuehn
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States
| | - Louis R Pasquale
- Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States.,Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Emmanuel S Buys
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
34
|
Cavet ME, DeCory HH. The Role of Nitric Oxide in the Intraocular Pressure Lowering Efficacy of Latanoprostene Bunod: Review of Nonclinical Studies. J Ocul Pharmacol Ther 2017; 34:52-60. [PMID: 28783422 PMCID: PMC5963638 DOI: 10.1089/jop.2016.0188] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/26/2017] [Indexed: 01/16/2023] Open
Abstract
Latanoprostene bunod (LBN) is a topical ophthalmic therapeutic for the reduction of intraocular pressure (IOP) in patients with open-angle glaucoma or ocular hypertension (OHT). LBN is composed of latanoprost acid (LA) linked to a nitric oxide (NO)-donating moiety and is the first NO-releasing prostaglandin analog to be submitted for marketing authorization in the United States. The role of latanoprost in increasing uveoscleral outflow of aqueous humor (AqH) is well established. Herein, we review findings from nonclinical studies, which evaluated the role of NO in the IOP-lowering efficacy of LBN. Pharmacokinetic studies in rabbits and corneal homogenates indicate that LBN is rapidly metabolized to LA and butanediol mononitrate (BDMN). NO is subsequently released by BDMN as shown by increased cyclic guanosine monophosphate (cGMP) levels in (1) the AqH and iris-ciliary body after administration of LBN in rabbits and in (2) human trabecular meshwork (TM) cells after incubation with LBN. LBN reduced myosin light chain phosphorylation, induced cytoskeletal rearrangement, and decreased resistance to current flow to a greater extent than latanoprost in TM cells, indicating that NO released from LBN elicited TM cell relaxation. LBN also lowered IOP to a greater extent than latanoprost in FP receptor knockout mice, rabbits with transient OHT, glaucomatous dogs, and primates with OHT. Along with results from a Phase 2 clinical study in which treatment with LBN 0.024% resulted in greater IOP-lowering efficacy than latanoprost 0.005%, these data indicate that LBN has a dual mechanism of action, increasing AqH outflow through both the uveoscleral (using LA) and TM/Schlemm's canal (using NO) pathways.
Collapse
Affiliation(s)
- Megan E Cavet
- Pharmaceutical Medical Affairs , Bausch + Lomb, Rochester, New York
| | - Heleen H DeCory
- Pharmaceutical Medical Affairs , Bausch + Lomb, Rochester, New York
| |
Collapse
|
35
|
Holappa M, Vapaatalo H, Vaajanen A. Many Faces of Renin-angiotensin System - Focus on Eye. Open Ophthalmol J 2017; 11:122-142. [PMID: 28761566 PMCID: PMC5510558 DOI: 10.2174/1874364101711010122] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 05/17/2017] [Accepted: 05/25/2017] [Indexed: 12/18/2022] Open
Abstract
The renin-angiotensin system (RAS), that is known for its role in the regulation of blood pressure as well as in fluid and electrolyte homeostasis, comprises dozens of angiotensin peptides and peptidases and at least six receptors. Six central components constitute the two main axes of the RAS cascade. Angiotensin (1-7), an angiotensin converting enzyme 2 and Mas receptor axis (ACE2-Ang(1-7)-MasR) counterbalances the harmful effects of the angiotensin II, angiotensin converting enzyme 1 and angiotensin II type 1 receptor axis (ACE1-AngII-AT1R) Whereas systemic RAS is an important factor in blood pressure regulation, tissue-specific regulatory system, responsible for long term regional changes, that has been found in various organs. In other words, RAS is not only endocrine but also complicated autocrine system. The human eye has its own intraocular RAS that is present e.g. in the structures involved in aqueous humor dynamics. Local RAS may thus be a target in the development of new anti-glaucomatous drugs. In this review, we first describe the systemic RAS cascade and then the local ocular RAS especially in the anterior part of the eye.
Collapse
Affiliation(s)
- Mervi Holappa
- BioMediTech, University of Tampere, Tampere, Finland
| | - Heikki Vapaatalo
- Medical Faculty, Department of Pharmacology, University of Helsinki, 00014 Helsinki, Finland
| | - Anu Vaajanen
- Department of Ophthalmology, Tampere University Hospital, Tampere, Finland.,SILK, Department of Ophthalmology, School of Medicine, University of Tampere, Tampere, Finland
| |
Collapse
|
36
|
Drug discovery targeting heme-based sensors and their coupled activities. J Inorg Biochem 2017; 167:12-20. [DOI: 10.1016/j.jinorgbio.2016.11.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/08/2016] [Accepted: 11/16/2016] [Indexed: 01/10/2023]
|
37
|
Baumane K, Ranka R, Laganovska G. Association of NT-proANP Level in Plasma and Humor Aqueous with Primary Open-Angle Glaucoma. Curr Eye Res 2016; 42:233-236. [PMID: 27723368 DOI: 10.1080/02713683.2016.1180397] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
PURPOSE The aim of this study is to determine differences in the levels of NT-proANP in the plasma and aqueous humor of glaucoma and cataract patients and to evaluate whether any relationships are present. METHODS The study group consisted of 58 patients with primary-open glaucoma (POAG) undergoing trabeculectomy surgery. The control group was comprised of 32 age-matched cataract patients. The concentration of the N-terminal fragment of the proatrial natriuretic peptide (NT-proANP, 1-98) in the aqueous humor and blood plasma samples was measured using an immunochemical method (ELISA). RESULTS The plasma NT-proANP concentration was significantly increased in patients with POAG compared to that in the control group (7.00 vs. 4.65 nmol/L, P = 0.0054). Similarly, the NT-proANP concentration in the aqueous humor was significantly higher in the POAG patients (0.47 vs. 0.09 nmol/L, P = 0.0112). However, there was no correlation between the NT-proANP values in the aqueous humor and the plasma of the POAG patients, as well as between the NT-proANP values in the aqueous humor and the intraocular pressure. CONCLUSIONS We identified an association between the levels of NT-proANP in the plasma and the aqueous humor with POAG. Our data support the idea of the involvement of NP system in the development of POAG and highlight ANP as a possible biomarker of glaucoma.
Collapse
Affiliation(s)
- Kristine Baumane
- a Department of Ophthalmology , Riga Stradiņš University , Riga , Latvia.,b Department of Ophthalmology , Pauls Stradins Clinical University Hospital , Riga , Latvia
| | - Renate Ranka
- a Department of Ophthalmology , Riga Stradiņš University , Riga , Latvia.,c Latvian Biomedical Research and Study Centre , Riga , Latvia
| | - Guna Laganovska
- a Department of Ophthalmology , Riga Stradiņš University , Riga , Latvia.,b Department of Ophthalmology , Pauls Stradins Clinical University Hospital , Riga , Latvia
| |
Collapse
|
38
|
Prasanna G, Li B, Mogi M, Rice DS. Pharmacology of novel intraocular pressure-lowering targets that enhance conventional outflow facility: Pitfalls, promises and what lies ahead? Eur J Pharmacol 2016; 787:47-56. [DOI: 10.1016/j.ejphar.2016.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/15/2016] [Accepted: 03/01/2016] [Indexed: 12/18/2022]
|
39
|
Nair KS, Cosma M, Raghupathy N, Sellarole MA, Tolman NG, de Vries W, Smith RS, John SWM. YBR/EiJ mice: a new model of glaucoma caused by genes on chromosomes 4 and 17. Dis Model Mech 2016; 9:863-71. [PMID: 27483353 PMCID: PMC5007977 DOI: 10.1242/dmm.024307] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 06/03/2016] [Indexed: 01/23/2023] Open
Abstract
A variety of inherited animal models with different genetic causes and distinct genetic backgrounds are needed to help dissect the complex genetic etiology of glaucoma. The scarcity of such animal models has hampered progress in glaucoma research. Here, we introduce a new inherited glaucoma model: the inbred mouse strain YBR/EiJ (YBR). YBR mice develop a form of pigmentary glaucoma. They exhibit a progressive age-related pigment-dispersing iris disease characterized by iris stromal atrophy. Subsequently, these mice develop elevated intraocular pressure (IOP) and glaucoma. Genetic mapping studies utilizing YBR as a glaucoma-susceptible strain and C57BL/6J as a glaucoma-resistant strain were performed to identify genetic loci responsible for the iris disease and high IOP. A recessive locus linked to Tyrp1b on chromosome 4 contributes to iris stromal atrophy and high IOP. However, this is not the only important locus. A recessive locus on YBR chromosome 17 causes high IOP independent of the iris stromal atrophy. In specific eyes with high IOP caused by YBR chromosome 17, the drainage angle (through which ocular fluid leaves the eye) is largely open. The YBR alleles of genes on chromosomes 4 and 17 underlie the development of high IOP and glaucoma but do so through independent mechanisms. Together, these two loci act in an additive manner to increase the susceptibility of YBR mice to the development of high IOP. The chromosome 17 locus is important not only because it causes IOP elevation in mice with largely open drainage angles but also because it exacerbates IOP elevation and glaucoma induced by pigment dispersion. Therefore, YBR mice are a valuable resource for studying the genetic etiology of IOP elevation and glaucoma, as well as for testing new treatments. Summary: We identify the YBR/EiJ mouse strain as a new model of high intraocular pressure and glaucoma, and also identify genetic loci that contribute to this glaucoma.
Collapse
Affiliation(s)
- K Saidas Nair
- Department of Ophthalmology, University of California, San Francisco, USA The Jackson Laboratory, Bar Harbor, ME, USA
| | | | | | | | | | | | | | - Simon W M John
- The Jackson Laboratory, Bar Harbor, ME, USA Howard Hughes Medical Institute, The Jackson Laboratory, Bar Harbor, ME, USA Department of Ophthalmology, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
40
|
Holappa M, Vapaatalo H, Vaajanen A. Ocular renin-angiotensin system with special reference in the anterior part of the eye. World J Ophthalmol 2015; 5:110-124. [DOI: 10.5318/wjo.v5.i3.110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/21/2015] [Accepted: 06/16/2015] [Indexed: 02/06/2023] Open
Abstract
The renin-angiotensin system (RAS) regulates blood pressure (BP) homeostasis, systemic fluid volume and electrolyte balance. The RAS cascade includes over twenty peptidases, close to twenty angiotensin peptides and at least six receptors. Out of these, angiotensin II, angiotensin converting enzyme 1 and angiotensin II type 1 receptor (AngII-ACE1-AT1R) together with angiotensin (1-7), angiotensin converting enzyme 2 and Mas receptor (Ang(1-7)-ACE2-MasR) are regarded as the main components of RAS. In addition to circulating RAS, local RA-system exists in various organs. Local RA-systems are regarded as tissue-specific regulatory systems accounting for local effects and long term changes in different organs. Many of the central components such as the two main axes of RAS: AngII-ACE1-AT1R and Ang(1-7)-ACE2-MasR, have been identified in the human eye. Furthermore, it has been shown that systemic antihypertensive RAS- inhibiting medications lower intraocular pressure (IOP). These findings suggest the crucial role of RAS not only in the regulation of BP but also in the regulation of IOP, and RAS potentially plays a role in the development of glaucoma and antiglaucomatous drugs.
Collapse
|
41
|
Sürmeli NB, Müskens FM, Marletta MA. The Influence of Nitric Oxide on Soluble Guanylate Cyclase Regulation by Nucleotides: ROLE OF THE PSEUDOSYMMETRIC SITE. J Biol Chem 2015; 290:15570-15580. [PMID: 25907555 DOI: 10.1074/jbc.m115.641431] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Indexed: 01/09/2023] Open
Abstract
Activation of soluble guanylate cyclase (sGC) by the signaling molecule nitric oxide (NO) leads to formation of the second messenger cGMP, which mediates numerous physiological processes. NO activates sGC by binding to the ferrous heme cofactor; the relative amount of NO with respect to sGC heme affects the enzyme activity. ATP can also influence the activity by binding to an allosteric site, most likely the pseudosymmetric site located in the catalytic domain. Here, the role of the pseudosymmetric site on nucleotide regulation was investigated by point mutations at this site. ATP inhibition kinetics of wild type and a pseudosymmetric site (α1-C594A/β1-D477A) variant of sGC was determined at various levels of NO. Results obtained show that in the presence of less than 1 eq of NO, there appears to be less than complete activation and little change in the nucleotide binding parameters. The most dramatic effects are observed for the addition of excess NO, which results in an increase in the affinity of GTP at the catalytic site and full activation of sGC. The pseudosymmetric site mutation only affected nucleotide affinities in the presence of excess NO; there was a decrease in the affinity for ATP in both the allosteric and catalytic sites. These observations led to a new kinetic model for sGC activity in the presence of excess NO. This model revealed that the active and allosteric sites show cooperativity. This new comprehensive model gives a more accurate description of sGC regulation by NO and nucleotides in vivo.
Collapse
Affiliation(s)
- Nur Başak Sürmeli
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037
| | - Frederike M Müskens
- Department of Medicinal Chemistry and Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CG Utrecht, The Netherlands
| | - Michael A Marletta
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037.
| |
Collapse
|
42
|
Sharma RK, Baehr W, Makino CL, Duda T. Ca(2+) and Ca(2+)-interlocked membrane guanylate cyclase signal modulation of neuronal and cardiovascular signal transduction. Front Mol Neurosci 2015; 8:7. [PMID: 25798085 PMCID: PMC4351612 DOI: 10.3389/fnmol.2015.00007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/16/2015] [Indexed: 12/29/2022] Open
Affiliation(s)
- Rameshwar K Sharma
- Research Divisions of Biochemistry and Molecular Biology, The Unit of Regulatory and Molecular Biology, Salus University Elkins Park, PA, USA
| | - Wolfgang Baehr
- School of Medicine, Department of Ophthalmology and Visual Sciences, University of Utah Salt Lake City, UT, USA
| | - Clint L Makino
- Massachusetts Eye and Ear Infirmary and Harvard Medical School Boston, MA, USA
| | - Teresa Duda
- Research Divisions of Biochemistry and Molecular Biology, The Unit of Regulatory and Molecular Biology, Salus University Elkins Park, PA, USA
| |
Collapse
|
43
|
Schmidl D, Schmetterer L, Garhöfer G, Popa-Cherecheanu A. Pharmacotherapy of glaucoma. J Ocul Pharmacol Ther 2015; 31:63-77. [PMID: 25587905 PMCID: PMC4346603 DOI: 10.1089/jop.2014.0067] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 10/31/2014] [Indexed: 12/25/2022] Open
Abstract
Glaucoma is a group of diseases involving the optic nerve and associated structures, which is characterized by progressive visual field loss and typical changes of the optic nerve head (ONH). The only known treatment of the disease is reduction of intraocular pressure (IOP), which has been shown to reduce glaucoma progression in a variety of large-scale clinical trials. Nowadays, a relatively wide array of topical antiglaucoma drugs is available, including prostaglandin analogues, carbonic anhydrase inhibitors, beta-receptor antagonists, adrenergic agonists, and parasympathomimetics. In clinical routine, this allows for individualized treatment taking risk factors, efficacy, and safety into account. A major challenge is related to adherence to therapy. Sustained release devices may help minimize this problem but are not yet available for clinical routine use. Another hope arises from non-IOP-related treatment concepts. In recent years, much knowledge has been gained regarding the molecular mechanisms that underlie the disease process in glaucoma. This also strengthens the hope that glaucoma therapy beyond IOP lowering will become available. Implementing this concept with clinical trials remains, however, a challenge.
Collapse
Affiliation(s)
- Doreen Schmidl
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Leopold Schmetterer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Gerhard Garhöfer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|