1
|
Di Liegro CM, Schiera G, Schirò G, Di Liegro I. Role of Post-Transcriptional Regulation in Learning and Memory in Mammals. Genes (Basel) 2024; 15:337. [PMID: 38540396 PMCID: PMC10970538 DOI: 10.3390/genes15030337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 06/14/2024] Open
Abstract
After many decades, during which most molecular studies on the regulation of gene expression focused on transcriptional events, it was realized that post-transcriptional control was equally important in order to determine where and when specific proteins were to be synthesized. Translational regulation is of the most importance in the brain, where all the steps of mRNA maturation, transport to different regions of the cells and actual expression, in response to specific signals, constitute the molecular basis for neuronal plasticity and, as a consequence, for structural stabilization/modification of synapses; notably, these latter events are fundamental for the highest brain functions, such as learning and memory, and are characterized by long-term potentiation (LTP) of specific synapses. Here, we will discuss the molecular bases of these fundamental events by considering both the role of RNA-binding proteins (RBPs) and the effects of non-coding RNAs involved in controlling splicing, editing, stability and translation of mRNAs. Importantly, it has also been found that dysregulation of mRNA metabolism/localization is involved in many pathological conditions, arising either during brain development or in the adult nervous system.
Collapse
Affiliation(s)
- Carlo Maria Di Liegro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy; (C.M.D.L.); (G.S.)
| | - Gabriella Schiera
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy; (C.M.D.L.); (G.S.)
| | - Giuseppe Schirò
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy;
- Neurology and Multiple Sclerosis Center, Unità Operativa Complessa (UOC), Foundation Institute “G. Giglio”, 90015 Cefalù, Italy
| | - Italia Di Liegro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy;
| |
Collapse
|
2
|
Mohammadi AH, Seyedmoalemi S, Moghanlou M, Akhlagh SA, Talaei Zavareh SA, Hamblin MR, Jafari A, Mirzaei H. MicroRNAs and Synaptic Plasticity: From Their Molecular Roles to Response to Therapy. Mol Neurobiol 2022; 59:5084-5102. [PMID: 35666404 DOI: 10.1007/s12035-022-02907-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 05/25/2022] [Indexed: 12/24/2022]
Abstract
Synaptic plasticity is the ability of synapses to weaken or strengthen over time, in response to changes in the activity of the neurons. It is orchestrated by a variety of genes, proteins, and external and internal factors, especially epigenetic factors. MicroRNAs (miRNAs) are well-acknowledged epigenetic modulators that regulate the translation and degradation of target genes in the nervous system. Increasing evidence has suggested that a number of miRNAs play important roles in modulating various aspects of synaptic plasticity. The deregulation of miRNAs could be associated with pathological alterations in synaptic plasticity, which could lead to different CNS-related diseases. Herein, we provide an update on the role of miRNAs in governing synaptic plasticity. In addition, we also summarize recent researches on the role of miRNAs in drug addiction, and their targets and mechanism of action. Understanding of the way in which miRNAs contribute to synaptic plasticity provides rational clues in establishing the novel biomarkers and new therapeutic strategies for the diagnosis and treatment of plasticity-related diseases and drug addiction.
Collapse
Affiliation(s)
- Amir Hossein Mohammadi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyedvahid Seyedmoalemi
- Behavioral Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Student Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahsa Moghanlou
- Department of Psychiatry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Ameneh Jafari
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
3
|
Early Life Irradiation-Induced Hypoplasia and Impairment of Neurogenesis in the Dentate Gyrus and Adult Depression Are Mediated by MicroRNA- 34a-5p/T-Cell Intracytoplasmic Antigen-1 Pathway. Cells 2021; 10:cells10092476. [PMID: 34572124 PMCID: PMC8466295 DOI: 10.3390/cells10092476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 02/05/2023] Open
Abstract
Early life radiation exposure causes abnormal brain development, leading to adult depression. However, few studies have been conducted to explore pre- or post-natal irradiation-induced depression-related neuropathological changes. Relevant molecular mechanisms are also poorly understood. We induced adult depression by irradiation of mice at postnatal day 3 (P3) to reveal hippocampal neuropathological changes and investigate their molecular mechanism, focusing on MicroRNA (miR) and its target mRNA and protein. P3 mice were irradiated by γ-rays with 5Gy, and euthanized at 1, 7 and 120 days after irradiation. A behavioral test was conducted before the animals were euthanized at 120 days after irradiation. The animal brains were used for different studies including immunohistochemistry, CAP-miRSeq, Real-Time Quantitative Reverse Transcription PCR (qRT-PCR) and western blotting. The interaction of miR-34a-5p and its target T-cell intracytoplasmic antigen-1 (Tia1) was confirmed by luciferase reporter assay. Overexpression of Tia1 in a neural stem cell (NSC) model was used to further validate findings from the mouse model. Irradiation with 5 Gy at P3 induced depression in adult mice. Animal hippocampal pathological changes included hypoplasia of the infrapyramidal blade of the stratum granulosum, aberrant and impaired cell division, and neurogenesis in the dentate gyrus. At the molecular level, upregulation of miR-34a-5p and downregulation of Tia1 mRNA were observed in both animal and neural stem cell models. The luciferase reporter assay and gene transfection studies further confirmed a direct interaction between miR-43a-5p and Tia1. Our results indicate that the early life γ-radiation-activated miR-43a-5p/Tia1 pathway is involved in the pathogenesis of adult depression. This novel finding may provide a new therapeutic target by inhibiting the miR-43a-5p/Tia1 pathway to prevent radiation-induced pathogenesis of depression.
Collapse
|
4
|
Carvalho-Paulo D, Bento Torres Neto J, Filho CS, de Oliveira TCG, de Sousa AA, dos Reis RR, dos Santos ZA, de Lima CM, de Oliveira MA, Said NM, Freitas SF, Sosthenes MCK, Gomes GF, Henrique EP, Pereira PDC, de Siqueira LS, de Melo MAD, Guerreiro Diniz C, Magalhães NGDM, Diniz JAP, Vasconcelos PFDC, Diniz DG, Anthony DC, Sherry DF, Brites D, Picanço Diniz CW. Microglial Morphology Across Distantly Related Species: Phylogenetic, Environmental and Age Influences on Microglia Reactivity and Surveillance States. Front Immunol 2021; 12:683026. [PMID: 34220831 PMCID: PMC8250867 DOI: 10.3389/fimmu.2021.683026] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/31/2021] [Indexed: 12/16/2022] Open
Abstract
Microglial immunosurveillance of the brain parenchyma to detect local perturbations in homeostasis, in all species, results in the adoption of a spectrum of morphological changes that reflect functional adaptations. Here, we review the contribution of these changes in microglia morphology in distantly related species, in homeostatic and non-homeostatic conditions, with three principal goals (1): to review the phylogenetic influences on the morphological diversity of microglia during homeostasis (2); to explore the impact of homeostatic perturbations (Dengue virus challenge) in distantly related species (Mus musculus and Callithrix penicillata) as a proxy for the differential immune response in small and large brains; and (3) to examine the influences of environmental enrichment and aging on the plasticity of the microglial morphological response following an immunological challenge (neurotropic arbovirus infection). Our findings reveal that the differences in microglia morphology across distantly related species under homeostatic condition cannot be attributed to the phylogenetic origin of the species. However, large and small brains, under similar non-homeostatic conditions, display differential microglial morphological responses, and we argue that age and environment interact to affect the microglia morphology after an immunological challenge; in particular, mice living in an enriched environment exhibit a more efficient immune response to the virus resulting in earlier removal of the virus and earlier return to the homeostatic morphological phenotype of microglia than it is observed in sedentary mice.
Collapse
Affiliation(s)
- Dario Carvalho-Paulo
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - João Bento Torres Neto
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
- Faculdade de Fisioterapia e Terapia Ocupacional, Universidade Federal do Pará, Belém, Brazil
| | - Carlos Santos Filho
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Thais Cristina Galdino de Oliveira
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Aline Andrade de Sousa
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Renata Rodrigues dos Reis
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Zaire Alves dos Santos
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Camila Mendes de Lima
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Marcus Augusto de Oliveira
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Nivin Mazen Said
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Sinara Franco Freitas
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Marcia Consentino Kronka Sosthenes
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Giovanni Freitas Gomes
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Ediely Pereira Henrique
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Bragança, Brazil
| | - Patrick Douglas Côrrea Pereira
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Bragança, Brazil
| | - Lucas Silva de Siqueira
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Bragança, Brazil
| | - Mauro André Damasceno de Melo
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Bragança, Brazil
| | - Cristovam Guerreiro Diniz
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Bragança, Brazil
| | - Nara Gyzely de Morais Magalhães
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Bragança, Brazil
| | | | - Pedro Fernando da Costa Vasconcelos
- Dep. de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Belém, Brazil
- Departamento de Patologia, Universidade do Estado do Pará, Belém, Brazil
| | - Daniel Guerreiro Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
- Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Belém, Brazil
| | | | - David Francis Sherry
- Department of Psychology, Advanced Facility for Avian Research, University of Western Ontario, London, ON, Canada
| | - Dora Brites
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Cristovam Wanderley Picanço Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| |
Collapse
|
5
|
Nagaraj S, Want A, Laskowska-Kaszub K, Fesiuk A, Vaz S, Logarinho E, Wojda U. Candidate Alzheimer's Disease Biomarker miR-483-5p Lowers TAU Phosphorylation by Direct ERK1/2 Repression. Int J Mol Sci 2021; 22:ijms22073653. [PMID: 33915734 PMCID: PMC8037306 DOI: 10.3390/ijms22073653] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/24/2021] [Accepted: 03/27/2021] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs have been demonstrated as key regulators of gene expression in the etiology of a range of diseases including Alzheimer's disease (AD). Recently, we identified miR-483-5p as the most upregulated miRNA amongst a panel of miRNAs in blood plasma specific to prodromal, early-stage Alzheimer's disease patients. Here, we investigated the functional role of miR-483-5p in AD pathology. Using TargetScan and miRTarBase, we identified the microtubule-associated protein MAPT, often referred to as TAU, and the extracellular signal-regulated kinases 1 and 2 (ERK1 and ERK2), known to phosphorylate TAU, as predicted direct targets of miR-483-5p. Employing several functional assays, we found that miR-483-5p regulates ERK1 and ERK2 at both mRNA and protein levels, resulting in lower levels of phosphorylated forms of both kinases. Moreover, miR-483-5p-mediated repression of ERK1/2 resulted in reduced phosphorylation of TAU protein at epitopes associated with TAU neurofibrillary pathology in AD. These results indicate that upregulation of miR-483-5p can decrease phosphorylation of TAU via ERK pathway, representing a compensatory neuroprotective mechanism in AD pathology. This miR-483-5p/ERK1/TAU axis thus represents a novel target for intervention in AD.
Collapse
Affiliation(s)
- Siranjeevi Nagaraj
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Pasteur 3, 02-093 Warsaw, Poland; (S.N.); (A.W.); (K.L.-K.); (A.F.)
| | - Andrew Want
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Pasteur 3, 02-093 Warsaw, Poland; (S.N.); (A.W.); (K.L.-K.); (A.F.)
| | - Katarzyna Laskowska-Kaszub
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Pasteur 3, 02-093 Warsaw, Poland; (S.N.); (A.W.); (K.L.-K.); (A.F.)
| | - Aleksandra Fesiuk
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Pasteur 3, 02-093 Warsaw, Poland; (S.N.); (A.W.); (K.L.-K.); (A.F.)
- i3S, Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (S.V.); (E.L.)
| | - Sara Vaz
- i3S, Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (S.V.); (E.L.)
| | - Elsa Logarinho
- i3S, Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (S.V.); (E.L.)
- Aging and Aneuploidy Laboratory, IBMC, Institute of Molecular and Cellular Biology, University of Porto, 4200-135 Porto, Portugal
| | - Urszula Wojda
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Pasteur 3, 02-093 Warsaw, Poland; (S.N.); (A.W.); (K.L.-K.); (A.F.)
- Correspondence: ; Tel.: +48-22-5892578
| |
Collapse
|
6
|
Stojanovic T, Benes H, Awad A, Bormann D, Monje FJ. Nicotine abolishes memory-related synaptic strengthening and promotes synaptic depression in the neurogenic dentate gyrus of miR-132/212 knockout mice. Addict Biol 2021; 26:e12905. [PMID: 32293776 PMCID: PMC7988623 DOI: 10.1111/adb.12905] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/21/2020] [Accepted: 03/30/2020] [Indexed: 12/25/2022]
Abstract
Micro-RNAs (miRNAs) are highly evolutionarily conserved short-length/noncoding RNA molecules that modulate a wide range of cellular functions in many cell types by regulating the expression of a variety of targeted genes. miRNAs have also recently emerged as key regulators of neuronal genes mediating the effects of psychostimulant drugs and memory-related neuroplasticity processes. Smoking is a predominant addictive behaviour associated with millions of deaths worldwide, and nicotine is a potent natural psychoactive agonist of cholinergic receptors, highly abundant in cigarettes. The influence of miRNAs modulation on cholinergic signalling in the nervous system remains however poorly explored. Using miRNA knockout mice and biochemical, electrophysiological and pharmacological approaches, we examined the effects of miR-132/212 gene disruption on the levels of hippocampal nicotinic acetylcholine receptors, total ERK and phosphorylated ERK (pERK) and MeCP2 protein levels, and studied the impact of nicotine stimulation on hippocampal synaptic transmission and synaptic depression and strengthening. miR-132/212 deletion significantly altered α7-nAChR and pERK protein levels, but not total ERK or MeCP2, and resulted in both exacerbated synaptic depression and virtually abolished memory-related synaptic strengthening upon nicotine stimulation. These observations reveal a functional miRNAs/nicotinergic signalling interplay critical for nicotinic-receptor expression and neuroplasticity in brain structures relevant for drug addiction and learning and memory functions.
Collapse
Affiliation(s)
- Tamara Stojanovic
- Center for Physiology and Pharmacology, Department of Neurophysiology and NeuropharmacologyMedical University of ViennaViennaAustria
| | - Hannah Benes
- Center for Physiology and Pharmacology, Department of Neurophysiology and NeuropharmacologyMedical University of ViennaViennaAustria
| | - Amena Awad
- Center for Physiology and Pharmacology, Department of Neurophysiology and NeuropharmacologyMedical University of ViennaViennaAustria
| | - Daniel Bormann
- Center for Physiology and Pharmacology, Department of Neurophysiology and NeuropharmacologyMedical University of ViennaViennaAustria
| | - Francisco J. Monje
- Center for Physiology and Pharmacology, Department of Neurophysiology and NeuropharmacologyMedical University of ViennaViennaAustria
| |
Collapse
|
7
|
Autism-associated miR-873 regulates ARID1B, SHANK3 and NRXN2 involved in neurodevelopment. Transl Psychiatry 2020; 10:418. [PMID: 33262327 PMCID: PMC7708977 DOI: 10.1038/s41398-020-01106-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/21/2020] [Accepted: 11/17/2020] [Indexed: 12/20/2022] Open
Abstract
Autism spectrum disorders (ASD) are highly heritable neurodevelopmental disorders with significant genetic heterogeneity. Noncoding microRNAs (miRNAs) are recognised as playing key roles in development of ASD albeit the function of these regulatory genes remains unclear. We previously conducted whole-exome sequencing of Australian families with ASD and identified four novel single nucleotide variations in mature miRNA sequences. A pull-down transcriptome analysis using transfected SH-SY5Y cells proposed a mechanistic model to examine changes in binding affinity associated with a unique mutation found in the conserved 'seed' region of miR-873-5p (rs777143952: T > A). Results suggested several ASD-risk genes were differentially targeted by wild-type and mutant miR-873 variants. In the current study, a dual-luciferase reporter assay confirmed miR-873 variants have a 20-30% inhibition/dysregulation effect on candidate autism risk genes ARID1B, SHANK3 and NRXN2 and also confirmed the affected expression with qPCR. In vitro mouse hippocampal neurons transfected with mutant miR-873 showed less morphological complexity and enhanced sodium currents and excitatory neurotransmission compared to cells transfected with wild-type miR-873. A second in vitro study showed CRISPR/Cas9 miR-873 disrupted SH-SY5Y neuroblastoma cells acquired a neuronal-like morphology and increased expression of ASD important genes ARID1B, SHANK3, ADNP2, ANK2 and CHD8. These results represent the first functional evidence that miR-873 regulates key neural genes involved in development and cell differentiation.
Collapse
|
8
|
Cheyne JE, Montgomery JM. The cellular and molecular basis of in vivo synaptic plasticity in rodents. Am J Physiol Cell Physiol 2020; 318:C1264-C1283. [PMID: 32320288 DOI: 10.1152/ajpcell.00416.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Plasticity within the neuronal networks of the brain underlies the ability to learn and retain new information. The initial discovery of synaptic plasticity occurred by measuring synaptic strength in vivo, applying external stimulation and observing an increase in synaptic strength termed long-term potentiation (LTP). Many of the molecular pathways involved in LTP and other forms of synaptic plasticity were subsequently uncovered in vitro. Over the last few decades, technological advances in recording and imaging in live animals have seen many of these molecular mechanisms confirmed in vivo, including structural changes both pre- and postsynaptically, changes in synaptic strength, and changes in neuronal excitability. A well-studied aspect of neuronal plasticity is the capacity of the brain to adapt to its environment, gained by comparing the brains of deprived and experienced animals in vivo, and in direct response to sensory stimuli. Multiple in vivo studies have also strongly linked plastic changes to memory by interfering with the expression of plasticity and by manipulating memory engrams. Plasticity in vivo also occurs in the absence of any form of external stimulation, i.e., during spontaneous network activity occurring with brain development. However, there is still much to learn about how plasticity is induced during natural learning and how this is altered in neurological disorders.
Collapse
Affiliation(s)
- Juliette E Cheyne
- Department of Physiology and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Johanna M Montgomery
- Department of Physiology and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
9
|
Torri A, Mongelli V, Mondotte JA, Saleh MC. Viral Infection and Stress Affect Protein Levels of Dicer 2 and Argonaute 2 in Drosophila melanogaster. Front Immunol 2020; 11:362. [PMID: 32194567 PMCID: PMC7065269 DOI: 10.3389/fimmu.2020.00362] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/14/2020] [Indexed: 12/21/2022] Open
Abstract
The small interfering RNA (siRNA) pathway of Drosophila melanogaster, mainly characterized by the activity of the enzymes Dicer 2 (Dcr-2) and Argonaute 2 (Ago-2), has been described as the major antiviral immune response. Several lines of evidence demonstrated its pivotal role in conferring resistance against viral infections at cellular and systemic level. However, only few studies have addressed the regulation and induction of this system upon infection and knowledge on stability and turnover of the siRNA pathway core components transcripts and proteins remains scarce. In the current work, we explore whether the siRNA pathway is regulated following viral infection in D. melanogaster. After infecting different fly strains with two different viruses and modes of infection, we observed changes in Dcr-2 and Ago-2 protein concentrations that were not related with changes in gene expression. This response was observed either upon viral infection or upon stress-related experimental procedure, indicating a bivalent function of the siRNA system operating as a general gene regulation rather than a specific antiviral system.
Collapse
Affiliation(s)
- Alessandro Torri
- Viruses and RNA Interference Unit, CNRS Unité Mixte de Recherche, Institut Pasteur, Paris, France
| | - Vanesa Mongelli
- Viruses and RNA Interference Unit, CNRS Unité Mixte de Recherche, Institut Pasteur, Paris, France
| | - Juan A Mondotte
- Viruses and RNA Interference Unit, CNRS Unité Mixte de Recherche, Institut Pasteur, Paris, France
| | - Maria-Carla Saleh
- Viruses and RNA Interference Unit, CNRS Unité Mixte de Recherche, Institut Pasteur, Paris, France
| |
Collapse
|
10
|
Wei Z, Meng X, El Fatimy R, Sun B, Mai D, Zhang J, Arora R, Zeng A, Xu P, Qu S, Krichevsky AM, Selkoe DJ, Li S. Environmental enrichment prevents Aβ oligomer-induced synaptic dysfunction through mirna-132 and hdac3 signaling pathways. Neurobiol Dis 2020; 134:104617. [PMID: 31669733 PMCID: PMC7243177 DOI: 10.1016/j.nbd.2019.104617] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/04/2019] [Accepted: 09/17/2019] [Indexed: 12/21/2022] Open
Abstract
As the most common cause of progressive cognitive decline in humans, Alzheimer's disease (AD) has been intensively studied, but the mechanisms underlying its profound synaptic dysfunction remain unclear. Here we confirm that exposing wild-type mice to an enriched environment (EE) facilitates signaling in the hippocampus that promotes long-term potentiation (LTP). Exposing the hippocampus of mice kept in standard housing to soluble Aβ oligomers impairs LTP, but EE can fully prevent this. Mechanistically, the key molecular features of the EE benefit are an upregulation of miRNA-132 and an inhibition of histone deacetylase (HDAC) signaling. Specifically, soluble Aβ oligomers decreased miR-132 expression and increased HDAC3 levels in cultured primary neurons. Further, we provide evidence that HDAC3 is a direct target of miR-132. Overexpressing miR-132 or injecting an HDAC3 inhibitor into mice in standard housing mimics the benefits of EE in enhancing hippocampal LTP and preventing hippocampal impairment by Aβ oligomers in vivo. We conclude that EE enhances hippocampal synaptic plasticity by upregulating miRNA-132 and reducing HDAC3 signaling in a way that counteracts the synaptotoxicity of human Aβ oligomers. Our findings provide a rationale for prolonged exposure to cognitive novelty and/or epigenetic modulation to lessen the progressive effects of Aβ accumulation during human brain aging.
Collapse
Affiliation(s)
- Zhiyun Wei
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, United States of America; Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xingjun Meng
- Central Laboratory and Department of Neurology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan 528300, Guangdong, China
| | - Rachid El Fatimy
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, United States of America
| | - Bowen Sun
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, United States of America
| | - Dongmei Mai
- Central Laboratory and Department of Neurology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan 528300, Guangdong, China
| | - Junfang Zhang
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, United States of America; Department of Physiology and Pharmacology, School of Medicine, Ningbo University, Ningbo, HMS Initiative for RNA Medicine, Zhejiang, China
| | - Ramil Arora
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, United States of America
| | - Ailiang Zeng
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, United States of America
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shaogang Qu
- Central Laboratory and Department of Neurology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan 528300, Guangdong, China
| | - Anna M Krichevsky
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, United States of America
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, United States of America
| | - Shaomin Li
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, United States of America.
| |
Collapse
|
11
|
MicroRNA-34a Acutely Regulates Synaptic Efficacy in the Adult Dentate Gyrus In Vivo. Mol Neurobiol 2019; 57:1432-1445. [PMID: 31754996 DOI: 10.1007/s12035-019-01816-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/11/2019] [Indexed: 12/30/2022]
Abstract
Activity-dependent synaptic plasticity involves rapid regulation of neuronal protein synthesis on a time-scale of minutes. miRNA function in synaptic plasticity and memory formation has been elucidated by stable experimental manipulation of miRNA expression and activity using transgenic approaches and viral vectors. However, the impact of rapid miRNA modulation on synaptic efficacy is unknown. Here, we examined the effect of acute (12 min), intrahippocampal infusion of a miR-34a antagonist (antimiR) on medial perforant path-evoked synaptic transmission in the dentate gyrus of adult anesthetised rats. AntimiR-34a infusion acutely depressed medial perforant path-evoked field excitatory post-synaptic potentials (fEPSPs). The fEPSP decrease was detected within 9 min of infusion, lasted for hours, and was associated with knockdown of antimiR-34a levels. AntimiR-34a-induced synaptic depression was sequence-specific; no changes were elicited by infusion of scrambled or mismatch control. The rapid modulation suggests that a target, or set of targets, is regulated by miR-34a. Western blot analysis of dentate gyrus lysates revealed enhanced expression of Arc, a known miR-34a target, and four novel predicted targets (Ctip2, PKI-1α, TCF4 and Ube2g1). Remarkably, antimiR-34a had no effect when infused during the maintenance phase of long-term potentiation. We conclude that miR-34a regulates basal synaptic efficacy in the adult dentate gyrus in vivo. To our knowledge, these in vivo findings are the first to demonstrate acute (< 9 min) regulation of synaptic efficacy in the adult brain by a miRNA.
Collapse
|
12
|
Kenny A, McArdle H, Calero M, Rabano A, Madden SF, Adamson K, Forster R, Spain E, Prehn JHM, Henshall DC, Medina M, Jimenez-Mateos EM, Engel T. Elevated Plasma microRNA-206 Levels Predict Cognitive Decline and Progression to Dementia from Mild Cognitive Impairment. Biomolecules 2019; 9:biom9110734. [PMID: 31766231 PMCID: PMC6920950 DOI: 10.3390/biom9110734] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/31/2019] [Accepted: 11/09/2019] [Indexed: 02/06/2023] Open
Abstract
The need for practical biomarkers for early diagnosis of Alzheimer’s disease (AD) remains largely unmet. Here we investigated the use of blood-based microRNAs as prognostic biomarkers for AD and their application in a novel electrochemical microfluidic device for microRNA detection. MicroRNA transcriptome was profiled in plasma from patients with mild cognitive impairment (MCI) and AD. MicroRNAs Let-7b and microRNA-206 were validated at elevated levels in MCI and AD, respectively. MicroRNA-206 displayed a strong correlation with cognitive decline and memory deficits. Longitudinal follow-ups over five years identified microRNA-206 increases preceding the onset of dementia. MicroRNA-206 was increased in unprocessed plasma of AD and MCI subjects, detected by our microfluidic device. While increased Let-7b levels in plasma may be used to identify patients with MCI, changes in plasma levels of microRNA-206 may be used to predict cognitive decline and progression towards dementia at an MCI stage. MicroRNA quantification via a microfluidic device could provide a practical cost-effective tool for the stratification of patients with MCI according to risk of developing AD.
Collapse
Affiliation(s)
- Aidan Kenny
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland; (A.K.); (D.C.H.)
| | - Hazel McArdle
- School of Chemical Sciences, Dublin City University, Dublin 9, Ireland; (H.M.); (K.A.); (E.S.)
| | - Miguel Calero
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.C.); (A.R.); (M.M.)
- Carlos III Institute of Health, 28220 Madrid, Spain
| | - Alberto Rabano
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.C.); (A.R.); (M.M.)
- Centro de Investigación en Enfermedades Neurológicas (CIEN) Foundation, Queen Sofia Foundation Alzheimer Center, 28031 Madrid, Spain
| | - Stephen F. Madden
- Data Science Centre, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland;
| | - Kellie Adamson
- School of Chemical Sciences, Dublin City University, Dublin 9, Ireland; (H.M.); (K.A.); (E.S.)
| | - Robert Forster
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland;
- FutureNeuro SFI Research Centre, Dublin D02 YN77, Ireland
| | - Elaine Spain
- School of Chemical Sciences, Dublin City University, Dublin 9, Ireland; (H.M.); (K.A.); (E.S.)
| | - Jochen H. M. Prehn
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland; (A.K.); (D.C.H.)
- FutureNeuro SFI Research Centre, Dublin D02 YN77, Ireland
| | - David C. Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland; (A.K.); (D.C.H.)
- FutureNeuro SFI Research Centre, Dublin D02 YN77, Ireland
| | - Miguel Medina
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.C.); (A.R.); (M.M.)
- Centro de Investigación en Enfermedades Neurológicas (CIEN) Foundation, Queen Sofia Foundation Alzheimer Center, 28031 Madrid, Spain
| | - Eva M. Jimenez-Mateos
- Discipline of Physiology, School of Medicine, Trinity College Dublin, The University of Dublin, Dublin D02 PN40, Ireland
- Correspondence: (E.M.J.-M.); (T.E.); Tel.: +35318965199 (E.M.J.-M.); +35314025199 (T.E.); Fax: +35314022447 (T.E.)
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland; (A.K.); (D.C.H.)
- FutureNeuro SFI Research Centre, Dublin D02 YN77, Ireland
- Correspondence: (E.M.J.-M.); (T.E.); Tel.: +35318965199 (E.M.J.-M.); +35314025199 (T.E.); Fax: +35314022447 (T.E.)
| |
Collapse
|
13
|
Sadlon A, Takousis P, Alexopoulos P, Evangelou E, Prokopenko I, Perneczky R. miRNAs Identify Shared Pathways in Alzheimer's and Parkinson's Diseases. Trends Mol Med 2019; 25:662-672. [PMID: 31221572 DOI: 10.1016/j.molmed.2019.05.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/10/2019] [Accepted: 05/15/2019] [Indexed: 12/14/2022]
Abstract
Despite the identification of several dozens of common genetic variants associated with Alzheimer's disease (AD) and Parkinson's disease (PD), most of the genetic risk remains uncharacterised. Therefore, it is important to understand the role of regulatory elements, such as miRNAs. Dysregulated miRNAs are implicated in AD and PD, with potential value in dissecting the shared pathophysiology between the two disorders. miRNAs relevant to both neurodegenerative diseases are related to axonal guidance, apoptosis, and inflammation, therefore, AD and PD likely arise from similar underlying biological pathway defects. Furthermore, pathways regulated by APP, L1CAM, and genes of the caspase family may represent promising therapeutic miRNA targets in AD and PD since they are targeted by dysregulated miRNAs in both disorders.
Collapse
Affiliation(s)
- Angélique Sadlon
- Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, UK
| | - Petros Takousis
- Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, UK
| | - Panagiotis Alexopoulos
- Department of Psychiatry, University of Patras, Patras, Greece; Department of Psychiatry and Psychotherapy, Technische Universität München, Munich, Germany
| | - Evangelos Evangelou
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK; Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Inga Prokopenko
- Section of Genomics of Common Disease, Department of Medicine, Imperial College London, London, UK; Section of Statistical Multi-Omics, Department of Clinical and Experimental Medicine, University of Surrey, Guildford, UK
| | - Robert Perneczky
- Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, UK; Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
14
|
Patel AA, Ganepola GA, Rutledge JR, Chang DH. The Potential Role of Dysregulated miRNAs in Alzheimer’s Disease Pathogenesis and Progression. J Alzheimers Dis 2019; 67:1123-1145. [DOI: 10.3233/jad-181078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ankur A. Patel
- Department of Research, Center for Cancer Research and Genomic Medicine, The Valley Hospital, Paramus, NJ, USA
| | - Ganepola A.P. Ganepola
- Department of Research, Center for Cancer Research and Genomic Medicine, The Valley Hospital, Paramus, NJ, USA
| | - John R. Rutledge
- Department of Oncology Special Program, The Daniel and Gloria Blumenthal Cancer Center, The Valley Hospital, Paramus, NJ, USA
| | - David H. Chang
- Department of Research, Center for Cancer Research and Genomic Medicine, The Valley Hospital, Paramus, NJ, USA
| |
Collapse
|
15
|
Zhang L, Chen ZW, Yang SF, Shaer M, Wang Y, Dong JJ, Jiapaer B. MicroRNA-219 decreases hippocampal long-term potentiation inhibition and hippocampal neuronal cell apoptosis in type 2 diabetes mellitus mice by suppressing the NMDAR signaling pathway. CNS Neurosci Ther 2018; 25:69-77. [PMID: 29804319 DOI: 10.1111/cns.12981] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 04/28/2018] [Accepted: 04/30/2018] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Type 2 diabetes mellitus (T2DM) is a complex polygenic disease that causes hyperglycemia and accounts for 90%-95% of all diabetes mellitus cases. Hence, this study aimed to examine the effects of microRNA-219 (miR-219) on inhibition of long-term potentiation (LTP) and apoptosis of hippocampal neuronal cells in T2DM mice through the N-methyl-d-aspartate receptor (NMDAR) signaling pathway regulation. METHODS The T2DM mouse models were established, after which LTP in vivo was recorded by means of electrical biology, and the fasting blood glucose of mice was measured. Next, the density of pyramidal neurons in each group was calculated. Additionally, the expression levels of miR-219, the NMDAR signaling pathway [NMDAR1 (NR) 1, NR2A, and NR2B), downstream target proteins [calmodulin-dependent protein kinase-II (CaMK-II) and cAMP response element binding protein (CREB)], and apoptosis-related factors [Bcl2-associated X protein (Bax), c-caspase-9 and c-caspase-3] in the hippocampal tissues were determined. Finally, immunohistochemistry was applied to detect and measure the positive expression of Bax, caspase-9, and caspase-3 proteins. RESULTS The results showed that upregulation of miR-219 increases LTP and density of pyramidal neurons in the hippocampal tissues of mice, while it decreases blood glucose of db/db mice. In addition, miR-219 upregulation also leads to decreased mRNA levels of NR1, NR2A, NR2B, CaMK-II, and CREB and protein levels of NR1, NR2A, NR2B, CaMK-II, CREB, p-CREB, Bax, c-caspase-9, and c-caspase-3. Furthermore, upregulation of miR-219 inhibits positive expression of Bax, caspase-9, and caspase-3 proteins, leading to the suppression of hippocampal neuronal cell apoptosis. CONCLUSION The findings from this study indicated that the upregulation of miR-219 decreases LTP inhibition and hippocampal neuronal cell apoptosis in T2DM mice by downregulating the NMDAR signaling pathway, therefore suggesting that MiR-219 might be a future therapeutic strategy for T2DM.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Cadre Health Care, the Xinjiang Uygur Autonomous Region People's Hospital, Urumchi, China
| | - Zheng-Wen Chen
- Department of Anesthesiology, the Second Affiliated Hospital of Xinjiang Medical University, Urumchi, China
| | - Shu-Fen Yang
- Department of Nephrology, the Xinjiang Uygur Autonomous Region People's Hospital, Urumchi, China
| | - Muyasi Shaer
- Department of Cadre Health Care, the Xinjiang Uygur Autonomous Region People's Hospital, Urumchi, China
| | - Ying Wang
- Department of Cadre Health Care, the Xinjiang Uygur Autonomous Region People's Hospital, Urumchi, China
| | - Jun-Jie Dong
- Department of Cadre Health Care, the Xinjiang Uygur Autonomous Region People's Hospital, Urumchi, China
| | - Beili Jiapaer
- Department of Cadre Health Care, the Xinjiang Uygur Autonomous Region People's Hospital, Urumchi, China
| |
Collapse
|
16
|
Non-Contingent Exposure to Amphetamine in Adolescence Recruits miR-218 to Regulate Dcc Expression in the VTA. Neuropsychopharmacology 2018; 43:900-911. [PMID: 29154364 PMCID: PMC5809802 DOI: 10.1038/npp.2017.284] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/02/2017] [Accepted: 11/06/2017] [Indexed: 02/08/2023]
Abstract
The development of the dopamine input to the medial prefrontal cortex occurs during adolescence and is a process that is vulnerable to disruption by stimulant drugs such as amphetamine. We have previously linked the amphetamine-induced disruption of dopamine connectivity and prefrontal cortex maturation during adolescence to the downregulation of the Netrin-1 receptor, DCC, in dopamine neurons. However, how DCC expression in dopamine neurons is itself regulated is completely unknown. MicroRNA (miRNA) regulation of mRNA translation and stability is a prominent mechanism linking environmental events to changes in protein expression. Here, using male mice, we show that miR-218 is expressed in dopamine neurons and is a repressor of DCC. Whereas Dcc mRNA levels increase from early adolescence to adulthood, miR-218 exhibits the exact opposite switch, most likely maintaining postnatal Dcc expression. This dynamic regulation appears to be selective to Dcc since the expression of Robo 1, the other guidance cue receptor target of miR-218, does not vary with age. Amphetamine in adolescence, but not in adulthood, increases miR-218 in the VTA and this event is required for drug-induced downregulation of Dcc mRNA and protein expression. This effect seems to be specific to Dcc because amphetamine does not alter Robo1. Furthermore, the upregulation of miR-218 by amphetamine requires dopamine D2 receptor activation. These findings identify miR-218 as regulator of DCC in the VTA both in normal development and after drug exposure in adolescence.
Collapse
|
17
|
In silico identification and in vivo validation of miR-495 as a novel regulator of motivation for cocaine that targets multiple addiction-related networks in the nucleus accumbens. Mol Psychiatry 2018; 23:434-443. [PMID: 28044061 PMCID: PMC5495632 DOI: 10.1038/mp.2016.238] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 10/31/2016] [Accepted: 11/14/2016] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression and are implicated in the etiology of several neuropsychiatric disorders, including substance use disorders (SUDs). Using in silico genome-wide sequence analyses, we identified miR-495 as a miRNA whose predicted targets are significantly enriched in the Knowledgebase for Addiction Related Genes (ARG) database (KARG; http://karg.cbi.pku.edu.cn). This small non-coding RNA is also highly expressed within the nucleus accumbens (NAc), a pivotal brain region underlying reward and motivation. Using luciferase reporter assays, we found that miR-495 directly targeted the 3'UTRs of Bdnf, Camk2a and Arc. Furthermore, we measured miR-495 expression in response to acute cocaine in mice and found that it is downregulated rapidly and selectively in the NAc, along with concomitant increases in ARG expression. Lentiviral-mediated miR-495 overexpression in the NAc shell (NAcsh) not only reversed these cocaine-induced effects but also downregulated multiple ARG mRNAs in specific SUD-related biological pathways, including those that regulate synaptic plasticity. miR-495 expression was also downregulated in the NAcsh of rats following cocaine self-administration. Most importantly, we found that NAcsh miR-495 overexpression suppressed the motivation to self-administer and seek cocaine across progressive ratio, extinction and reinstatement testing, but had no effect on food reinforcement, suggesting that miR-495 selectively affects addiction-related behaviors. Overall, our in silico search for post-transcriptional regulators identified miR-495 as a novel regulator of multiple ARGs that have a role in modulating motivation for cocaine.
Collapse
|
18
|
Huang Y, Liu X, Liao Y, Liao Y, Zou D, Wei X, Huang Q, Wu Y. Role of miR-34c in the cognitive function of epileptic rats induced by pentylenetetrazol. Mol Med Rep 2018; 17:4173-4180. [PMID: 29344671 PMCID: PMC5802187 DOI: 10.3892/mmr.2018.8441] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 04/05/2017] [Indexed: 11/11/2022] Open
Abstract
Studies suggest that microRNA (miR)-34c may serve a role in cognitive function in rodent and primate groups. A previous study demonstrated an increase in miR-34c expression in chronic epileptic rats with memory disorders, induced by pentylenetetrazol (PTZ). However, the mechanism underlying the effects of miR-34c on cognitive function in epileptic rats remains unclear. Therefore, the present study investigated alterations in cognitive function in temporal lobe epileptic rats, induced by repeated injections of PTZ, following treatment with an miR-34c agomir compared with a scramble group. Increased expression of miR-34c was observed in the agomir group, in addition to an increased deficit in learning and memory function in the Morris water maze test. Glutamate receptor ionotropic N-methyl-D-aspartate (NMDA) 2B (NR2B), phosphorylated (p)-reduced nicotinamide-adenine dinucleotide phosphate-dependent diflavin oxidoreductase 1 (NR1) and p-glutamate receptor 1 (GluR1) protein expression was detected in the hippocampus using western blotting. Additionally, the downregulation of NR2B, p-NR1 and p-GluR1 in the miR-34c agomir group demonstrated that miR-34c may serve a negative role in cognitive function in epileptic seizures, by dysregulating NMDA and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors, which are associated with long-term potentiation.
Collapse
Affiliation(s)
- Yiqing Huang
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xixia Liu
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yuhan Liao
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yayun Liao
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Donghua Zou
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xing Wei
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Qi Huang
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yuan Wu
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
19
|
Park AJ, Havekes R, Fu X, Hansen R, Tudor JC, Peixoto L, Li Z, Wu YC, Poplawski SG, Baraban JM, Abel T. Learning induces the translin/trax RNase complex to express activin receptors for persistent memory. eLife 2017; 6. [PMID: 28927503 PMCID: PMC5606845 DOI: 10.7554/elife.27872] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 09/01/2017] [Indexed: 12/16/2022] Open
Abstract
Long-lasting forms of synaptic plasticity and memory require de novo protein synthesis. Yet, how learning triggers this process to form memory is unclear. Translin/trax is a candidate to drive this learning-induced memory mechanism by suppressing microRNA-mediated translational silencing at activated synapses. We find that mice lacking translin/trax display defects in synaptic tagging, which requires protein synthesis at activated synapses, and long-term memory. Hippocampal samples harvested from these mice following learning show increases in several disease-related microRNAs targeting the activin A receptor type 1C (ACVR1C), a component of the transforming growth factor-β receptor superfamily. Furthermore, the absence of translin/trax abolishes synaptic upregulation of ACVR1C protein after learning. Finally, synaptic tagging and long-term memory deficits in mice lacking translin/trax are mimicked by ACVR1C inhibition. Thus, we define a new memory mechanism by which learning reverses microRNA-mediated silencing of the novel plasticity protein ACVR1C via translin/trax.
Collapse
Affiliation(s)
- Alan Jung Park
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - Robbert Havekes
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - Xiuping Fu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, United States
| | - Rolf Hansen
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - Jennifer C Tudor
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - Lucia Peixoto
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - Zhi Li
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, United States
| | - Yen-Ching Wu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, United States
| | - Shane G Poplawski
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - Jay M Baraban
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, United States
| | - Ted Abel
- Department of Biology, University of Pennsylvania, Philadelphia, United States.,Molecular Physiology and Biophysics, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| |
Collapse
|
20
|
Wei CW, Luo T, Zou SS, Wu AS. Research progress on the roles of microRNAs in governing synaptic plasticity, learning and memory. Life Sci 2017; 188:118-122. [PMID: 28866103 DOI: 10.1016/j.lfs.2017.08.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/24/2017] [Accepted: 08/25/2017] [Indexed: 12/16/2022]
Abstract
The importance of non-coding RNA involved in biological processes has become apparent in recent years and the mechanism of transcriptional regulation has also been identified. MicroRNAs (miRNAs) represent a class of small regulatory non-coding RNAs of 22bp in length that mediate gene silencing by identifying specific sequences in the target messenger RNAs (mRNAs). Many miRNAs are highly expressed in the central nervous system in a spatially and temporally controlled manner in normal physiology, as well as in certain pathological conditions. There is growing evidence that a considerable number of specific miRNAs play important roles in synaptic plasticity, learning and memory function. In addition, the dysfunction of these molecules may also contribute to the etiology of several neurodegenerative diseases. Here we provide an overview of the current literatures, which support non-coding RNA-mediated gene function regulation represents an important but underappreciated, layer of epigenetic control that facilitates learning and memory functions.
Collapse
Affiliation(s)
- Chang-Wei Wei
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Ting Luo
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Shan-Shan Zou
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - An-Shi Wu
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.
| |
Collapse
|
21
|
Ryan B, Logan BJ, Abraham WC, Williams JM. MicroRNAs, miR-23a-3p and miR-151-3p, Are Regulated in Dentate Gyrus Neuropil following Induction of Long-Term Potentiation In Vivo. PLoS One 2017; 12:e0170407. [PMID: 28125614 PMCID: PMC5268419 DOI: 10.1371/journal.pone.0170407] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/04/2017] [Indexed: 01/04/2023] Open
Abstract
Translation of synaptic mRNA contributes to alterations in the proteome necessary to consolidate long-term potentiation (LTP), a model of memory processes. Yet, how this process is controlled is not fully resolved. MicroRNAs are non-coding RNAs that negatively regulate gene expression by suppressing translation or promoting mRNA degradation. As specific microRNAs are synaptically located, we hypothesized that they are ideally suited to couple synaptic activation, translational regulation, and LTP persistence. The aim of this study was to identify LTP-regulated microRNAs at or near synapses. Accordingly, LTP was induced unilaterally at perforant path-dentate gyrus synapses in awake adult Sprague-Dawley rats. Five hours later, dentate gyrus middle molecular layer neuropil, containing potentiated synapses, was laser-microdissected. MicroRNA expression profiling, using TaqMan Low Density MicroRNA Microarrays (n = 4), identified eight regulated microRNAs. Subsequent individual TaqMan assays confirmed upregulation of miR-23a-3p (1.30 ± 0.10; p = 0.015) and miR-151-3p (1.17 ± 0.19; p = 0.045) in a second cohort (n = 7). Interestingly, bioinformatic analysis indicated that miR-151-3p and miR-23a-3p regulate synaptic reorganisation and transcription, respectively. In summary, we have demonstrated for the first time that microRNAs are regulated in isolated neuropil following LTP induction in vivo, supporting the hypothesis that synaptic, LTP-responsive microRNAs contribute to LTP persistence via regulation of the synaptic proteome.
Collapse
Affiliation(s)
- Brigid Ryan
- Department of Anatomy, University of Otago, Dunedin, New Zealand
- The Brain Health Research Centre, University of Otago, Dunedin, New Zealand
- Brain Research New Zealand, Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| | - Barbara J. Logan
- The Brain Health Research Centre, University of Otago, Dunedin, New Zealand
- Brain Research New Zealand, Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
- Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Wickliffe C. Abraham
- The Brain Health Research Centre, University of Otago, Dunedin, New Zealand
- Brain Research New Zealand, Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
- Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Joanna M. Williams
- Department of Anatomy, University of Otago, Dunedin, New Zealand
- The Brain Health Research Centre, University of Otago, Dunedin, New Zealand
- Brain Research New Zealand, Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
- * E-mail:
| |
Collapse
|
22
|
Nadim WD, Simion V, Bénédetti H, Pichon C, Baril P, Morisset-Lopez S. MicroRNAs in Neurocognitive Dysfunctions: New Molecular Targets for Pharmacological Treatments? Curr Neuropharmacol 2017; 15:260-275. [PMID: 27396304 PMCID: PMC5412695 DOI: 10.2174/1570159x14666160709001441] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/31/2016] [Accepted: 07/01/2016] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Neurodegenerative and cognitive disorders are multifactorial diseases (i.e., involving neurodevelopmental, genetic, age or environmental factors) characterized by an abnormal development that affects neuronal function and integrity. Recently, an increasing number of studies revealed that the dysregulation of microRNAs (miRNAs) may be involved in the etiology of cognitive disorders as Alzheimer, Parkinson, and Huntington's diseases, Schizophrenia and Autism spectrum disorders. METHODS From an extensive search in bibliographic databases of peer-reviewed research literature, we identified relevant published studies related to specific key words such as memory, cognition, neurodegenerative disorders, neurogenesis and miRNA. We then analysed, evaluated and summerized scientific evidences derived from these studies. RESULTS We first briefly summarize the basic molecular events involved in memory, a process inherent to cognitive disease, and then describe the role of miRNAs in neurodevelopment, synaptic plasticity and memory. Secondly, we provide an overview of the impact of miRNA dysregulation in the pathogenesis of different neurocognitive disorders, and lastly discuss the feasibility of miRNA-based therapeutics in the treatment of these disorders. CONCLUSION This review highlights the molecular basis of neurodegenerative and cognitive disorders by focusing on the impact of miRNAs dysregulation in these pathological phenotypes. Altogether, the published reports suggest that miRNAs-based therapy could be a viable therapeutic alternative to current treatment options in the future.
Collapse
Affiliation(s)
- Wissem Deraredj Nadim
- Centre de Biophysique Moléculaire, CNRS UPR4301, Université d’Orléans France, 45071 Orléans Cedex, France
| | - Viorel Simion
- Centre de Biophysique Moléculaire, CNRS UPR4301, Université d’Orléans France, 45071 Orléans Cedex, France
| | - Hélène Bénédetti
- Centre de Biophysique Moléculaire, CNRS UPR4301, Université d’Orléans France, 45071 Orléans Cedex, France
| | - Chantal Pichon
- Centre de Biophysique Moléculaire, CNRS UPR4301, Université d’Orléans France, 45071 Orléans Cedex, France
| | - Patrick Baril
- Centre de Biophysique Moléculaire, CNRS UPR4301, Université d’Orléans France, 45071 Orléans Cedex, France
| | - Séverine Morisset-Lopez
- Centre de Biophysique Moléculaire, CNRS UPR4301, Université d’Orléans France, 45071 Orléans Cedex, France
| |
Collapse
|
23
|
Novel microRNA revealed by systematic analysis of the microRNA transcriptome in dentate gyrus granule cells. Neurosci Lett 2016; 707:132280. [PMID: 27612590 DOI: 10.1016/j.neulet.2016.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/22/2016] [Accepted: 09/02/2016] [Indexed: 12/17/2022]
Abstract
Post-transcriptional control of gene expression by microRNAs provides an important regulatory system within neurons, allowing co-ordinate and fine-tuned expression of plasticity-related proteins. Indeed, specific microRNAs have been shown to be regulated by synaptic activity in the dentate gyrus, and contribute to the regulated gene expression that underlies the persistence of long-term potentiation (LTP), a model of memory. To fully explore the contribution of microRNAs in synaptic plasticity, it is important to characterize the complete microRNA transcriptome in regions such as the dentate gyrus. Accordingly we used deep sequencing and miRDeep* analysis to search for novel microRNAs expressed in the dentate gyrus granule cell layer. Drawing on combined sequencing and bioinformatics analyses, including hairpin stability and patterns of precursor microRNA processing, we identified nine putative novel microRNAs. We did not find evidence of differential expression of any of these putative microRNAs following LTP at perforant path-granule cell synapses in awake rats (5 h post-tetanus; p > 0.05). Focusing on novel_miR-1, the most abundant novel miRNA, we showed that this sequence could be amplified from RNA extracted from dentate gyrus granule cells by reverse transcription-quantitative polymerase chain reaction. Further, by computationally predicting mRNA targets of this microRNA, we found that this novel microRNA likely contributes to the regulation of proteins that function at synapses.
Collapse
|
24
|
Increased miR-132-3p expression is associated with chronic neuropathic pain. Exp Neurol 2016; 283:276-86. [PMID: 27349406 DOI: 10.1016/j.expneurol.2016.06.025] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 12/30/2022]
Abstract
Alterations in the neuro-immune balance play a major role in the pathophysiology of chronic neuropathic pain. MicroRNAs (miRNA) can regulate both immune and neuronal processes and may function as master switches in chronic pain development and maintenance. We set out to analyze the role of miR-132-3p, first in patients with peripheral neuropathies and second in an animal model of neuropathic pain. We initially determined miR-132-3p expression by measuring its levels in white blood cells (WBC) of 30 patients and 30 healthy controls and next in sural nerve biopsies of 81 patients with painful or painless inflammatory or non-inflammatory neuropathies based on clinical diagnosis. We found a 2.6 fold increase in miR-132-3p expression in WBC of neuropathy patients compared to healthy controls (p<0.001). MiR-132-3p expression was also slightly up-regulated in sural nerve biopsies from neuropathy patients suffering from neuropathic pain compared to those without pain (1.2 fold; p<0.001). These promising findings were investigated further in an animal model of neuropathic pain, the spared nerve injury model (SNI). For this purpose miR-132-3p expression levels were measured in dorsal root ganglia and spinal cord of rats. Subsequently, miR-132-3p expression was pharmacologically modulated with miRNA antagonists or mimetics, and evoked pain and pain aversion were assessed. Spinal miR-132-3p levels were highest 10days after SNI, a time when persistent allodynia was established (p<0.05). Spinal administration of miR-132-3p antagonists via intrathecal (i.t.) catheters dose dependently reversed mechanical allodyina (p<0.001) and eliminated pain behavior in the place escape avoidance paradigm (p<0.001). Intrathecal administration of miR-132-3p mimetic dose-dependently induced pain behavior in naïve rats (p<0.001). Taken together these results indicate a pro-nociceptive effect of miR-132-3p in chronic neuropathic pain.
Collapse
|
25
|
Transcriptional regulation of long-term potentiation. Neurogenetics 2016; 17:201-210. [PMID: 27318935 DOI: 10.1007/s10048-016-0489-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 06/10/2016] [Indexed: 10/21/2022]
Abstract
Long-term potentiation (LTP), the persistent strengthening of synapses following high levels of stimulation, is a form of synaptic plasticity that has been studied extensively as a possible mechanism for learning and memory formation. The strengthening of the synapse that occurs during LTP requires cascades of complex molecular processes and the coordinated remodeling of pre-synaptic and post-synaptic neurons. Despite over four decades of research, our understanding of the transcriptional mechanisms and molecular processes underlying LTP remains incomplete. Identification of all the proteins and non-coding RNA transcripts expressed during LTP may provide greater insight into the molecular mechanisms involved in learning and memory formation.
Collapse
|
26
|
Fu X, Shah A, Baraban JM. Rapid reversal of translational silencing: Emerging role of microRNA degradation pathways in neuronal plasticity. Neurobiol Learn Mem 2016; 133:225-232. [PMID: 27107971 DOI: 10.1016/j.nlm.2016.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/11/2016] [Accepted: 04/16/2016] [Indexed: 12/21/2022]
Abstract
As microRNAs silence translation, rapid reversal of this process has emerged as an attractive mechanism for driving de novo protein synthesis mediating neuronal plasticity. Herein, we summarize recent studies identifying neuronal stimuli that trigger rapid decreases in microRNA levels and reverse translational silencing of plasticity transcripts. Although these findings indicate that neuronal stimulation elicits rapid degradation of selected microRNAs, we are only beginning to decipher the molecular pathways involved. Accordingly, we present an overview of several molecular pathways implicated in mediating microRNA degradation: Lin-28, translin/trax, and MCPIP1. As these degradation pathways target distinct subsets of microRNAs, they enable neurons to reverse silencing rapidly, yet selectively.
Collapse
Affiliation(s)
- Xiuping Fu
- Solomon H. Snyder Department of Neuroscience and Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, United States
| | - Aparna Shah
- Solomon H. Snyder Department of Neuroscience and Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, United States
| | - Jay M Baraban
- Solomon H. Snyder Department of Neuroscience and Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, United States.
| |
Collapse
|
27
|
Sánchez-Ramón S, Faure F. Through the Immune Looking Glass: A Model for Brain Memory Strategies. Front Cell Neurosci 2016; 10:17. [PMID: 26869886 PMCID: PMC4740784 DOI: 10.3389/fncel.2016.00017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/18/2016] [Indexed: 12/27/2022] Open
Abstract
The immune system (IS) and the central nervous system (CNS) are complex cognitive networks involved in defining the identity (self) of the individual through recognition and memory processes that enable one to anticipate responses to stimuli. Brain memory has traditionally been classified as either implicit or explicit on psychological and anatomical grounds, with reminiscences of the evolutionarily-based innate-adaptive IS responses. Beyond the multineuronal networks of the CNS, we propose a theoretical model of brain memory integrating the CNS as a whole. This is achieved by analogical reasoning between the operational rules of recognition and memory processes in both systems, coupled to an evolutionary analysis. In this new model, the hippocampus is no longer specifically ascribed to explicit memory but rather it both becomes part of the innate (implicit) memory system and tightly controls the explicit memory system. Alike the antigen presenting cells for the IS, the hippocampus would integrate transient and pseudo-specific (i.e., danger-fear) memories and would drive the formation of long-term and highly specific or explicit memories (i.e., the taste of the Proust's madeleine cake) by the more complex and recent, evolutionarily speaking, neocortex. Experimental and clinical evidence is provided to support the model. We believe that the singularity of this model's approximation could help to gain a better understanding of the mechanisms operating in brain memory strategies from a large-scale network perspective.
Collapse
Affiliation(s)
- Silvia Sánchez-Ramón
- Department of Clinical Immunology and Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San CarlosMadrid, Spain; Department of Microbiology I, Complutense University School of MedicineMadrid, Spain
| | - Florence Faure
- Institut National de la Santé et de la Recherche Médicale U932, Institut Curie Paris, France
| |
Collapse
|
28
|
Boese AS, Saba R, Campbell K, Majer A, Medina S, Burton L, Booth TF, Chong P, Westmacott G, Dutta SM, Saba JA, Booth SA. MicroRNA abundance is altered in synaptoneurosomes during prion disease. Mol Cell Neurosci 2015; 71:13-24. [PMID: 26658803 DOI: 10.1016/j.mcn.2015.12.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/27/2015] [Accepted: 12/01/2015] [Indexed: 12/15/2022] Open
Abstract
Discrepancy in synaptic structural plasticity is one of the earliest manifestations of the neurodegenerative state. In prion diseases, a reduction in synapses and dendritic spine densities is observed during preclinical disease in neurons of the cortex and hippocampus. The underlying molecular mechanisms of these alterations have not been identified but microRNAs (miRNAs), many of which are enriched at the synapse, likely regulate local protein synthesis in rapid response to stressors such as replicating prions. MiRNAs are therefore candidate regulators of these early neurodegenerative changes and may provide clues as to the molecular pathways involved. We therefore determined changes in mature miRNA abundance within synaptoneurosomes isolated from prion-infected, as compared to mock-infected animals, at asymptomatic and symptomatic stages of disease. During preclinical disease, miRNAs that are enriched in neurons including miR-124a-3p, miR-136-5p and miR-376a-3p were elevated. At later stages of disease we found increases in miRNAs that have previously been identified as deregulated in brain tissues of prion infected mice, as well as in Alzheimer's disease (AD) models. These include miR-146a-5p, miR-142-3p, miR-143-3p, miR-145a-5p, miR-451a, miR-let-7b, miR-320 and miR-150-5p. A number of miRNAs also decreased in abundance during clinical disease. These included almost all members of the related miR-200 family (miR-200a-3p, miR-200b-3p, miR-200c-3p, miR-141-3p, and miR-429-3p) and the 182 cluster (miR-182-5p and miR-183-5p).
Collapse
Affiliation(s)
- Amrit S Boese
- Molecular PathoBiology, Public Health Agency of Canada, National Microbiology Laboratory, 1015 Arlington St., Winnipeg, MB R3E 3R2, Canada; Department of Medical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of Manitoba, 730 William Ave., Winnipeg, MB R3E 0W3, Canada
| | - Reuben Saba
- Molecular PathoBiology, Public Health Agency of Canada, National Microbiology Laboratory, 1015 Arlington St., Winnipeg, MB R3E 3R2, Canada
| | - Kristyn Campbell
- Molecular PathoBiology, Public Health Agency of Canada, National Microbiology Laboratory, 1015 Arlington St., Winnipeg, MB R3E 3R2, Canada; Department of Medical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of Manitoba, 730 William Ave., Winnipeg, MB R3E 0W3, Canada
| | - Anna Majer
- Molecular PathoBiology, Public Health Agency of Canada, National Microbiology Laboratory, 1015 Arlington St., Winnipeg, MB R3E 3R2, Canada; Department of Medical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of Manitoba, 730 William Ave., Winnipeg, MB R3E 0W3, Canada
| | - Sarah Medina
- Molecular PathoBiology, Public Health Agency of Canada, National Microbiology Laboratory, 1015 Arlington St., Winnipeg, MB R3E 3R2, Canada
| | - Lynn Burton
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, 1015 Arlington St., Winnipeg, MB R3E 3M4, Canada
| | - Timothy F Booth
- Viral Diseases Division, Public Health Agency of Canada, National Microbiology Laboratory, 1015 Arlington St., Winnipeg, MB R3E 3R2, Canada
| | - Patrick Chong
- Mass Spectrometry and Proteomics Core Facility, Public Health Agency of Canada, National Microbiology Laboratory, 1015 Arlington St., Winnipeg, MB R3E 3R2, Canada
| | - Garrett Westmacott
- Mass Spectrometry and Proteomics Core Facility, Public Health Agency of Canada, National Microbiology Laboratory, 1015 Arlington St., Winnipeg, MB R3E 3R2, Canada
| | | | | | - Stephanie A Booth
- Molecular PathoBiology, Public Health Agency of Canada, National Microbiology Laboratory, 1015 Arlington St., Winnipeg, MB R3E 3R2, Canada; Department of Medical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of Manitoba, 730 William Ave., Winnipeg, MB R3E 0W3, Canada.
| |
Collapse
|
29
|
Luu BE, Storey KB. Dehydration triggers differential microRNA expression in Xenopus laevis brain. Gene 2015; 573:64-9. [DOI: 10.1016/j.gene.2015.07.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/23/2015] [Accepted: 07/09/2015] [Indexed: 12/17/2022]
|
30
|
Maag JLV, Panja D, Sporild I, Patil S, Kaczorowski DC, Bramham CR, Dinger ME, Wibrand K. Dynamic expression of long noncoding RNAs and repeat elements in synaptic plasticity. Front Neurosci 2015; 9:351. [PMID: 26483626 PMCID: PMC4589673 DOI: 10.3389/fnins.2015.00351] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 09/16/2015] [Indexed: 01/29/2023] Open
Abstract
Long-term potentiation (LTP) of synaptic transmission is recognized as a cellular mechanism for learning and memory storage. Although de novo gene transcription is known to be required in the formation of stable LTP, the molecular mechanisms underlying synaptic plasticity remain elusive. Noncoding RNAs have emerged as major regulatory molecules that are abundantly and specifically expressed in the mammalian brain. By combining RNA-seq analysis with LTP induction in the dentate gyrus of live rats, we provide the first global transcriptomic analysis of synaptic plasticity in the adult brain. Expression profiles of mRNAs and long noncoding RNAs (lncRNAs) were obtained at 30 min, 2 and 5 h after high-frequency stimulation of the perforant pathway. The temporal analysis revealed dynamic expression profiles of lncRNAs with many positively, and highly, correlated to protein-coding genes with known roles in synaptic plasticity, suggesting their possible involvement in LTP. In light of observations suggesting a role for retrotransposons in brain function, we examined the expression of various classes of repeat elements. Our analysis identifies dynamic regulation of LINE1 and SINE retrotransposons, and extensive regulation of tRNA. These experiments reveal a hitherto unknown complexity of gene expression in long-term synaptic plasticity involving the dynamic regulation of lncRNAs and repeat elements. These findings provide a broader foundation for elucidating the transcriptional and epigenetic regulation of synaptic plasticity in both the healthy brain and in neurodegenerative and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jesper L V Maag
- Genomics and Epigenetics Division, Garvan Institute of Medical Research Sydney, NSW, Australia ; Faculty of Medicine, St Vincent's Clinical School, University of New South Wales Sydney, NSW, Australia
| | - Debabrata Panja
- Department of Biomedicine and K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen Bergen, Norway
| | - Ida Sporild
- Department of Biomedicine and K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen Bergen, Norway
| | - Sudarshan Patil
- Department of Biomedicine and K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen Bergen, Norway
| | - Dominik C Kaczorowski
- Genomics and Epigenetics Division, Garvan Institute of Medical Research Sydney, NSW, Australia
| | - Clive R Bramham
- Department of Biomedicine and K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen Bergen, Norway
| | - Marcel E Dinger
- Genomics and Epigenetics Division, Garvan Institute of Medical Research Sydney, NSW, Australia ; Faculty of Medicine, St Vincent's Clinical School, University of New South Wales Sydney, NSW, Australia
| | - Karin Wibrand
- Department of Biomedicine and K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen Bergen, Norway
| |
Collapse
|
31
|
Nido GS, Ryan MM, Benuskova L, Williams JM. Dynamical properties of gene regulatory networks involved in long-term potentiation. Front Mol Neurosci 2015; 8:42. [PMID: 26300724 PMCID: PMC4528166 DOI: 10.3389/fnmol.2015.00042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 07/22/2015] [Indexed: 11/13/2022] Open
Abstract
The long-lasting enhancement of synaptic effectiveness known as long-term potentiation (LTP) is considered to be the cellular basis of long-term memory. LTP elicits changes at the cellular and molecular level, including temporally specific alterations in gene networks. LTP can be seen as a biological process in which a transient signal sets a new homeostatic state that is “remembered” by cellular regulatory systems. Previously, we have shown that early growth response (Egr) transcription factors are of fundamental importance to gene networks recruited early after LTP induction. From a systems perspective, we hypothesized that these networks will show less stable architecture, while networks recruited later will exhibit increased stability, being more directly related to LTP consolidation. Using random Boolean network (RBN) simulations we found that the network derived at 24 h was markedly more stable than those derived at 20 min or 5 h post-LTP. This temporal effect on the vulnerability of the networks is mirrored by what is known about the vulnerability of LTP and memory itself. Differential gene co-expression analysis further highlighted the importance of the Egr family and found a rapid enrichment in connectivity at 20 min, followed by a systematic decrease, providing a potential explanation for the down-regulation of gene expression at 24 h documented in our preceding studies. We also found that the architecture exhibited by a control and the 24 h LTP co-expression networks fit well to a scale-free distribution, known to be robust against perturbations. By contrast the 20 min and 5 h networks showed more truncated distributions. These results suggest that a new homeostatic state is achieved 24 h post-LTP. Together, these data present an integrated view of the genomic response following LTP induction by which the stability of the networks regulated at different times parallel the properties observed at the synapse.
Collapse
Affiliation(s)
- Gonzalo S Nido
- Department of Computer Science, University of Otago Dunedin, New Zealand ; Brain Health Research Centre, University of Otago Dunedin, New Zealand
| | - Margaret M Ryan
- Brain Health Research Centre, University of Otago Dunedin, New Zealand ; Department of Anatomy, Otago School of Medical Sciences, University of Otago Dunedin, New Zealand
| | - Lubica Benuskova
- Department of Computer Science, University of Otago Dunedin, New Zealand ; Brain Health Research Centre, University of Otago Dunedin, New Zealand
| | - Joanna M Williams
- Brain Health Research Centre, University of Otago Dunedin, New Zealand ; Department of Anatomy, Otago School of Medical Sciences, University of Otago Dunedin, New Zealand
| |
Collapse
|
32
|
Ryan B, Joilin G, Williams JM. Plasticity-related microRNA and their potential contribution to the maintenance of long-term potentiation. Front Mol Neurosci 2015; 8:4. [PMID: 25755632 PMCID: PMC4337328 DOI: 10.3389/fnmol.2015.00004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/04/2015] [Indexed: 12/24/2022] Open
Abstract
Long-term potentiation (LTP) is a form of synaptic plasticity that is an excellent model for the molecular mechanisms that underlie memory. LTP, like memory, is persistent, and both are widely believed to be maintained by a coordinated genomic response. Recently, a novel class of non-coding RNA, microRNA, has been implicated in the regulation of LTP. MicroRNA negatively regulate protein synthesis by binding to specific messenger RNA response elements. The aim of this review is to summarize experimental evidence for the proposal that microRNA play a major role in the regulation of LTP. We discuss a growing body of research which indicates that specific microRNA regulate synaptic proteins relevant to LTP maintenance, as well as studies that have reported differential expression of microRNA in response to LTP induction. We conclude that microRNA are ideally suited to contribute to the regulation of LTP-related gene expression; microRNA are pleiotropic, synaptically located, tightly regulated, and function in response to synaptic activity. The potential impact of microRNA on LTP maintenance as regulators of gene expression is enormous.
Collapse
Affiliation(s)
- Brigid Ryan
- Brain Health Research Centre, University of Otago, Dunedin New Zealand ; Department of Anatomy, Otago School of Medical Sciences, University of Otago, Dunedin New Zealand
| | - Greig Joilin
- Brain Health Research Centre, University of Otago, Dunedin New Zealand ; Department of Anatomy, Otago School of Medical Sciences, University of Otago, Dunedin New Zealand
| | - Joanna M Williams
- Brain Health Research Centre, University of Otago, Dunedin New Zealand ; Department of Anatomy, Otago School of Medical Sciences, University of Otago, Dunedin New Zealand
| |
Collapse
|