1
|
Jiménez-Morales JM, Hernández-Cuenca YE, Reyes-Abrahantes A, Ruiz-García H, Barajas-Olmos F, García-Ortiz H, Orozco L, Quiñones-Hinojosa A, Reyes-González J, Del Carmen Abrahantes-Pérez M. MicroRNA delivery systems in glioma therapy and perspectives: A systematic review. J Control Release 2022; 349:712-730. [PMID: 35905783 DOI: 10.1016/j.jconrel.2022.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022]
Abstract
Gliomas are the deadliest of all primary brain tumors, and they constitute a serious global health problem. MicroRNAs (miRNAs) are gene expression regulators associated with glioma pathogenesis. Thus, miRNAs represent potential therapeutic agents for treating gliomas. However, miRNAs have not been established as part of the regular clinical armamentarium. This systemic review evaluates current molecular and pre-clinical studies with the aim of defining the most appealing supramolecular platform for administering therapeutic miRNA to patients with gliomas. An integrated analysis suggested that cationic lipid nanoparticles, functionalized with octa-arginine peptides, represent a potentially specific, practical, non-invasive intervention for treating gliomas. This supramolecular platform allows loading both hydrophilic (miRNA) and hydrophobic (anti-tumor drugs, like temozolomide) molecules. This systemic review is the first to describe miRNA delivery systems targeted to gliomas that integrate several types of molecules as active ingredients. Further experimental validation is warranted to confirm the practical value of miRNA delivery systems.
Collapse
Affiliation(s)
- José Marcos Jiménez-Morales
- Precision Translational Oncology Laboratory, National Institute of Genomic Medicine (INMEGEN), 14610 Mexico City, Mexico
| | - Yanet Elisa Hernández-Cuenca
- Precision Translational Oncology Laboratory, National Institute of Genomic Medicine (INMEGEN), 14610 Mexico City, Mexico
| | - Ander Reyes-Abrahantes
- Precision Translational Oncology Laboratory, National Institute of Genomic Medicine (INMEGEN), 14610 Mexico City, Mexico
| | - Henry Ruiz-García
- Department of Neurosurgery, Mayo Clinic, Jacksonville, United States; Brain Tumor Stem Cell Research Laboratory, Mayo Clinic, Jacksonville, United States
| | - Francisco Barajas-Olmos
- Immunogenomics and Metabolic Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), 14610 Mexico City, Mexico
| | - Humberto García-Ortiz
- Immunogenomics and Metabolic Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), 14610 Mexico City, Mexico
| | - Lorena Orozco
- Immunogenomics and Metabolic Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), 14610 Mexico City, Mexico
| | - Alfredo Quiñones-Hinojosa
- Department of Neurosurgery, Mayo Clinic, Jacksonville, United States; Brain Tumor Stem Cell Research Laboratory, Mayo Clinic, Jacksonville, United States
| | - Jesús Reyes-González
- Precision Translational Oncology Laboratory, National Institute of Genomic Medicine (INMEGEN), 14610 Mexico City, Mexico.
| | | |
Collapse
|
2
|
Chen X, Wilson KA, Schaefer N, De Hayr L, Windsor M, Scalais E, van Rijckevorsel G, Stouffs K, Villmann C, O’Mara ML, Lynch JW, Harvey RJ. Loss, Gain and Altered Function of GlyR α2 Subunit Mutations in Neurodevelopmental Disorders. Front Mol Neurosci 2022; 15:886729. [PMID: 35571374 PMCID: PMC9103196 DOI: 10.3389/fnmol.2022.886729] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/07/2022] [Indexed: 12/11/2022] Open
Abstract
Glycine receptors (GlyRs) containing the α2 subunit govern cell fate, neuronal migration and synaptogenesis in the developing cortex and spinal cord. Rare missense variants and microdeletions in the X-linked GlyR α2 subunit gene (GLRA2) have been associated with human autism spectrum disorder (ASD), where they typically cause a loss-of-function via protein truncation, reduced cell-surface trafficking and/or reduced glycine sensitivity (e.g., GLRA2Δex8-9 and extracellular domain variants p.N109S and p.R126Q). However, the GlyR α2 missense variant p.R323L in the intracellular M3-M4 domain results in a gain-of-function characterized by slower synaptic decay times, longer duration active periods and increases in channel conductance. This study reports the functional characterization of four missense variants in GLRA2 associated with ASD or developmental disorders (p.V-22L, p.N38K, p.K213E, p.T269M) using a combination of bioinformatics, molecular dynamics simulations, cellular models of GlyR trafficking and electrophysiology in artificial synapses. The GlyR α2V–22L variant resulted in altered predicted signal peptide cleavage and a reduction in cell-surface expression, suggestive of a partial loss-of-function. Similarly, GlyR α2N38K homomers showed reduced cell-surface expression, a reduced affinity for glycine and a reduced magnitude of IPSCs in artificial synapses. By contrast, GlyR α2K213E homomers showed a slight reduction in cell-surface expression, but IPSCs were larger, with faster rise/decay times, suggesting a gain-of-function. Lastly, GlyR α2T269M homomers exhibited a high glycine sensitivity accompanied by a substantial leak current, suggestive of an altered function that could dramatically enhance glycinergic signaling. These results may explain the heterogeneity of clinical phenotypes associated with GLRA2 mutations and reveal that missense variants can result in a loss, gain or alteration of GlyR α2 function. In turn, these GlyR α2 missense variants are likely to either negatively or positively deregulate cortical progenitor homeostasis and neuronal migration in the developing brain, leading to changes in cognition, learning, and memory.
Collapse
Affiliation(s)
- Xiumin Chen
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Katie A. Wilson
- Research School of Chemistry, The Australian National University, Canberra, ACT, Australia
| | - Natascha Schaefer
- Institute of Clinical Neurobiology, University Hospital, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Lachlan De Hayr
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Maroochydore, QLD, Australia
- Sunshine Coast Health Institute, Birtinya, QLD, Australia
| | - Mark Windsor
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Maroochydore, QLD, Australia
- Sunshine Coast Health Institute, Birtinya, QLD, Australia
| | - Emmanuel Scalais
- Neurologie Pédiatrique, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| | | | - Katrien Stouffs
- Center for Medical Genetics, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Carmen Villmann
- Institute of Clinical Neurobiology, University Hospital, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Megan L. O’Mara
- Research School of Chemistry, The Australian National University, Canberra, ACT, Australia
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, Australia
| | - Joseph W. Lynch
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Robert J. Harvey
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Maroochydore, QLD, Australia
- Sunshine Coast Health Institute, Birtinya, QLD, Australia
- *Correspondence: Robert J. Harvey,
| |
Collapse
|
3
|
Chiang CW, Shu WC, Wan J, Weaver BA, Jackson MB. Recordings from neuron-HEK cell cocultures reveal the determinants of miniature excitatory postsynaptic currents. J Gen Physiol 2021; 153:211910. [PMID: 33755721 PMCID: PMC7992392 DOI: 10.1085/jgp.202012849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/26/2021] [Accepted: 02/23/2021] [Indexed: 11/20/2022] Open
Abstract
Spontaneous exocytosis of single synaptic vesicles generates miniature synaptic currents, which provide a window into the dynamic control of synaptic transmission. To resolve the impact of different factors on the dynamics and variability of synaptic transmission, we recorded miniature excitatory postsynaptic currents (mEPSCs) from cocultures of mouse hippocampal neurons with HEK cells expressing the postsynaptic proteins GluA2, neuroligin 1, PSD-95, and stargazin. Synapses between neurons and these heterologous cells have a molecularly defined postsynaptic apparatus, while the compact morphology of HEK cells eliminates the distorting effect of dendritic filtering. HEK cells in coculture produced mEPSCs with a higher frequency, larger amplitude, and more rapid rise and decay than neurons from the same culture. However, mEPSC area indicated that nerve terminals in synapses with both neurons and HEK cells release similar populations of vesicles. Modulation by the glutamate receptor ligand aniracetam revealed receptor contributions to mEPSC shape. Dendritic cable effects account for the slower mEPSC rise in neurons, whereas the slower decay also depends on other factors. Lastly, expression of synaptobrevin transmembrane domain mutants in neurons slowed the rise of HEK cell mEPSCs, thus revealing the impact of synaptic fusion pores. In summary, we show that cocultures of neurons with heterologous cells provide a geometrically simplified and molecularly defined system to investigate the time course of synaptic transmission and to resolve the contribution of vesicles, fusion pores, dendrites, and receptors to this process.
Collapse
Affiliation(s)
- Chung-Wei Chiang
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Wen-Chi Shu
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Jun Wan
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Beth A Weaver
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Meyer B Jackson
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI
| |
Collapse
|
4
|
Syed P, Durisic N, Harvey RJ, Sah P, Lynch JW. Effects of GABA A Receptor α3 Subunit Epilepsy Mutations on Inhibitory Synaptic Signaling. Front Mol Neurosci 2020; 13:602559. [PMID: 33328885 PMCID: PMC7714833 DOI: 10.3389/fnmol.2020.602559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/02/2020] [Indexed: 11/13/2022] Open
Abstract
Missense mutations T166M, Q242L, T336M, and Y474C in the GABAA receptor (GABAAR) α3 subunit gene are associated with epileptic seizures, dysmorphic features, intellectual disability, and developmental delay. When incorporated into GABAARs expressed in oocytes, all mutations are known to reduce GABA-evoked whole-cell currents. However, their impact on the properties of inhibitory synaptic currents (IPSCs) is unknown, largely because it is difficult to establish, much less control, the stoichiometry of GABAAR expressed in native neuronal synapses. To circumvent this problem, we employed a HEK293 cell-neuron co-culture expression system that permits the recording of IPSCs mediated by a pure population of GABAARs with a defined stoichiometry. We first demonstrated that IPSCs mediated by α3-containing GABAARs (α3β3γ2) decay significantly slower than those mediated by α1-containing isoforms (α1β2γ2 or α1β3γ2). GABAAR α3 mutations did not affect IPSC peak amplitudes or 10-90% rise times, but three of the mutations affected IPSC decay. T336M significantly accelerated the IPSC decay rate whereas T166M and Y474C had the opposite effect. The acceleration of IPSC decay kinetics caused by the T366M mutation was returned to wild-type-like values by the anti-epileptic medication, midazolam. Quantification experiments in HEK293 cells revealed a significant reduction in cell-surface expression for all mutants, in agreement with previous oocyte data. Taken together, our results show that impaired surface expression and altered IPSC decay rates could both be significant factors underlying the pathologies associated with these mutations.
Collapse
Affiliation(s)
- Parnayan Syed
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Nela Durisic
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Robert J Harvey
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Maroochydore, QLD, Australia.,Sunshine Coast Health Institute, Birtinya, QLD, Australia
| | - Pankaj Sah
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.,Department of Biology, Joint Center for Neuroscience and Neural Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Joseph W Lynch
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
5
|
Lugarà E, Kaushik R, Leite M, Chabrol E, Dityatev A, Lignani G, Walker MC. LGI1 downregulation increases neuronal circuit excitability. Epilepsia 2020; 61:2836-2846. [DOI: 10.1111/epi.16736] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Eleonora Lugarà
- Department of Clinical and Experimental Epilepsy UCL Queen Square Institute of Neurology London UK
| | - Rahul Kaushik
- German Center for Neurodegenerative Diseases Magdeburg Germany
- Center for Behavioral Brain Sciences Magdeburg Germany
| | - Marco Leite
- Department of Clinical and Experimental Epilepsy UCL Queen Square Institute of Neurology London UK
| | - Elodie Chabrol
- Department of Clinical and Experimental Epilepsy UCL Queen Square Institute of Neurology London UK
| | - Alexander Dityatev
- German Center for Neurodegenerative Diseases Magdeburg Germany
- Center for Behavioral Brain Sciences Magdeburg Germany
- Medical Faculty Otto von Guericke University Magdeburg Germany
| | - Gabriele Lignani
- Department of Clinical and Experimental Epilepsy UCL Queen Square Institute of Neurology London UK
| | - Matthew C. Walker
- Department of Clinical and Experimental Epilepsy UCL Queen Square Institute of Neurology London UK
| |
Collapse
|
6
|
Dynamic action potential clamp predicts functional separation in mild familial and severe de novo forms of SCN2A epilepsy. Proc Natl Acad Sci U S A 2018; 115:E5516-E5525. [PMID: 29844171 DOI: 10.1073/pnas.1800077115] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
De novo variants in SCN2A developmental and epileptic encephalopathy (DEE) show distinctive genotype-phenotype correlations. The two most recurrent SCN2A variants in DEE, R1882Q and R853Q, are associated with different ages and seizure types at onset. R1882Q presents on day 1 of life with focal seizures, while infantile spasms is the dominant seizure type seen in R853Q cases, presenting at a median age of 8 months. Voltage clamp, which characterizes the functional properties of ion channels, predicted gain-of-function for R1882Q and loss-of-function for R853Q. Dynamic action potential clamp, that we implement here as a method for modeling neurophysiological consequences of a given epilepsy variant, predicted that the R1882Q variant would cause a dramatic increase in firing, whereas the R853Q variant would cause a marked reduction in action potential firing. Dynamic clamp was also able to functionally separate the L1563V variant, seen in benign familial neonatal-infantile seizures from R1882Q, seen in DEE, suggesting a diagnostic potential for this type of analysis. Overall, the study shows a strong correlation between clinical phenotype, SCN2A genotype, and functional modeling. Dynamic clamp is well positioned to impact our understanding of pathomechanisms and for development of disease mechanism-targeted therapies in genetic epilepsy.
Collapse
|
7
|
Durisic N, Keramidas A, Dixon CL, Lynch JW. SAHA (Vorinostat) Corrects Inhibitory Synaptic Deficits Caused by Missense Epilepsy Mutations to the GABA A Receptor γ2 Subunit. Front Mol Neurosci 2018; 11:89. [PMID: 29628874 PMCID: PMC5876238 DOI: 10.3389/fnmol.2018.00089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/06/2018] [Indexed: 11/22/2022] Open
Abstract
The GABAA receptor (GABAAR) α1 subunit A295D epilepsy mutation reduces the surface expression of α1A295Dβ2γ2 GABAARs via ER-associated protein degradation. Suberanilohydroxamic acid (SAHA, also known as Vorinostat) was recently shown to correct the misfolding of α1A295D subunits and thereby enhance the functional surface expression of α1A295Dβ2γ2 GABAARs. Here we investigated whether SAHA can also restore the surface expression of γ2 GABAAR subunits that incorporate epilepsy mutations (N40S, R43Q, P44S, R138G) known to reduce surface expression via ER-associated protein degradation. As a control, we also investigated the γ2K289M epilepsy mutation that impairs gating without reducing surface expression. Effects of mutations were evaluated on inhibitory postsynaptic currents (IPSCs) mediated by the major synaptic α1β2γ2 GABAAR isoform. Recordings were performed in neuron-HEK293 cell artificial synapses to minimise contamination by GABAARs of undefined subunit composition. Transfection with α1β2γ2N40S, α1β2γ2R43Q, α1β2γ2P44S and α1β2γ2R138G subunits produced IPSCs with decay times slower than those of unmutated α1β2γ2 GABAARs due to the low expression of mutant γ2 subunits and the correspondingly high expression of slow-decaying α1β2 GABAARs. SAHA pre-treatment significantly accelerated the decay time constants of IPSCs consistent with the upregulation of mutant γ2 subunit expression. This increase in surface expression was confirmed by immunohistochemistry. SAHA had no effect on either the IPSC kinetics or surface expression levels of α1β2γ2K289M GABAARs, confirming its specificity for ER-retained mutant γ2 subunits. We also found that α1β2γ2K289M GABAARs and SAHA-treated α1β2γ2R43Q, α1β2γ2P44S and α1β2γ2R138G GABAARs all mediated IPSCs that decayed at significantly faster rates than wild type receptors as temperature was increased from 22 to 40°C. This may help explain why these mutations cause febrile seizures (FS). Given that SAHA is approved by therapeutic regulatory agencies for human use, we propose that it may be worth investigating as a treatment for epilepsies caused by the N40S, R43Q, P44S and R138G mutations. Although SAHA has already been proposed as a therapeutic for patients harbouring the α1A295D epilepsy mutation, the present study extends its potential utility to a new subunit and four new mutations.
Collapse
Affiliation(s)
- Nela Durisic
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Angelo Keramidas
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Christine L Dixon
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Joseph W Lynch
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
8
|
Leacock S, Syed P, James VM, Bode A, Kawakami K, Keramidas A, Suster M, Lynch JW, Harvey RJ. Structure/Function Studies of the α4 Subunit Reveal Evolutionary Loss of a GlyR Subtype Involved in Startle and Escape Responses. Front Mol Neurosci 2018; 11:23. [PMID: 29445326 PMCID: PMC5797729 DOI: 10.3389/fnmol.2018.00023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/16/2018] [Indexed: 01/08/2023] Open
Abstract
Inhibitory glycine receptors (GlyRs) are pentameric ligand-gated anion channels with major roles in startle disease/hyperekplexia (GlyR α1), cortical neuronal migration/autism spectrum disorder (GlyR α2), and inflammatory pain sensitization/rhythmic breathing (GlyR α3). However, the role of the GlyR α4 subunit has remained enigmatic, because the corresponding human gene (GLRA4) is thought to be a pseudogene due to an in-frame stop codon at position 390 within the fourth membrane-spanning domain (M4). Despite this, a recent genetic study has implicated GLRA4 in intellectual disability, behavioral problems and craniofacial anomalies. Analyzing data from sequenced genomes, we found that GlyR α4 subunit genes are predicted to be intact and functional in the majority of vertebrate species—with the exception of humans. Cloning of human GlyR α4 cDNAs excluded alternative splicing and RNA editing as mechanisms for restoring a full-length GlyR α4 subunit. Moreover, artificial restoration of the missing conserved arginine (R390) in the human cDNA was not sufficient to restore GlyR α4 function. Further bioinformatic and mutagenesis analysis revealed an additional damaging substitution at K59 that ablates human GlyR α4 function, which is not present in other vertebrate GlyR α4 sequences. The substitutions K59 and X390 were also present in the genome of an ancient Denisovan individual, indicating that GLRA4 has been a pseudogene for at least 30,000–50,000 years. In artificial synapses, we found that both mouse and gorilla α4β GlyRs mediate synaptic currents with unusually slow decay kinetics. Lastly, to gain insights into the biological role of GlyR α4 function, we studied the duplicated genes glra4a and glra4b in zebrafish. While glra4b expression is restricted to the retina, using a novel tol2-GAL4FF gene trap line (SAIGFF16B), we found that the zebrafish GlyR α4a subunit gene (glra4a) is strongly expressed in spinal cord and hindbrain commissural neurones. Using gene knockdown and a dominant-negative GlyR α4aR278Q mutant, we found that GlyR α4a contributes to touch-evoked escape behaviors in zebrafish. Thus, although GlyR α4 is unlikely to be involved in human startle responses or disease states, this subtype may contribute to escape behaviors in other organisms.
Collapse
Affiliation(s)
- Sophie Leacock
- Department of Pharmacology, UCL School of Pharmacy, London, United Kingdom
| | - Parnayan Syed
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Victoria M James
- Department of Pharmacology, UCL School of Pharmacy, London, United Kingdom
| | - Anna Bode
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Koichi Kawakami
- Division of Molecular and Developmental Biology, National Institute of Genetics and Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), Mishima, Japan
| | - Angelo Keramidas
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | | | - Joseph W Lynch
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.,School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Robert J Harvey
- School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, QLD, Australia.,Sunshine Coast Health Institute, Birtinya, QLD, Australia
| |
Collapse
|
9
|
Inhibitory synapse deficits caused by familial α1 GABA A receptor mutations in epilepsy. Neurobiol Dis 2017; 108:213-224. [PMID: 28870844 DOI: 10.1016/j.nbd.2017.08.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 08/17/2017] [Accepted: 08/24/2017] [Indexed: 11/20/2022] Open
Abstract
Epilepsy is a spectrum of neurological disorders with many causal factors. The GABA type-A receptor (GABAAR) is a major genetic target for heritable human epilepsies. Here we examine the functional effects of three epilepsy-causing mutations to the α1 subunit (α1T10'I, α1D192N and α1A295D) on inhibitory postsynaptic currents (IPSCs) mediated by the major synaptic GABAAR isoform, α1β2γ2L. We employed a neuron - HEK293 cell heterosynapse preparation to record IPSCs mediated by mutant-containing GABAARs in isolation from other GABAAR isoforms. IPSCs were recorded in the presence of the anticonvulsant drugs, carbamazepine and midazolam, and at elevated temperatures (22, 37 and 40°C) to gain insight into mechanisms of febrile seizures. The mutant subunits were also transfected into cultured cortical neurons to investigate changes in synapse formation and neuronal morphology using fluorescence microscopy. We found that IPSCs mediated by α1T10'Iβ2γ2L, α1D192Nβ2γ2L GABAARs decayed faster than those mediated by α1β2γ2L receptors. IPSCs mediated by α1D192Nβ2γ2L and α1A295Dβ2γ2L receptors also exhibited a heightened temperature sensitivity. In addition, the α1T10'Iβ2γ2L GABAARs were refractory to modulation by carbamazepine or midazolam. In agreement with previous studies, we found that α1A295Dβ2γ2L GABAARs were retained intracellularly in HEK293 cells and neurons. However, pre-incubation with 100nM suberanilohydroxamic acid (SAHA) induced α1A295Dβ2γ2L GABAARs to mediate IPSCs that were indistinguishable in magnitude and waveform from those mediated by α1β2γ2L receptors. Finally, mutation-specific changes to synaptic bouton size, synapse number and neurite branching were also observed. These results provide new insights into the mechanisms of epileptogenesis of α1 epilepsy mutations and suggest possible leads for improving treatments for patients harbouring these mutations.
Collapse
|
10
|
Vendramin Pasquetti M, Meier L, Loureiro S, Ganzella M, Junges B, Barbieri Caus L, Umpierrez Amaral A, Koeller DM, Goodman S, Woontner M, Gomes de Souza DO, Wajner M, Calcagnotto ME. Impairment of GABAergic system contributes to epileptogenesis in glutaric acidemia type I. Epilepsia 2017; 58:1771-1781. [PMID: 28762469 DOI: 10.1111/epi.13862] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2017] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Glutaric acidemia type I (GA-I) is an inherited neurometabolic disorder caused by deficiency of glutaryl-CoA dehydrogenase (GCDH) and characterized by increased levels of glutaric, 3-OH-glutaric, and glutaconic acids in the brain parenchyma. The increment of these organic acids inhibits glutamate decarboxylase (GAD) and consequently lowers the γ-aminobutyric acid (GABA) synthesis. Untreated patients exhibit severe neurologic deficits during development, including epilepsy, especially following an acute encephalopathy outbreak. In this work, we evaluated the role of the GABAergic system on epileptogenesis in GA-I using the Gcdh-/- mice exposed to a high lysine diet (Gcdh-/- -Lys). METHODS Spontaneous recurrent seizures (SRS), seizure susceptibility, and changes in brain oscillations were evaluated by video-electroencephalography (EEG). Cortical GABAergic synaptic transmission was evaluated using electrophysiologic and neurochemical approaches. RESULTS SRS were observed in 72% of Gcdh-/- -Lys mice, whereas no seizures were detected in age-matched controls (Gcdh+/+ or Gcdh-/- receiving normal diet). The severity and number of PTZ-induced seizures were higher in Gcdh-/- -Lys mice. EEG spectral analysis showed a significant decrease in theta and gamma oscillations and predominant delta waves in Gcdh-/- -Lys mice, associated with increased EEG left index. Analysis of cortical synaptosomes revealed a significantly increased percentage of glutamate release and decreased GABA release in Gcdh-/- -Lys mice that were associated with a decrease in cortical GAD immunocontent and activity and confirmed by reduced frequency of inhibitory events in cortical pyramidal cells. SIGNIFICANCE Using an experimental model with a phenotype similar to that of GA-I in humans-the Gcdh-/- mice under high lysine diet (Gcdh-/- -Lys)-we provide evidence that a reduction in cortical inhibition of Gcdh-/- -Lys mice, probably induced by GAD dysfunction, leads to hyperexcitability and increased slow oscillations associated with neurologic abnormalities in GA-I. Our findings offer a new perspective on the pathophysiology of brain damage in GA-I.
Collapse
Affiliation(s)
- Mayara Vendramin Pasquetti
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory-NNNESP Lab.), Biochemistry Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Letícia Meier
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory-NNNESP Lab.), Biochemistry Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Samanta Loureiro
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marcelo Ganzella
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Bernardo Junges
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory-NNNESP Lab.), Biochemistry Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Letícia Barbieri Caus
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory-NNNESP Lab.), Biochemistry Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Alexandre Umpierrez Amaral
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - David M Koeller
- Department of Pediatrics, Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, U.S.A
| | - Stephen Goodman
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado, U.S.A
| | - Michael Woontner
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado, U.S.A
| | - Diogo Onofre Gomes de Souza
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Moacir Wajner
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Maria Elisa Calcagnotto
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory-NNNESP Lab.), Biochemistry Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Postgraduate Program in Neuroscience, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
11
|
Chen X, Keramidas A, Lynch JW. Physiological and pharmacological properties of inhibitory postsynaptic currents mediated by α5β1γ2, α5β2γ2 and α5β3γ2 GABA A receptors. Neuropharmacology 2017; 125:243-253. [PMID: 28757051 DOI: 10.1016/j.neuropharm.2017.07.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/18/2017] [Accepted: 07/26/2017] [Indexed: 02/07/2023]
Abstract
α5-containing GABAARs are potential therapeutic targets for clinical conditions including age-related dementia, stroke, schizophrenia, Down syndrome, anaesthetic-induced amnesia, anxiety and pain. α5-containing GABAARs are expressed in layer 5 cortical neurons and hippocampal pyramidal neurons where they mediate both tonic currents and slow inhibitory postsynaptic currents (IPSCs). A range of drugs has been developed to specifically modulate these receptors. The main α5-containing GABAARs that are likely to exist in vivo are the α5β1γ2, α5β2γ2 and α5β3γ2 isoforms. We currently have few clues as to how these isoforms are distributed between synaptic and extrasynaptic compartments or their relative roles in controlling neuronal excitability. Accordingly, the aim of this study was to define the basic biophysical and pharmacological properties of IPSCs mediated by the three isoforms in a hippocampal neuron-HEK293 cell co-culture assay. The IPSC decay time constants were slow (α5β1γ2L: 45 ms; α5β1γ2L: 80 ms; α5β3γ2L: 184 ms) and were largely dominated by the intrinsic channel deactivation rates. By comparing IPSC rise times, we inferred that α5β1γ2L GABAARs are located postsynaptically whereas the other two are predominantly perisynaptic. α5β3γ2L GABAARs alone mediated tonic currents. We quantified the effects of four α5-specific inverse agonists (TB-21007, MRK-016, α5IA and L-655708) on IPSCs mediated by the three isoforms. All compounds selectively inhibited IPSC amplitudes and accelerated IPSC decay rates, albeit with distinct isoform specificities. MRK-016 also significantly accelerated IPSC rise times. These results provide a reference for future studies seeking to identify and characterize the properties of IPSCs mediated by α5-containing GABAAR isoforms in neurons.
Collapse
Affiliation(s)
- Xiumin Chen
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Angelo Keramidas
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Joseph W Lynch
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
12
|
Dixon CL, Sah P, Keramidas A, Lynch JW, Durisic N. γ1-Containing GABA-A Receptors Cluster at Synapses Where they Mediate Slower Synaptic Currents than γ2-Containing GABA-A Receptors. Front Mol Neurosci 2017. [PMID: 28642681 PMCID: PMC5462899 DOI: 10.3389/fnmol.2017.00178] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
GABA-A receptors (GABAARs) are pentameric ligand-gated ion channels that are assembled mainly from α (α1–6), β (β1–3) and γ (γ1–3) subunits. Although GABAARs containing γ2L subunits mediate most of the inhibitory neurotransmission in the brain, significant expression of γ1 subunits is seen in the amygdala, pallidum and substantia nigra. However, the location and function of γ1-containing GABAARs in these regions remains unclear. In “artificial” synapses, where the subunit composition of postsynaptic receptors is specifically controlled, γ1 incorporation slows the synaptic current decay rate without affecting channel deactivation, suggesting that γ1-containing receptors are not clustered and therefore activated by diffuse neurotransmitter. However, we show that γ1-containing receptors are localized at neuronal synapses and form clusters in both synaptic and extrasynaptic regions. In addition, they exhibit rapid membrane diffusion and a higher frequency of exchange between synaptic and perisynaptic populations compared to γ2L-containing GABAARs. A point mutation in the large intracellular domain and a pharmacological analysis reveal that when a single non-conserved γ2L residue is mutated to its γ1 counterpart (T349L), the synaptic current decay is slowed from γ2L- to γ1-like without changing the clustering or diffusion properties of the receptors. In addition, previous fast perfusion and single channel kinetic experiments revealed no difference in the intrinsic closing rates of γ2L- and γ1-containing receptors when expressed in HEK293 cells. These observations together with Monte Carlo simulations of synaptic function confirm that decreased clustering does not control γ1-containing GABAAR kinetics. Rather, they suggest that γ1- and γ2L-containing receptors exhibit differential synaptic current decay rates due to differential gating dynamics when localized at the synapse.
Collapse
Affiliation(s)
- Christine L Dixon
- Queensland Brain Institute, The University of QueenslandBrisbane, QLD, Australia
| | - Pankaj Sah
- Queensland Brain Institute, The University of QueenslandBrisbane, QLD, Australia
| | - Angelo Keramidas
- Queensland Brain Institute, The University of QueenslandBrisbane, QLD, Australia
| | - Joseph W Lynch
- Queensland Brain Institute, The University of QueenslandBrisbane, QLD, Australia.,School of Biomedical Sciences, The University of QueenslandBrisbane, QLD, Australia
| | - Nela Durisic
- Queensland Brain Institute, The University of QueenslandBrisbane, QLD, Australia
| |
Collapse
|
13
|
Zhang Y, Ho TNT, Harvey RJ, Lynch JW, Keramidas A. Structure-Function Analysis of the GlyR α2 Subunit Autism Mutation p.R323L Reveals a Gain-of-Function. Front Mol Neurosci 2017; 10:158. [PMID: 28588452 PMCID: PMC5440463 DOI: 10.3389/fnmol.2017.00158] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/08/2017] [Indexed: 11/17/2022] Open
Abstract
Glycine receptors (GlyRs) containing the α2 subunit regulate cortical interneuron migration. Disruption of the GlyR α2 subunit gene (Glra2) in mice leads to disrupted dorsal cortical progenitor homeostasis, leading to a depletion of projection neurons and moderate microcephaly in newborn mice. In humans, rare variants in GLRA2, which is located on the X chromosome, are associated with autism spectrum disorder (ASD) in the hemizygous state in males. These include a microdeletion (GLRA2∆ex8-9) and missense mutations in GLRA2 (p.N109S and p.R126Q) that impair cell-surface expression of GlyR α2, and either abolish or markedly reduce sensitivity to glycine. We report the functional characterization of a third missense variant in GLRA2 (p.R323L), associated with autism, macrocephaly, epilepsy and hypothyroidism in a female proband. Using heterosynapse and macroscopic current recording techniques, we reveal that GlyR α2R323L exhibits reduced glycine sensitivity, but significantly increased inhibitory postsynaptic current (IPSC) rise and decay times. Site-directed mutagenesis revealed that the nature of the amino acid switch at position 323 is critical for impairment of GlyR function. Single-channel recordings revealed that the conductance of α2R323Lβ channels was higher than α2β channels. Longer mean opening durations induced by p.R323L may be due to a change in the gating pathway that enhances the stability of the GlyR open state. The slower synaptic decay times, longer duration active periods and increase in conductance demonstrates that the GlyR α2 p.R323L mutation results in an overall gain of function, and that GlyR α2 mutations can be pathogenic in the heterozygous state in females.
Collapse
Affiliation(s)
- Yan Zhang
- Queensland Brain Institute, The University of QueenslandBrisbane, QLD, Australia
| | - Thi Nhu Thao Ho
- Queensland Brain Institute, The University of QueenslandBrisbane, QLD, Australia
| | - Robert J Harvey
- Department of Pharmacology, UCL School of PharmacyLondon, United Kingdom
| | - Joseph W Lynch
- Queensland Brain Institute, The University of QueenslandBrisbane, QLD, Australia.,School of Biomedical Sciences, The University of QueenslandBrisbane, QLD, Australia
| | - Angelo Keramidas
- Queensland Brain Institute, The University of QueenslandBrisbane, QLD, Australia
| |
Collapse
|
14
|
Islam R, Zhang Y, Xu L, Sah P, Lynch JW. A Chemogenetic Receptor That Enhances the Magnitude and Frequency of Glycinergic Inhibitory Postsynaptic Currents without Inducing a Tonic Chloride Flux. ACS Chem Neurosci 2017; 8:460-467. [PMID: 27958714 DOI: 10.1021/acschemneuro.6b00382] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The gene transfer-mediated expression of inhibitory ion channels in nociceptive neurons holds promise for treating intractable pain. Chemogenetics, which involves expressing constructs activated by biologically inert molecules, is of particular interest as it permits tunable neuromodulation. However, current chloride-permeable chemogenetic constructs are problematic as they mediate a tonic chloride influx which over time would deplete the chloride electrochemical gradient and reduce inhibitory efficacy. Inflammatory pain sensitization can be caused by prostaglandin E2-mediated inhibition of glycinergic inhibitory postsynaptic currents in spinal nociceptive neurons. We developed a highly conducting (100 pS) inhibitory chemogenetic construct based on a human glycine receptor (α1Y279F,A288G) with high ivermectin sensitivity. When virally infected into spinal neurons, 10 nM ivermectin increased the magnitude and frequency of glycinergic postsynaptic currents without activating a tonic chloride flux. The construct should thus produce analgesia. Its human origin and the well-established biocompatibility of its ligand suggest it may be suited to human use.
Collapse
Affiliation(s)
- Robiul Islam
- Queensland Brain Institute and ‡School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yan Zhang
- Queensland Brain Institute and ‡School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Li Xu
- Queensland Brain Institute and ‡School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Pankaj Sah
- Queensland Brain Institute and ‡School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Joseph W. Lynch
- Queensland Brain Institute and ‡School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
15
|
Lynch JW, Zhang Y, Talwar S, Estrada-Mondragon A. Glycine Receptor Drug Discovery. ADVANCES IN PHARMACOLOGY 2017; 79:225-253. [DOI: 10.1016/bs.apha.2017.01.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Islam R, Keramidas A, Xu L, Durisic N, Sah P, Lynch JW. Ivermectin-Activated, Cation-Permeable Glycine Receptors for the Chemogenetic Control of Neuronal Excitation. ACS Chem Neurosci 2016; 7:1647-1657. [PMID: 27611437 DOI: 10.1021/acschemneuro.6b00168] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The ability to control neuronal activation is rapidly advancing our understanding of brain function and is widely viewed as having eventual therapeutic application. Although several highly effective optogenetic, optochemical genetic, and chemogenetic techniques have been developed for this purpose, new approaches may provide better solutions for addressing particular questions and would increase the number of neuronal populations that can be controlled independently. An early chemogenetic neuronal silencing method employed a glutamate receptor Cl- channel engineered for activation by 1-3 nM ivermectin. This construct has been validated in vivo. Here, we sought to develop cation-permeable ivermectin-gated receptors that were either maximally Ca2+-permeable so as to induce neuro-excitotoxic cell death or minimally Ca2+-permeable so as to depolarize neurons with minimal excitotoxic risk. Our constructs were based on the human α1 glycine receptor Cl- channel due to its high conductance, human origin, high ivermectin sensitivity (once mutated), and because pore mutations that render it permeable to Na+ alone or Na+ plus Ca2+ are well characterized. We developed a Ca2+-impermeable excitatory receptor by introducing the F207A/P-2'Δ/A-1'E/T13'V/A288G mutations and a Ca2+-permeable excitatory receptor by introducing the F207A/A-1'E/A288G mutations. The latter receptor efficiently induces cell death and strongly depolarizes neurons at nanomolar ivermectin concentrations.
Collapse
Affiliation(s)
- Robiul Islam
- Queensland
Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Angelo Keramidas
- Queensland
Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Li Xu
- Queensland
Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Nela Durisic
- Queensland
Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Pankaj Sah
- Queensland
Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Joseph W. Lynch
- Queensland
Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
- School
of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
17
|
Zhang Y, Keramidas A, Lynch JW. The Free Zinc Concentration in the Synaptic Cleft of Artificial Glycinergic Synapses Rises to At least 1 μM. Front Mol Neurosci 2016; 9:88. [PMID: 27713689 PMCID: PMC5031599 DOI: 10.3389/fnmol.2016.00088] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/07/2016] [Indexed: 11/13/2022] Open
Abstract
Zn2+ is concentrated into presynaptic vesicles at many central synapses and is released into the synaptic cleft by nerve terminal stimulation. There is strong evidence that synaptically released Zn2+ modulates glutamatergic neurotransmission, although there is debate concerning the peak concentration it reaches in the synaptic cleft. Glycine receptors (GlyRs), which mediate inhibitory neurotransmission in the spinal cord and brainstem, are potentiated by low nanomolar Zn2+ and inhibited by micromolar Zn2+. Mutations that selectively ablate Zn2+ potentiation result in hyperekplexia phenotypes suggesting that Zn2+ is a physiological regulator of glycinergic neurotransmission. There is, however, little evidence that Zn2+ is stored presynaptically at glycinergic terminals and an alternate possibility is that GlyRs are modulated by constitutively bound Zn2+. We sought to estimate the peak Zn2+ concentration in the glycinergic synaptic cleft as a means of evaluating whether it is likely to be synaptically released. We employed 'artificial' synapses because they permit the insertion of engineered α1β GlyRs with defined Zn2+ sensitivities into synapses. By comparing the effect of Zn2+ chelation on glycinergic IPSCs with the effects of defined Zn2+ and glycine concentrations applied rapidly to the same recombinant GlyRs in outside-out patches, we inferred that synaptic Zn2+ rises to at least 1 μM following a single presynaptic stimulation. Moreover, using the fast, high-affinity chelator, ZX1, we found no evidence for tonic Zn2+ bound constitutively to high affinity GlyR binding sites. We conclude that diffusible Zn2+ reaches 1 μM or higher and is therefore likely to be phasically released in artificial glycinergic synapses.
Collapse
Affiliation(s)
- Yan Zhang
- Queensland Brain Institute, The University of Queensland, Brisbane QLD, Australia
| | - Angelo Keramidas
- Queensland Brain Institute, The University of Queensland, Brisbane QLD, Australia
| | - Joseph W Lynch
- Queensland Brain Institute, The University of Queensland, BrisbaneQLD, Australia; School of Biomedical Sciences, The University of Queensland, BrisbaneQLD, Australia
| |
Collapse
|
18
|
Zhang Y, Bode A, Nguyen B, Keramidas A, Lynch JW. Investigating the Mechanism by Which Gain-of-function Mutations to the α1 Glycine Receptor Cause Hyperekplexia. J Biol Chem 2016; 291:15332-41. [PMID: 27226610 DOI: 10.1074/jbc.m116.728592] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Indexed: 11/06/2022] Open
Abstract
Hyperekplexia is a rare human neuromotor disorder caused by mutations that impair the efficacy of glycinergic inhibitory neurotransmission. Loss-of-function mutations in the GLRA1 or GLRB genes, which encode the α1 and β glycine receptor (GlyR) subunits, are the major cause. Paradoxically, gain-of-function GLRA1 mutations also cause hyperekplexia, although the mechanism is unknown. Here we identify two new gain-of-function mutations (I43F and W170S) and characterize these along with known gain-of-function mutations (Q226E, V280M, and R414H) to identify how they cause hyperekplexia. Using artificial synapses, we show that all mutations prolong the decay of inhibitory postsynaptic currents (IPSCs) and induce spontaneous GlyR activation. As these effects may deplete the chloride electrochemical gradient, hyperekplexia could potentially result from reduced glycinergic inhibitory efficacy. However, we consider this unlikely as the depleted chloride gradient should also lead to pain sensitization and to a hyperekplexia phenotype that correlates with mutation severity, neither of which is observed in patients with GLRA1 hyperekplexia mutations. We also rule out small increases in IPSC decay times (as caused by W170S and R414H) as a possible mechanism given that the clinically important drug, tropisetron, significantly increases glycinergic IPSC decay times without causing motor side effects. A recent study on cultured spinal neurons concluded that an elevated intracellular chloride concentration late during development ablates α1β glycinergic synapses but spares GABAergic synapses. As this mechanism satisfies all our considerations, we propose it is primarily responsible for the hyperekplexia phenotype.
Collapse
Affiliation(s)
- Yan Zhang
- From the Queensland Brain Institute and
| | - Anna Bode
- From the Queensland Brain Institute and
| | | | | | - Joseph W Lynch
- From the Queensland Brain Institute and School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia 4072
| |
Collapse
|