1
|
Lucero CM, Navarro L, Barros-Osorio C, Cáceres-Conejeros P, Orellana JA, Gómez GI. Activation of Pannexin-1 channels causes cell dysfunction and damage in mesangial cells derived from angiotensin II-exposed mice. Front Cell Dev Biol 2024; 12:1387234. [PMID: 38660621 PMCID: PMC11041381 DOI: 10.3389/fcell.2024.1387234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Chronic kidney disease (CKD) is a prevalent health concern associated with various pathological conditions, including hypertensive nephropathy. Mesangial cells are crucial in maintaining glomerular function, yet their involvement in CKD pathogenesis remains poorly understood. Recent evidence indicates that overactivation of Pannexin-1 (Panx1) channels could contribute to the pathogenesis and progression of various diseases. Although Panx1 is expressed in the kidney, its contribution to the dysfunction of renal cells during pathological conditions remains to be elucidated. This study aimed to investigate the impact of Panx1 channels on mesangial cell function in the context of hypertensive nephropathy. Using an Ang II-infused mouse model and primary mesangial cell cultures, we demonstrated that in vivo exposure to Ang II sensitizes cultured mesangial cells to show increased alterations when they are subjected to subsequent in vitro exposure to Ang II. Particularly, mesangial cell cultures treated with Ang II showed elevated activity of Panx1 channels and increased release of ATP. The latter was associated with enhanced basal intracellular Ca2+ ([Ca2+]i) and increased ATP-mediated [Ca2+]i responses. These effects were accompanied by increased lipid peroxidation and reduced cell viability. Crucially, all the adverse impacts evoked by Ang II were prevented by the blockade of Panx1 channels, underscoring their critical role in mediating cellular dysfunction in mesangial cells. By elucidating the mechanisms by which Ang II negatively impacts mesangial cell function, this study provides valuable insights into the pathogenesis of renal damage in hypertensive nephropathy.
Collapse
Affiliation(s)
- Claudia M. Lucero
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | - Laura Navarro
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | - Cristián Barros-Osorio
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | - Patricio Cáceres-Conejeros
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | - Juan A. Orellana
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gonzalo I. Gómez
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
2
|
Yamasaki R. Connexins Control Glial Inflammation in Various Neurological Diseases. Int J Mol Sci 2023; 24:16879. [PMID: 38069203 PMCID: PMC10706219 DOI: 10.3390/ijms242316879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Connexins (Cxs) form gap junctions through homotypic/heterotypic oligomerization. Cxs are initially synthesized in the endoplasmic reticulum, then assembled as hexamers in the Golgi apparatus before being integrated into the cell membrane as hemichannels. These hemichannels remain closed until they combine to create gap junctions, directly connecting neighboring cells. Changes in the intracellular or extracellular environment are believed to trigger the opening of hemichannels, creating a passage between the inside and outside of the cell. The size of the channel pore depends on the Cx isoform and cellular context-specific effects such as posttranslational modifications. Hemichannels allow various bioactive molecules, under ~1 kDa, to move in and out of the host cell in the direction of the electrochemical gradient. In this review, we explore the fundamental roles of Cxs and their clinical implications in various neurological dysfunctions, including hereditary diseases, ischemic brain disorders, degenerative conditions, demyelinating disorders, and psychiatric illnesses. The influence of Cxs on the pathomechanisms of different neurological disorders varies depending on the circumstances. Hemichannels are hypothesized to contribute to proinflammatory effects by releasing ATP, adenosine, glutamate, and other bioactive molecules, leading to neuroglial inflammation. Modulating Cxs' hemichannels has emerged as a promising therapeutic approach.
Collapse
Affiliation(s)
- Ryo Yamasaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
3
|
Maheshwari U, Mateos JM, Weber‐Stadlbauer U, Ni R, Tamatey V, Sridhar S, Restrepo A, de Jong PA, Huang S, Schaffenrath J, Stifter SA, Szeri F, Greter M, Koek HL, Keller A. Inorganic phosphate exporter heterozygosity in mice leads to brain vascular calcification, microangiopathy, and microgliosis. Brain Pathol 2023; 33:e13189. [PMID: 37505935 PMCID: PMC10580014 DOI: 10.1111/bpa.13189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Calcification of the cerebral microvessels in the basal ganglia in the absence of systemic calcium and phosphate imbalance is a hallmark of primary familial brain calcification (PFBC), a rare neurodegenerative disorder. Mutation in genes encoding for sodium-dependent phosphate transporter 2 (SLC20A2), xenotropic and polytropic retrovirus receptor 1 (XPR1), platelet-derived growth factor B (PDGFB), platelet-derived growth factor receptor beta (PDGFRB), myogenesis regulating glycosidase (MYORG), and junctional adhesion molecule 2 (JAM2) are known to cause PFBC. Loss-of-function mutations in XPR1, the only known inorganic phosphate exporter in metazoans, causing dominantly inherited PFBC was first reported in 2015 but until now no studies in the brain have addressed whether loss of one functional allele leads to pathological alterations in mice, a commonly used organism to model human diseases. Here we show that mice heterozygous for Xpr1 (Xpr1WT/lacZ ) present with reduced inorganic phosphate levels in the cerebrospinal fluid and age- and sex-dependent growth of vascular calcifications in the thalamus. Vascular calcifications are surrounded by vascular basement membrane and are located at arterioles in the smooth muscle layer. Similar to previously characterized PFBC mouse models, vascular calcifications in Xpr1WT/lacZ mice contain bone matrix proteins and are surrounded by reactive astrocytes and microglia. However, microglial activation is not confined to calcified vessels but shows a widespread presence. In addition to vascular calcifications, we observed vessel tortuosity and transmission electron microscopy analysis revealed microangiopathy-endothelial swelling, phenotypic alterations in vascular smooth muscle cells, and thickening of the basement membrane.
Collapse
Affiliation(s)
- Upasana Maheshwari
- Department of Neurosurgery, Clinical Neuroscience CenterUniversity Hospital Zurich, University of ZurichZurichSwitzerland
| | - José M. Mateos
- Center for Microscopy and Image analysisUniversity of ZurichZurichSwitzerland
| | - Ulrike Weber‐Stadlbauer
- Institute of Veterinary Pharmacology and ToxicologyUniversity of Zurich‐Vetsuisse, University of ZurichZurichSwitzerland
- Neuroscience Center ZurichUniversity of Zurich and ETH ZurichZurichSwitzerland
| | - Ruiqing Ni
- Neuroscience Center ZurichUniversity of Zurich and ETH ZurichZurichSwitzerland
- Institute for Biomedical EngineeringUniversity of Zurich and ETH ZurichZurichSwitzerland
| | - Virgil Tamatey
- Research Centre for Natural SciencesInstitute of EnzymologyBudapestHungary
- Doctoral School of BiologyELTE Eotvos Lorand UniversityBudapestHungary
| | - Sucheta Sridhar
- Department of Neurosurgery, Clinical Neuroscience CenterUniversity Hospital Zurich, University of ZurichZurichSwitzerland
- Neuroscience Center ZurichUniversity of Zurich and ETH ZurichZurichSwitzerland
| | - Alejandro Restrepo
- Department of Neurosurgery, Clinical Neuroscience CenterUniversity Hospital Zurich, University of ZurichZurichSwitzerland
| | - Pim A. de Jong
- Department of RadiologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Sheng‐Fu Huang
- Department of Neurosurgery, Clinical Neuroscience CenterUniversity Hospital Zurich, University of ZurichZurichSwitzerland
| | - Johanna Schaffenrath
- Department of Neurosurgery, Clinical Neuroscience CenterUniversity Hospital Zurich, University of ZurichZurichSwitzerland
| | | | - Flora Szeri
- Research Centre for Natural SciencesInstitute of EnzymologyBudapestHungary
| | - Melanie Greter
- Institute of Experimental ImmunologyUniversity of ZurichZurichSwitzerland
| | - Huiberdina L. Koek
- Department of Geriatric MedicineUniversity Medical Centre Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Annika Keller
- Department of Neurosurgery, Clinical Neuroscience CenterUniversity Hospital Zurich, University of ZurichZurichSwitzerland
- Neuroscience Center ZurichUniversity of Zurich and ETH ZurichZurichSwitzerland
| |
Collapse
|
4
|
Dou X, Ji W, Dai M, Sun S, Chen R, Yang J, Long J, Ge Y, Lin Y. Spatial and temporal mapping of neuron-microglia interaction modes in acute ischemic stroke. Biochem Pharmacol 2023; 216:115772. [PMID: 37659736 DOI: 10.1016/j.bcp.2023.115772] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Ischemic stroke (IS) is a major cause of morbidity and mortality worldwide, accounting for 75-80% of all strokes. Under conditions of ischemia and hypoxia, neurons suffer damage or death, leading to a series of secondary immune reactions. Microglia, the earliest activated immune cells, can exert neurotoxic or neuroprotective effects on neurons through secretion of factors. There exists a complex interaction between neurons and microglia during this process. Moreover, the interaction between them becomes even more complex due to differences in the infarct area and reperfusion time. This review first elaborates on the differences in neuronal death modes between the ischemic core and penumbra, and then introduces the differences in microglial markers across different infarct areas with varying reperfusion time, indicating distinct functions. Finally, we focus on exploring the interaction modes between neurons and microglia in order to precisely target beneficial interactions and inhibit harmful ones, thus providing new therapeutic strategies for the treatment of IS.
Collapse
Affiliation(s)
- Xiaoke Dou
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Wei Ji
- Department of Anesthesiology, Yantai Affiliated Hospital of BinZhou Medical College, Yantai 264000, China
| | - Maosha Dai
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Shujun Sun
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China; Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Rui Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Juexi Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Junhao Long
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Yangyang Ge
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China.
| | - Yun Lin
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China.
| |
Collapse
|
5
|
Li H, Guo A, Salgado M, Sáez JC, Lau CG. The connexin hemichannel inhibitor D4 produces rapid antidepressant-like effects in mice. J Neuroinflammation 2023; 20:191. [PMID: 37599352 PMCID: PMC10440914 DOI: 10.1186/s12974-023-02873-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/14/2023] [Indexed: 08/22/2023] Open
Abstract
Depression is a common mood disorder characterized by a range of clinical symptoms, including prolonged low mood and diminished interest. Although many clinical and animal studies have provided significant insights into the pathophysiology of depression, current treatment strategies are not sufficient to manage this disorder. It has been suggested that connexin (Cx)-based hemichannels are candidates for depression intervention by modifying the state of neuroinflammation. In this study, we investigated the antidepressant-like effect of a recently discovered selective Cx hemichannel inhibitor, a small organic molecule called D4. We first showed that D4 reduced hemichannel activity following systemic inflammation after LPS injections. Next, we found that D4 treatment prevented LPS-induced inflammatory response and depressive-like behaviors. These behavioral effects were accompanied by reduced astrocytic activation and hemichannel activity in depressive-like mice induced by repeated low-dose LPS challenges. D4 treatment also reverses depressive-like symptoms in mice subjected to chronic restraint stress (CRS). To test whether D4 broadly affected neural activity, we measured c-Fos expression in depression-related brain regions and found a reduction in c-Fos+ cells in different brain regions. D4 significantly normalized CRS-induced hypoactivation in several brain regions, including the hippocampus, entorhinal cortex, and lateral septum. Together, these results indicate that blocking Cx hemichannels using D4 can normalize neuronal activity and reduce depressive-like symptoms in mice by reducing neuroinflammation. Our work provides evidence of the antidepressant-like effect of D4 and supports glial Cx hemichannels as potential therapeutic targets for depression.
Collapse
Affiliation(s)
- Huanhuan Li
- Department of Neuroscience, City University of Hong Kong, Hong Kong SAR, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China
| | - Anni Guo
- Department of Neuroscience, City University of Hong Kong, Hong Kong SAR, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China
| | - Magdiel Salgado
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, 2381850, Valparaíso, Chile
| | - Juan C Sáez
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, 2381850, Valparaíso, Chile
| | - Chunyue Geoffrey Lau
- Department of Neuroscience, City University of Hong Kong, Hong Kong SAR, China.
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China.
| |
Collapse
|
6
|
Kumar S, Akopian A, Bloomfield SA. Neuroprotection of Retinal Ganglion Cells Suppresses Microglia Activation in a Mouse Model of Glaucoma. Invest Ophthalmol Vis Sci 2023; 64:24. [PMID: 37318444 DOI: 10.1167/iovs.64.7.24] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
Abstract
Purpose Microglial activation has been implicated in many neurodegenerative eye diseases, but the interrelationship between cell loss and microglia activation remains unclear. In glaucoma, there is no consensus yet whether microglial activation precedes or is a consequence of retinal ganglion cell (RGC) degeneration. We therefore investigated the temporal and spatial appearance of activated microglia in retina and their correspondence to RGC degeneration in glaucoma. Methods We used an established microbead occlusion model of glaucoma in mouse whereby intraocular pressure (IOP) was elevated. Specific antibodies were used to immunolabel microglia in resting and activated states. To block retinal gap junction (GJ) communication, which has been shown previously to provide significant neuroprotection of RGCs, the GJ blocker meclofenamic acid was administered or connexin36 (Cx36) GJ subunits were ablated genetically. We then studied microglial activation at different time points after microbead injection in control and neuroprotected retinas. Results Histochemical analysis of flatmount retinas revealed major changes in microglia morphology, density, and immunoreactivity in microbead-injected eyes. An early stage of microglial activation followed IOP elevation, as indicated by changes in morphology and cell density, but preceded RGC death. In contrast, the later stage of microglia activation, associated with upregulation of major histocompatibility complex class II expression, corresponded temporally to the initial loss of RGCs. However, we found that protection of RGCs afforded by GJ blockade or genetic ablation largely suppressed microglial changes at all stages of activation in glaucomatous retinas. Conclusions Together, our data strongly suggest that microglia activation in glaucoma is a consequence, rather than a cause, of initial RGC degeneration and death.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Biological and Vision Sciences, State University of New York College of Optometry, New York, New York, United States
| | - Abram Akopian
- Department of Biological and Vision Sciences, State University of New York College of Optometry, New York, New York, United States
| | - Stewart A Bloomfield
- Department of Biological and Vision Sciences, State University of New York College of Optometry, New York, New York, United States
| |
Collapse
|
7
|
Chin JS, Milbreta U, Becker DL, Chew SY. Targeting connexin 43 expression via scaffold mediated delivery of antisense oligodeoxynucleotide preserves neurons, enhances axonal extension, reduces astrocyte and microglial activation after spinal cord injury. J Tissue Eng 2023; 14:20417314221145789. [PMID: 36798907 PMCID: PMC9926388 DOI: 10.1177/20417314221145789] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 12/01/2022] [Indexed: 02/12/2023] Open
Abstract
Injury to the central nervous system (CNS) provokes an inflammatory reaction and secondary damage that result in further tissue damage and destruction of neurons away from the injury site. Upon injury, expression of connexin 43 (Cx43), a gap junction protein, upregulates and is responsible for the spread and amplification of cell death signals through these gap junctions. In this study, we hypothesise that the downregulation of Cx43 by scaffold-mediated controlled delivery of antisense oligodeoxynucleotide (asODN), would minimise secondary injuries and cell death, and thereby support tissue regeneration after nerve injuries. Specifically, using spinal cord injury (SCI) as a proof-of-principle, we utilised a fibre-hydrogel scaffold for sustained delivery of Cx43asODN, while providing synergistic topographical cues to guide axonal ingrowth. Correspondingly, scaffolds loaded with Cx43asODN, in the presence of NT-3, suppressed Cx43 up-regulation after complete transection SCI in rats. These scaffolds facilitated the sustained release of Cx43asODN for up to 25 days. Importantly, asODN treatment preserved neurons around the injury site, promoted axonal extension, decreased glial scarring, and reduced microglial activation after SCI. Our results suggest that implantation of such scaffold-mediated asODN delivery platform could serve as an effective alternative SCI therapeutic approach.
Collapse
Affiliation(s)
- Jiah Shin Chin
- Nanyang Institute of Health Technologies, Interdisciplinary Graduate School, Nanyang Technological University, Singapore,School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore
| | - Ulla Milbreta
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore
| | - David L Becker
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore,Skin Research Institute Singapore, Clinical Sciences Building, Singapore
| | - Sing Yian Chew
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore,School of Materials Science and Engineering, Nanyang Technological University, Singapore,Sing Yian Chew, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, 639798, Singapore.
| |
Collapse
|
8
|
GJA1/CX43 High Expression Levels in the Cervical Spinal Cord of ALS Patients Correlate to Microglia-Mediated Neuroinflammatory Profile. Biomedicines 2022; 10:biomedicines10092246. [PMID: 36140348 PMCID: PMC9496195 DOI: 10.3390/biomedicines10092246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder affecting motoneurons (MNs) with a fatal outcome. The typical degeneration of cortico-spinal, spinal, and bulbar MNs, observed in post-mortem biopsies, is associated with the activation of neuroimmune cells. GJA1, a member of the connexins (Cxs) gene family, encodes for connexin 43 (Cx43), a core gap junctions (GJs)- and hemichannels (HCs)-forming protein, involved in cell death, proliferation, and differentiation. Recently, Cx43 expression was found to play a role in ALS pathogenesis. Here, we used microarray and RNA-seq datasets from the NCBI of the spinal cord of control (NDC) and ALS patients, which were stratified according to the GJA1 gene expression. Genes that positively or negatively correlated to GJA1 expression were used to perform a genomic deconvolution analysis (GDA) using neuroimmune signatures. Expression analysis revealed a significantly higher GJA1 expression in the MNs of ALS patients as compared to NDC. Gene deconvolution analysis revealed that positively correlated genes were associated with microglia activation, whereas negatively correlated genes were associated with neuronal activation profiles. Moreover, gene ontology analysis, performed on genes characterizing either microglia or neuronal signature, indicated immune activation or neurogenesis as main biological processes. Finally, using a synthetic analysis of drugs able to revert the GJA1 transcriptomic signatures, we found a specific drug profile for ALS patients with high GJA1 expression levels, composed of amlodipine, sertraline, and prednisolone. In conclusion, our exploratory study suggests GJA1 as a new neuro-immunological gene correlated to microglial cellular profile in the spinal cord of ALS patients. Further studies are warranted to confirm these results and to evaluate the therapeutic potential of drugs able to revert typical GJA1/CX43 signature in ALS patients
Collapse
|
9
|
Connexins Signatures of the Neurovascular Unit and Their Physio-Pathological Functions. Int J Mol Sci 2022; 23:ijms23179510. [PMID: 36076908 PMCID: PMC9455936 DOI: 10.3390/ijms23179510] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
Central nervous system (CNS) homeostasis is closely linked to the delicate balance of the microenvironment in which different cellular components of the neurovascular unit (NVU) coexist. Intercellular communication plays a pivotal role in exchanges of signaling molecules and mediators essential for survival functions, as well as in the removal of disturbing elements that can lead to related pathologies. The specific signatures of connexins (Cxs), proteins which form either gap junctions (GJs) or hemichannels (HCs), represent the biological substrate of the pathophysiological balance. Connexin 43 (Cx43) is undoubtedly one of the most important factors in glia–neuro–vascular crosstalk. Herein, Cxs signatures of every NVU component are highlighted and their critical influence on functional processes in healthy and pathological conditions of nervous microenvironment is reviewed.
Collapse
|
10
|
Du Y, Brennan FH, Popovich PG, Zhou M. Microglia maintain the normal structure and function of the hippocampal astrocyte network. Glia 2022; 70:1359-1379. [PMID: 35394085 PMCID: PMC9324808 DOI: 10.1002/glia.24179] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 03/09/2022] [Accepted: 03/28/2022] [Indexed: 12/14/2022]
Abstract
Microglial control of activity‐dependent plasticity and synaptic remodeling in neuronal networks has been the subject of intense research in the past several years. Although microglia–neuron interactions have been extensively studied, less is known about how microglia influence astrocyte‐dependent control over neuronal structure and function. Here, we explored a role for microglia in regulating the structure and function of the astrocyte syncytium in mouse hippocampus. After depleting microglia using a CSF1R antagonist (PLX5622, Plexxikon), we observed severe disruption of astrocyte syncytial isopotentiality and dye coupling. A decrease in astrocyte‐specific gap junction connexin (Cx) 30 and 43 expression, at least partially accounts for these microglia‐dependent changes in astrocytes. Because neuronal function requires intact astrocyte coupling, we also evaluated the effects of microglia depletion on synaptic transmission in the hippocampus. Without microglia, the strength of synaptic transmission was reduced at baseline and after long‐term potentiation (LTP). Conversely, priming microglia with systemic injections of lipopolysaccharide enhanced CA3‐CA1 synaptic transmission. This microglia‐induced scaling of synaptic transmission was associated with increased expression of post‐synaptic scaffold proteins (Homer1) in CA1. However, astrocyte network function was not affected by microglia priming, indicating that microglia‐dependent effects on astrocytes and neurons vary across functional states. Through manipulation of microglia in the brain, our results reveal the importance of microglia in homeostatic regulation of the astrocyte syncytium and scaling of synaptic transmission. These novel mechanisms uncover a new direction for future studies interrogating microglia function in various physiological and pathological contexts.
Collapse
Affiliation(s)
- Yixing Du
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Faith H Brennan
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Center for Brain and Spinal Cord Repair, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Phillip G Popovich
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Center for Brain and Spinal Cord Repair, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Min Zhou
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
11
|
The Pivotal Immunoregulatory Functions of Microglia and Macrophages in Glioma Pathogenesis and Therapy. JOURNAL OF ONCOLOGY 2022; 2022:8903482. [PMID: 35419058 PMCID: PMC9001141 DOI: 10.1155/2022/8903482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/24/2022] [Indexed: 12/16/2022]
Abstract
Gliomas are mixed solid tumors composed of both neoplastic and nonneoplastic cells. In glioma microenvironment, the most common nonneoplastic and infiltrating cells are macrophages and microglia. Microglia are the exact phagocytes of the central nervous system, whereas macrophages are myeloid immune cells that are depicted with ardent phagocytosis. Microglia are heterogeneously located in almost all nonoverlapping sections of the brain as well as the spinal cord, while macrophages are derived from circulating monocytes. Microglia and macrophages utilize a variety of receptors for the detection of molecules, particles, and cells that they engulf. Both microglia and peripheral macrophages interact directly with vessels both in the periphery of and within the tumor. In glioma milieu, normal human astrocytes, glioma cells, and microglia all exhibited the ability of phagocytosing glioma cells and precisely apoptotic tumor cells. Also, microglia and macrophages are robustly triggered by the glioma via the expression of chemoattractants such as monocyte chemoattractant protein, stromal-derived factor-1, and macrophage-colony stimulating factor. Glioma-associated microglia and/or macrophages positively correlated with glioma invasiveness, immunosuppression, and patients' poor outcome, making these cells a suitable target for immunotherapeutic schemes.
Collapse
|
12
|
Yamauchi S, Yamamoto K, Ogawa K. Testicular Macrophages Produce Progesterone De Novo Promoted by cAMP and Inhibited by M1 Polarization Inducers. Biomedicines 2022; 10:biomedicines10020487. [PMID: 35203696 PMCID: PMC8962427 DOI: 10.3390/biomedicines10020487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 02/05/2023] Open
Abstract
Tissue-resident macrophages (Mø) originating from fetal precursors are maintained via self-renewal under tissue-/organ-specific microenvironments. Herein, we developed a propagation method of testicular tissue-resident Mø in mixed primary culture with interstitial cells composed of Leydig cells from the mouse testis. We examined Mø/monocyte marker expression in propagated testicular Mø using flow cytometry; gene expression involved in testosterone production as well as spermatogenesis in testicular Mø and interstitial cells propagated by mixed culture via RT-PCR; and progesterone (P4) de novo production in propagated testicular Mø treated with cyclic adenosine monophosphate, isoproterenol, and M1 polarization inducers using ELISA. Mø marker expression patterns in the propagated Mø were identical to those in testicular interstitial Mø with a CD206-positive/major histocompatibility complex (MHC) II-negative M2 phenotype. We identified the genes involved in P4 production, transcription factors essential for steroidogenesis, and androgen receptors, and showed that P4 production de novo was upregulated by cyclic adenosine monophosphate and β2-adrenergic stimulation and was downregulated by M1 polarization stimulation in Mø. We also demonstrated the formation of gap junctions between Leydig cells and interstitial Mø. This is the first study to demonstrate de novo P4 production in tissue-resident Mø. Based on previous studies revealing inhibition of testosterone production by P4, we propose that local feedback machinery between Leydig cells and adjacent interstitial Mø regulates testosterone production. The results presented in this study can facilitate future studies on immune-endocrine interactions in gonads that are related to infertility and hormonal disorders.
Collapse
Affiliation(s)
- Sawako Yamauchi
- Laboratory of Veterinary Anatomy, College of Life, Environment and Advanced Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano 598-8531, Osaka, Japan; (S.Y.); (K.Y.)
| | - Kousuke Yamamoto
- Laboratory of Veterinary Anatomy, College of Life, Environment and Advanced Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano 598-8531, Osaka, Japan; (S.Y.); (K.Y.)
| | - Kazushige Ogawa
- Laboratory of Veterinary Anatomy, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano 598-8531, Osaka, Japan
- Correspondence:
| |
Collapse
|
13
|
Köse B, Özkan M, Sur-Erdem İ, Çavdar S. Does astrocyte gap junction protein expression level differ during development in the absence epileptic rats? Synapse 2022; 76:e22225. [PMID: 35137459 DOI: 10.1002/syn.22225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/05/2022] [Accepted: 01/27/2022] [Indexed: 11/09/2022]
Abstract
Intercellular communication via gap junctions (GJ) has a wide variety of complex and essential functions in the CNS. In the present developmental study, we aimed to quantify the number of astrocytic GJ protein connexin 30 (Cx30) of genetic absence epilepsy rats from Strasbourg (GAERS) at postnatal P10, P30, and P60 days in the epileptic focal areas involved in the cortico-thalamic circuit. We compared the results with Wistar rats using immunohistochemistry and Western Blotting. The number of Cx30 immunopositive astrocytes in per unit area were quantified for the somatosensory cortex (SSCx), ventrobasal (VB), and lateral geniculate (LGN) of the two strains and Cx30 Western Blot was applied to the tissue samples from the same regions. Both immunohistochemical and Western Blot results revealed the presence of Cx30 in all regions studied at P10 in both Wistar and GAERS animals. The SSCx, VB, and LGN of Wistar animals showed progressive increase in the number of Cx30 immunopositive labelled astrocytes from P10 to P30 and reached a peak at P30; then a significant decline was observed from P30 to P60 for the SSCx and VB. However, in GAERS Cx30 immunopositive labelled astrocytes showed a progressive increase from P10 to P60 for all brain regions studied. The immunohistochemical data highly corresponded with Western Blotting results. We conclude that the developmental disproportional expression of Cx30 in the epileptic focal areas in GAERS may be related to the onset of absence seizures or may be related to the neurogenesis of absence epilepsy. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Büşra Köse
- Department of Anatomy, Koç University School of Medicine, Istanbul, Turkey
| | - Mazhar Özkan
- Department of Anatomy, Tekirdağ Namık Kemal University School of Medicine, Istanbul, Turkey
| | - İlknur Sur-Erdem
- Department of Molecular Biology, Koç University School of Medicine, Istanbul, Turkey
| | - Safiye Çavdar
- Department of Anatomy, Koç University School of Medicine, Istanbul, Turkey
| |
Collapse
|
14
|
Muñoz MF, Griffith TN, Contreras JE. Mechanisms of ATP release in pain: role of pannexin and connexin channels. Purinergic Signal 2021; 17:549-561. [PMID: 34792743 PMCID: PMC8677853 DOI: 10.1007/s11302-021-09822-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/18/2021] [Indexed: 12/21/2022] Open
Abstract
Pain is a physiological response to bodily damage and serves as a warning of potential threat. Pain can also transform from an acute response to noxious stimuli to a chronic condition with notable emotional and psychological components that requires treatment. Indeed, the management of chronic pain is currently an important unmet societal need. Several reports have implicated the release of the neurotransmitter adenosine triphosphate (ATP) and subsequent activation of purinergic receptors in distinct pain etiologies. Purinergic receptors are broadly expressed in peripheral neurons and the spinal cord; thus, purinergic signaling in sensory neurons or in spinal circuits may be critical for pain processing. Nevertheless, an outstanding question remains: what are the mechanisms of ATP release that initiate nociceptive signaling? Connexin and pannexin channels are established conduits of ATP release and have been suggested to play important roles in a variety of pathologies, including several models of pain. As such, these large-pore channels represent a new and exciting putative pharmacological target for pain treatment. Herein, we will review the current evidence for a role of connexin and pannexin channels in ATP release during nociceptive signaling, such as neuropathic and inflammatory pain. Collectively, these studies provide compelling evidence for an important role of connexins and pannexins in pain processing.
Collapse
Affiliation(s)
- Manuel F. Muñoz
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, USA
| | - Theanne N. Griffith
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, USA
| | - Jorge E. Contreras
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, USA
| |
Collapse
|
15
|
Tittarelli A. Connexin channels modulation in pathophysiology and treatment of immune and inflammatory disorders. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166258. [PMID: 34450245 DOI: 10.1016/j.bbadis.2021.166258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/28/2021] [Accepted: 08/19/2021] [Indexed: 12/16/2022]
Abstract
Connexin-mediated intercellular communication mechanisms include bidirectional cell-to-cell coupling by gap junctions and release/influx of molecules by hemichannels. These intercellular communications have relevant roles in numerous immune system activities. Here, we review the current knowledge about the function of connexin channels, mainly those formed by connexin-43, on immunity and inflammation. Focusing on those evidence that support the design and development of therapeutic tools to modulate connexin expression and/or channel activities with treatment potential for infections, wounds, cancer, and other inflammatory conditions.
Collapse
Affiliation(s)
- Andrés Tittarelli
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Santiago 8940577, Chile.
| |
Collapse
|
16
|
Magdy S, Gamal M, Samir NF, Rashed L, Emad Aboulhoda B, Mohammed HS, Sharawy N. IκB kinase inhibition remodeled connexins, pannexin-1, and excitatory amino-acid transporters expressions to promote neuroprotection of galantamine and morphine. J Cell Physiol 2021; 236:7516-7532. [PMID: 33855721 DOI: 10.1002/jcp.30387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 03/21/2021] [Accepted: 03/26/2021] [Indexed: 11/10/2022]
Abstract
Inflammatory pathway and disruption in glutamate homeostasis join at the level of the glia, resulting in various neurological disorders. In vitro studies have provided evidence that membrane proteins connexions (Cxs) are involved in glutamate release, meanwhile, excitatory amino-acid transporters (EAATs) are crucial for glutamate reuptake (clearance). Moreover, pannexin-1 (Panx-1) activation is more detrimental to neurons. Their expression patterns during inflammation and the impacts of IκB kinase (IKK) inhibition, morphine, and galantamine on the inflammatory-associated glutamate imbalance remain elusive. To investigate this, rats were injected with saline or lipopolysaccharide. Thereafter, vehicles, morphine, galantamine, and BAY-117082 were administered in different groups of animals. Subsequently, electroencephalography, enzyme-linked immunosorbent assay, western blot, and histopathological examinations were carried out and various indicators of inflammation and glutamate level were determined. Parallel analysis of Cxs, Panx-1, and EAAts in the brain was performed. Our findings strengthen the concept that unregulated expressions of Cxs, Panx-1, and EAATs contribute to glutamate accumulation and neuronal cell loss. Nuclear factor-kB (NF-κB) pathway can significantly contribute to glutamate homeostasis via modulating Cxs, Panx-1, and EAATs expressions. BAY-117082, via inhibition of IkK, promoted the anti-inflammatory effects of morphine as well as galantamine. We concluded that NF-κB is an important component of reshaping the expressions of Cxs, panx-1, and EAATs and the development of glutamate-induced neuronal degeneration.
Collapse
Affiliation(s)
- Shimaa Magdy
- Department of Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Maha Gamal
- Department of Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nancy F Samir
- Department of Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Laila Rashed
- Department of Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Basma Emad Aboulhoda
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Haitham S Mohammed
- Department of Biophysics, Faculty of Science, Cairo University, Giza, Egypt
| | - Nivin Sharawy
- Department of Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
17
|
Szarka G, Balogh M, Tengölics ÁJ, Ganczer A, Völgyi B, Kovács-Öller T. The role of gap junctions in cell death and neuromodulation in the retina. Neural Regen Res 2021; 16:1911-1920. [PMID: 33642359 PMCID: PMC8343308 DOI: 10.4103/1673-5374.308069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/14/2020] [Accepted: 01/11/2021] [Indexed: 12/26/2022] Open
Abstract
Vision altering diseases, such as glaucoma, diabetic retinopathy, age-related macular degeneration, myopia, retinal vascular disease, traumatic brain injuries and others cripple many lives and are projected to continue to cause anguish in the foreseeable future. Gap junctions serve as an emerging target for neuromodulation and possible regeneration as they directly connect healthy and/or diseased cells, thereby playing a crucial role in pathophysiology. Since they are permeable for macromolecules, able to cross the cellular barriers, they show duality in illness as a cause and as a therapeutic target. In this review, we take recent advancements in gap junction neuromodulation (pharmacological blockade, gene therapy, electrical and light stimulation) into account, to show the gap junction's role in neuronal cell death and the possible routes of rescuing neuronal and glial cells in the retina succeeding illness or injury.
Collapse
Affiliation(s)
- Gergely Szarka
- János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Retinal Electrical Synapses Research Group, National Brain Research Program (NAP 2.0), Hungarian Academy of Sciences, Budapest, Hungary
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Márton Balogh
- János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Retinal Electrical Synapses Research Group, National Brain Research Program (NAP 2.0), Hungarian Academy of Sciences, Budapest, Hungary
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Ádám J. Tengölics
- János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Retinal Electrical Synapses Research Group, National Brain Research Program (NAP 2.0), Hungarian Academy of Sciences, Budapest, Hungary
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Alma Ganczer
- János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Retinal Electrical Synapses Research Group, National Brain Research Program (NAP 2.0), Hungarian Academy of Sciences, Budapest, Hungary
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Béla Völgyi
- János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Retinal Electrical Synapses Research Group, National Brain Research Program (NAP 2.0), Hungarian Academy of Sciences, Budapest, Hungary
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
- Medical School, University of Pécs, Pécs, Hungary
| | - Tamás Kovács-Öller
- János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Retinal Electrical Synapses Research Group, National Brain Research Program (NAP 2.0), Hungarian Academy of Sciences, Budapest, Hungary
- Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
18
|
Boscia F, Elkjaer ML, Illes Z, Kukley M. Altered Expression of Ion Channels in White Matter Lesions of Progressive Multiple Sclerosis: What Do We Know About Their Function? Front Cell Neurosci 2021; 15:685703. [PMID: 34276310 PMCID: PMC8282214 DOI: 10.3389/fncel.2021.685703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/23/2021] [Indexed: 12/19/2022] Open
Abstract
Despite significant advances in our understanding of the pathophysiology of multiple sclerosis (MS), knowledge about contribution of individual ion channels to axonal impairment and remyelination failure in progressive MS remains incomplete. Ion channel families play a fundamental role in maintaining white matter (WM) integrity and in regulating WM activities in axons, interstitial neurons, glia, and vascular cells. Recently, transcriptomic studies have considerably increased insight into the gene expression changes that occur in diverse WM lesions and the gene expression fingerprint of specific WM cells associated with secondary progressive MS. Here, we review the ion channel genes encoding K+, Ca2+, Na+, and Cl- channels; ryanodine receptors; TRP channels; and others that are significantly and uniquely dysregulated in active, chronic active, inactive, remyelinating WM lesions, and normal-appearing WM of secondary progressive MS brain, based on recently published bulk and single-nuclei RNA-sequencing datasets. We discuss the current state of knowledge about the corresponding ion channels and their implication in the MS brain or in experimental models of MS. This comprehensive review suggests that the intense upregulation of voltage-gated Na+ channel genes in WM lesions with ongoing tissue damage may reflect the imbalance of Na+ homeostasis that is observed in progressive MS brain, while the upregulation of a large number of voltage-gated K+ channel genes may be linked to a protective response to limit neuronal excitability. In addition, the altered chloride homeostasis, revealed by the significant downregulation of voltage-gated Cl- channels in MS lesions, may contribute to an altered inhibitory neurotransmission and increased excitability.
Collapse
Affiliation(s)
- Francesca Boscia
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", Naples, Italy
| | - Maria Louise Elkjaer
- Neurology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Zsolt Illes
- Neurology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Maria Kukley
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,Ikerbasque Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
19
|
Liu YD, Tang G, Qian F, Liu L, Huang JR, Tang FR. Astroglial Connexins in Neurological and Neuropsychological Disorders and Radiation Exposure. Curr Med Chem 2021; 28:1970-1986. [PMID: 32520676 DOI: 10.2174/0929867327666200610175037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/03/2020] [Accepted: 05/04/2020] [Indexed: 11/22/2022]
Abstract
Radiotherapy is a common treatment for brain and spinal cord tumors and also a risk factor for neuropathological changes in the brain leading to different neurological and neuropsychological disorders. Astroglial connexins are involved in brain inflammation, development of Alzheimer's Disease (AD), depressive, epilepsy, and amyotrophic lateral sclerosis, and are affected by radiation exposure. Therefore, it is speculated that radiation-induced changes of astroglial connexins may be related to the brain neuropathology and development of neurological and neuropsychological disorders. In this paper, we review the functional expression and regulation of astroglial connexins expressed between astrocytes and different types of brain cells (including oligodendrocytes, microglia, neurons and endothelial cells). The roles of these connexins in the development of AD, depressive, epilepsy, amyotrophic lateral sclerosis and brain inflammation have also been summarized. The radiation-induced astroglial connexins changes and development of different neurological and neuropsychological disorders are then discussed. Based on currently available data, we propose that radiation-induced astroglial connexins changes may be involved in the genesis of different neurological and neuropsychological disorders which depends on the age, brain regions, and radiation doses/dose rates. The abnormal astroglial connexins may be novel therapeutic targets for the prevention of radiation-induced cognitive impairment, neurological and neuropsychological disorders.
Collapse
Affiliation(s)
- Yuan Duo Liu
- Medical School of Yangtze University, Jingzhou 434000, China
| | - Ge Tang
- Woodlands Health Campus, National Healthcare Group Singapore, Singapore
| | - Feng Qian
- Medical School of Yangtze University, Jingzhou 434000, China
| | - Lian Liu
- Medical School of Yangtze University, Jingzhou 434000, China
| | | | - Feng Ru Tang
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore
| |
Collapse
|
20
|
Penna E, Mangum JM, Shepherd H, Martínez-Cerdeño V, Noctor SC. Development of the Neuro-Immune-Vascular Plexus in the Ventricular Zone of the Prenatal Rat Neocortex. Cereb Cortex 2021; 31:2139-2155. [PMID: 33279961 PMCID: PMC7945018 DOI: 10.1093/cercor/bhaa351] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/24/2020] [Accepted: 10/25/2020] [Indexed: 12/13/2022] Open
Abstract
Microglial cells make extensive contacts with neural precursor cells (NPCs) and affiliate with vasculature in the developing cerebral cortex. But how vasculature contributes to cortical histogenesis is not yet fully understood. To better understand functional roles of developing vasculature in the embryonic rat cerebral cortex, we investigated the temporal and spatial relationships between vessels, microglia, and NPCs in the ventricular zone. Our results show that endothelial cells in developing cortical vessels extend numerous fine processes that directly contact mitotic NPCs and microglia; that these processes protrude from vessel walls and are distinct from tip cell processes; and that microglia, NPCs, and vessels are highly interconnected near the ventricle. These findings demonstrate the complex environment in which NPCs are embedded in cortical proliferative zones and suggest that developing vasculature represents a source of signaling with the potential to broadly influence cortical development. In summary, cortical histogenesis arises from the interplay among NPCs, microglia, and developing vasculature. Thus, factors that impinge on any single component have the potential to change the trajectory of cortical development and increase susceptibility for altered neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Elisa Penna
- MIND Institute, School of Medicine, UC Davis, Sacramento, CA, USA
- Department of Psychiatry and Behavioral Sciences, School of Medicine, UC Davis, Sacramento, CA, USA
| | - Jon M Mangum
- MIND Institute, School of Medicine, UC Davis, Sacramento, CA, USA
- Brigham Young University, Rexburg, Idaho, USA
| | - Hunter Shepherd
- MIND Institute, School of Medicine, UC Davis, Sacramento, CA, USA
- Brigham Young University, Rexburg, Idaho, USA
| | - Veronica Martínez-Cerdeño
- MIND Institute, School of Medicine, UC Davis, Sacramento, CA, USA
- Department of Pathology and Laboratory Medicine, Institute for Pediatric Regenerative Medicine, School of Medicine, UC Davis, Sacramento, CA, USA
- Shriners Hospital, Sacramento, CA, USA
| | - Stephen C Noctor
- MIND Institute, School of Medicine, UC Davis, Sacramento, CA, USA
- Department of Psychiatry and Behavioral Sciences, School of Medicine, UC Davis, Sacramento, CA, USA
| |
Collapse
|
21
|
Harcha PA, Garcés P, Arredondo C, Fernández G, Sáez JC, van Zundert B. Mast Cell and Astrocyte Hemichannels and Their Role in Alzheimer's Disease, ALS, and Harmful Stress Conditions. Int J Mol Sci 2021; 22:ijms22041924. [PMID: 33672031 PMCID: PMC7919494 DOI: 10.3390/ijms22041924] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/02/2021] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
Considered relevant during allergy responses, numerous observations have also identified mast cells (MCs) as critical effectors during the progression and modulation of several neuroinflammatory conditions, including Alzheimer’s disease (AD) and amyotrophic lateral sclerosis (ALS). MC granules contain a plethora of constituents, including growth factors, cytokines, chemokines, and mitogen factors. The release of these bioactive substances from MCs occurs through distinct pathways that are initiated by the activation of specific plasma membrane receptors/channels. Here, we focus on hemichannels (HCs) formed by connexins (Cxs) and pannexins (Panxs) proteins, and we described their contribution to MC degranulation in AD, ALS, and harmful stress conditions. Cx/Panx HCs are also expressed by astrocytes and are likely involved in the release of critical toxic amounts of soluble factors—such as glutamate, adenosine triphosphate (ATP), complement component 3 derivate C3a, tumor necrosis factor (TNFα), apoliprotein E (ApoE), and certain miRNAs—known to play a role in the pathogenesis of AD, ALS, and other neurodegenerative disorders. We propose that blocking HCs on MCs and glial cells offers a promising novel strategy for ameliorating the progression of neurodegenerative diseases by reducing the release of cytokines and other pro-inflammatory compounds.
Collapse
Affiliation(s)
- Paloma A. Harcha
- Instituto de Neurociencia, Centro Interdisciplinario de Neurociencia de Valparaíso, Valparaíso 2381850, Chile
- Correspondence: (P.A.H.); (J.C.S.); (B.v.Z.)
| | - Polett Garcés
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; (P.G.); (C.A.); (G.F.)
- CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8330005, Chile
| | - Cristian Arredondo
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; (P.G.); (C.A.); (G.F.)
- CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8330005, Chile
| | - Germán Fernández
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; (P.G.); (C.A.); (G.F.)
- CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8330005, Chile
| | - Juan C. Sáez
- Instituto de Neurociencia, Centro Interdisciplinario de Neurociencia de Valparaíso, Valparaíso 2381850, Chile
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Correspondence: (P.A.H.); (J.C.S.); (B.v.Z.)
| | - Brigitte van Zundert
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; (P.G.); (C.A.); (G.F.)
- CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8330005, Chile
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Correspondence: (P.A.H.); (J.C.S.); (B.v.Z.)
| |
Collapse
|
22
|
Panda AK, K R, Gebrekrstos A, Bose S, Markandeya YS, Mehta B, Basu B. Tunable Substrate Functionalities Direct Stem Cell Fate toward Electrophysiologically Distinguishable Neuron-like and Glial-like Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:164-185. [PMID: 33356098 DOI: 10.1021/acsami.0c17257] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Engineering cellular microenvironment on a functional platform using various biophysical cues to modulate stem cell fate has been the central theme in regenerative engineering. Among the various biophysical cues to direct stem cell differentiation, the critical role of physiologically relevant electric field (EF) stimulation was established in the recent past. The present study is the first to report the strategy to switch EF-mediated differentiation of human mesenchymal stem cells (hMSCs) between neuronal and glial pathways, using tailored functional properties of the biomaterial substrate. We have examined the combinatorial effect of substrate functionalities (conductivity, electroactivity, and topography) on the EF-mediated stem cell differentiation on polyvinylidene-difluoride (PVDF) nanocomposites in vitro, without any biochemical inducers. The functionalities of PVDF have been tailored using conducting nanofiller (multiwall-carbon nanotube, MWNT) and piezoceramic (BaTiO3, BT) by an optimized processing approach (melt mixing-compression molding-rolling). The DC conductivity of PVDF nanocomposites was tuned from ∼10-11 to ∼10-4 S/cm and the dielectric constant from ∼10 to ∼300. The phenotypical changes and genotypical expression of hMSCs revealed the signatures of early differentiation toward neuronal pathway on rolled-PVDF/MWNT and late differentiation toward glial lineage on rolled-PVDF/BT/MWNT. Moreover, we were able to distinguish the physiological properties of differentiated neuron-like and glial-like cells using membrane depolarization and mechanical stimulation. The excitability of the EF-stimulated hMSCs was also determined using whole-cell patch-clamp recordings. Mechanistically, the roles of intracellular reactive oxygen species (ROS), Ca2+ oscillations, and synaptic and gap junction proteins in directing the cellular fate have been established. Therefore, the present work critically unveils complex yet synergistic interaction of substrate functional properties to direct EF-mediated differentiation toward neuron-like and glial-like cells, with distinguishable electrophysiological responses.
Collapse
Affiliation(s)
- Asish Kumar Panda
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Ravikumar K
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Amanuel Gebrekrstos
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Suryasarathi Bose
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Yogananda S Markandeya
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| | - Bhupesh Mehta
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| | - Bikramjit Basu
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
23
|
Zahiri D, Burow P, Großmann C, Müller CE, Klapperstück M, Markwardt F. Sphingosine-1-phosphate induces migration of microglial cells via activation of volume-sensitive anion channels, ATP secretion and activation of purinergic receptors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118915. [PMID: 33271273 DOI: 10.1016/j.bbamcr.2020.118915] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 12/17/2022]
Abstract
Microglia cells are versatile players coordinating inflammatory and regenerative processes in the central nervous system in which sphingosine-1-phosphate (S1P)-mediated migration is essential. We investigated the involved signaling cascade by means of voltage clamp, measurement of ATP secretion, and wound healing assay in murine microglial BV-2 cells. S1P and extracellular hypoosmolar solution evoked an anion conductance of the cell membrane. The corresponding ion currents were inhibited by intracellular hypoosmolar solution and by the anion channel antagonists NPPB, tamoxifen, and carbenoxolone, pointing to the activation of volume-regulated anion channels (VRAC). The knockdown by siRNA indicates the involvement of LRRC8A subunits. The S1PR1-antagonist W123 and pertussis-toxin prevented the S1P-induced currents, showing the involvement of the Gi-protein-coupled S1P receptor 1 (S1PR1). Furthermore, S1P and hypoosmolar extracellular solution induced an increase of ATP levels in the supernatants of BV-2 cells, which was inhibited by NPPB, tamoxifen, and W123. S1P, ATP, and ADP stimulated cell migration into the scratch area. The inhibition of S1PR1 and the downstream Gi proteins hampered cell migration. Antagonists of VRAC were also able to diminish the migration of BV-2 cells. Furthermore, direct inhibition of ATP-gated P2X4 or P2X7 receptors or ADP-stimulated P2Y12 receptors blocked the stimulating effects of S1P on BV-2 cell migration. We conclude that there is an interaction between S1P receptors and purinergic receptors mediated by an S1P-induced ATP release via VRAC and that the amount of released ATP is capable of stimulating cell migration of BV-2 microglia cells via activation of P2X4, P2X7, and P2Y12 receptors.
Collapse
Affiliation(s)
- Danyal Zahiri
- Julius-Bernstein-Institute for Physiology, Martin-Luther-University Halle, Magdeburger Straße 6, D-06097 Halle/Saale, Germany
| | - Philipp Burow
- Julius-Bernstein-Institute for Physiology, Martin-Luther-University Halle, Magdeburger Straße 6, D-06097 Halle/Saale, Germany
| | - Claudia Großmann
- Julius-Bernstein-Institute for Physiology, Martin-Luther-University Halle, Magdeburger Straße 6, D-06097 Halle/Saale, Germany
| | - Christa E Müller
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Germany
| | - Manuela Klapperstück
- Julius-Bernstein-Institute for Physiology, Martin-Luther-University Halle, Magdeburger Straße 6, D-06097 Halle/Saale, Germany
| | - Fritz Markwardt
- Julius-Bernstein-Institute for Physiology, Martin-Luther-University Halle, Magdeburger Straße 6, D-06097 Halle/Saale, Germany.
| |
Collapse
|
24
|
Sánchez OF, Rodríguez AV, Velasco-España JM, Murillo LC, Sutachan JJ, Albarracin SL. Role of Connexins 30, 36, and 43 in Brain Tumors, Neurodegenerative Diseases, and Neuroprotection. Cells 2020; 9:E846. [PMID: 32244528 PMCID: PMC7226843 DOI: 10.3390/cells9040846] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/15/2020] [Accepted: 02/24/2020] [Indexed: 02/07/2023] Open
Abstract
Gap junction (GJ) channels and their connexins (Cxs) are complex proteins that have essential functions in cell communication processes in the central nervous system (CNS). Neurons, astrocytes, oligodendrocytes, and microglial cells express an extraordinary repertory of Cxs that are important for cell to cell communication and diffusion of metabolites, ions, neurotransmitters, and gliotransmitters. GJs and Cxs not only contribute to the normal function of the CNS but also the pathological progress of several diseases, such as cancer and neurodegenerative diseases. Besides, they have important roles in mediating neuroprotection by internal or external molecules. However, regulation of Cx expression by epigenetic mechanisms has not been fully elucidated. In this review, we provide an overview of the known mechanisms that regulate the expression of the most abundant Cxs in the central nervous system, Cx30, Cx36, and Cx43, and their role in brain cancer, CNS disorders, and neuroprotection. Initially, we focus on describing the Cx gene structure and how this is regulated by epigenetic mechanisms. Then, the posttranslational modifications that mediate the activity and stability of Cxs are reviewed. Finally, the role of GJs and Cxs in glioblastoma, Alzheimer's, Parkinson's, and Huntington's diseases, and neuroprotection are analyzed with the aim of shedding light in the possibility of using Cx regulators as potential therapeutic molecules.
Collapse
Affiliation(s)
- Oscar F. Sánchez
- Department of Nutrition and Biochemistry, Pontificia Universidad Javeriana, 110911 Bogota, Colombia; (A.V.R.); (J.M.V.-E.); (L.C.M.); (J.-J.S.)
| | | | | | | | | | - Sonia-Luz Albarracin
- Department of Nutrition and Biochemistry, Pontificia Universidad Javeriana, 110911 Bogota, Colombia; (A.V.R.); (J.M.V.-E.); (L.C.M.); (J.-J.S.)
| |
Collapse
|
25
|
Connexins-Based Hemichannels/Channels and Their Relationship with Inflammation, Seizures and Epilepsy. Int J Mol Sci 2019; 20:ijms20235976. [PMID: 31783599 PMCID: PMC6929063 DOI: 10.3390/ijms20235976] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/13/2019] [Accepted: 11/20/2019] [Indexed: 12/11/2022] Open
Abstract
Connexins (Cxs) are a family of 21 protein isoforms, eleven of which are expressed in the central nervous system, and they are found in neurons and glia. Cxs form hemichannels (connexons) and channels (gap junctions/electric synapses) that permit functional and metabolic coupling between neurons and astrocytes. Altered Cx expression and function is involved in inflammation and neurological diseases. Cxs-based hemichannels and channels have a relevance to seizures and epilepsy in two ways: First, this pathological condition increases the opening probability of hemichannels in glial cells to enable gliotransmitter release, sustaining the inflammatory process and exacerbating seizure generation and epileptogenesis, and second, the opening of channels favors excitability and synchronization through coupled neurons. These biological events highlight the global pathological mechanism of epilepsy, and the therapeutic potential of Cxs-based hemichannels and channels. Therefore, this review describes the role of Cxs in neuroinflammation and epilepsy and examines how the blocking of channels and hemichannels may be therapeutic targets of anti-convulsive and anti-epileptic treatments.
Collapse
|
26
|
Brocardo L, Acosta LE, Piantanida AP, Rela L. Beneficial and Detrimental Remodeling of Glial Connexin and Pannexin Functions in Rodent Models of Nervous System Diseases. Front Cell Neurosci 2019; 13:491. [PMID: 31780897 PMCID: PMC6851021 DOI: 10.3389/fncel.2019.00491] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/17/2019] [Indexed: 01/30/2023] Open
Abstract
A variety of glial cell functions are supported by connexin and pannexin proteins. These functions include the modulation of synaptic gain, the control of excitability through regulation of the ion and neurotransmitter composition of the extracellular milieu and the promotion of neuronal survival. Connexins and pannexins support these functions through diverse molecular mechanisms, including channel and non-channel functions. The former comprise the formation of gap junction-mediated networks supported by connexin intercellular channels and the formation of pore-like membrane structures or hemichannels formed by both connexins and pannexins. Non-channel functions involve adhesion properties and the participation in signaling intracellular cascades. Pathological conditions of the nervous system such as ischemia, neurodegeneration, pathogen infection, trauma and tumors are characterized by distinctive remodeling of connexin expression and function. However, whether these changes can be interpreted as part of the pathogenesis, or as beneficial compensatory effects, remains under debate. Here we review the available evidence addressing this matter with a special emphasis in mouse models with selective manipulation of glial connexin and pannexin proteins in vivo. We postulate that the beneficial vs. detrimental effects of glial connexin remodeling in pathological conditions depend on the impact of remodeling on the different connexin and pannexin channel and non-channel functions, on the characteristics of the inflammatory environment and on the type of interaction among glial cells types.
Collapse
Affiliation(s)
- Lucila Brocardo
- Grupo de Neurociencia de Sistemas, Facultad de Medicina, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Luis Ernesto Acosta
- Grupo de Neurociencia de Sistemas, Facultad de Medicina, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana Paula Piantanida
- Grupo de Neurociencia de Sistemas, Facultad de Medicina, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Lorena Rela
- Grupo de Neurociencia de Sistemas, Facultad de Medicina, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
27
|
Churchward MA, Michaud ER, Todd KG. Supporting microglial niches for therapeutic benefit in psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 2019; 94:109648. [PMID: 31078613 DOI: 10.1016/j.pnpbp.2019.109648] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 12/27/2022]
Abstract
Inflammation is an essential tissue response to injury, stress, or infection resulting in debris and/or pathogen clearance intended to promote healing and recovery. Due to the status as an immune 'privileged' tissue, microglia serve as endogenous regulators of inflammation in the central nervous system, but maintain communication with peripheral immune system to enable recruitment of peripheral immune cells in case of injury or infection. While microglia retain the functional capacity for a full range of inflammatory functions - microglia express a range of pattern-recognition receptors and function as innate immune cells, carry out phagocytosis of pathogens, and act as antigen presenting cells - in the healthy central nervous system (CNS) these functions are rarely engaged. Subsequently microglia are being recognized to occupy an increasing number of homeostatic niches, and in many cases have adopted immune or inflammatory mechanisms to carry out these niche functions absent immune activation. These sterile inflammatory functions are challenging long-held views of the role of inflammation in the central nervous system while simultaneously expanding the potential for the development of truly novel therapeutic interventions for a range of neuroinflammatory, neurodegenerative, and neuropsychiatric disorders. In the present review we discuss recent preclinical evidence for conserved niche functions for microglia whose disruption may causally contribute to various psychiatric disorders, and prospective targets for restoring disrupted niches.
Collapse
Affiliation(s)
- M A Churchward
- Neurochemical Research Unit, Department of Psychiatry, Faculty of Medicine, University of Alberta, Edmonton, AB T6G2R3, Canada; Neuroscience and Mental Health Institute, Faculty of Medicine, University of Alberta, Edmonton, AB T6G2R3, Canada.
| | - E R Michaud
- Neurochemical Research Unit, Department of Psychiatry, Faculty of Medicine, University of Alberta, Edmonton, AB T6G2R3, Canada; Neuroscience and Mental Health Institute, Faculty of Medicine, University of Alberta, Edmonton, AB T6G2R3, Canada
| | - K G Todd
- Neurochemical Research Unit, Department of Psychiatry, Faculty of Medicine, University of Alberta, Edmonton, AB T6G2R3, Canada; Neuroscience and Mental Health Institute, Faculty of Medicine, University of Alberta, Edmonton, AB T6G2R3, Canada; Department of Biomedical Engineering, University of Alberta, Edmonton, AB T6G2R3, Canada
| |
Collapse
|
28
|
Ahmadian E, Eftekhari A, Samiei M, Maleki Dizaj S, Vinken M. The role and therapeutic potential of connexins, pannexins and their channels in Parkinson's disease. Cell Signal 2019; 58:111-118. [DOI: 10.1016/j.cellsig.2019.03.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/10/2019] [Accepted: 03/10/2019] [Indexed: 02/07/2023]
|
29
|
Gómez GI, Falcon RV, Maturana CJ, Labra VC, Salgado N, Rojas CA, Oyarzun JE, Cerpa W, Quintanilla RA, Orellana JA. Heavy Alcohol Exposure Activates Astroglial Hemichannels and Pannexons in the Hippocampus of Adolescent Rats: Effects on Neuroinflammation and Astrocyte Arborization. Front Cell Neurosci 2018; 12:472. [PMID: 30564103 PMCID: PMC6288256 DOI: 10.3389/fncel.2018.00472] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/19/2018] [Indexed: 12/29/2022] Open
Abstract
A mounting body of evidence indicates that adolescents are specially more susceptible to alcohol influence than adults. However, the mechanisms underlying this phenomenon remain poorly understood. Astrocyte-mediated gliotransmission is crucial for hippocampal plasticity and recently, the opening of hemichannels and pannexons has been found to participate in both processes. Here, we evaluated whether adolescent rats exposed to ethanol exhibit changes in the activity of astrocyte hemichannels and pannexons in the hippocampus, as well as alterations in astrocyte arborization and cytokine levels. Adolescent rats were subjected to ethanol (3.0 g/kg) for two successive days at 48-h periods over 14 days. The opening of hemichannels and pannexons was examined in hippocampal slices by dye uptake, whereas hippocampal cytokine levels and astroglial arborization were determined by ELISA and Sholl analysis, respectively. We found that adolescent ethanol exposure increased the opening of connexin 43 (Cx43) hemichannels and pannexin-1 (Panx1) channels in astrocytes. Blockade of p38 mitogen-activated protein kinase (MAPK), inducible nitric oxide synthase (iNOS) and cyclooxygenases (COXs), as well as chelation of intracellular Ca2+, drastically reduced the ethanol-induced channel opening in astrocytes. Importantly, ethanol-induced Cx43 hemichannel and Panx1 channel activity was correlated with increased levels of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), IL-6 in the hippocampus, as well as with profound alterations in astrocyte arbor complexity. Thus, we propose that uncontrolled opening of astrocyte hemichannels and pannexons may contribute not only to the glial dysfunction and neurotoxicity caused by adolescent alcohol consumption, but also to the pathogenesis of alcohol use disorders in the adulthood.
Collapse
Affiliation(s)
- Gonzalo I Gómez
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Romina V Falcon
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carola J Maturana
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Valeria C Labra
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicole Salgado
- Unidad de Microscopía Avanzada Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Consuelo A Rojas
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan E Oyarzun
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Waldo Cerpa
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA), Santiago, Chile
| | - Rodrigo A Quintanilla
- Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA), Santiago, Chile.,Laboratory of Neurodegenerative Diseases, Universidad Autónoma de Chile, Santiago, Chile
| | - Juan A Orellana
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA), Santiago, Chile
| |
Collapse
|
30
|
Wang H, Huang W, Liang M, Shi Y, Zhang C, Li Q, Liu M, Shou Y, Yin H, Zhu X, Sun X, Hu Y, Shen Z. (+)-JQ1 attenuated LPS-induced microglial inflammation via MAPK/NFκB signaling. Cell Biosci 2018; 8:60. [PMID: 30479742 PMCID: PMC6245926 DOI: 10.1186/s13578-018-0258-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 11/13/2018] [Indexed: 01/10/2023] Open
Abstract
Background Microglia activation is a crucial event in neurodegenerative disease. The depression of microglial inflammatory response is considered a promising therapeutic strategy. NFκB signaling, including IKK/IκB phosphotylation, p65 nucelus relocalization and NFκB-related genes transcription are prevalent accepted to play important role in microglial activation. (+)-JQ1, a BRD4 inhibitor firstly discovered as an anti-tumor agent, was later confirmed to be an anti-inflammatory compound. However, its anti-inflammatory effect in microglia and central neural system remains unclear. Results In the current work, microglial BV2 cells were applied and treatment with lipopolysaccharide (LPS) to induce inflammation and later administered with (+)-JQ1. In parallel, LPS and (+)-JQ1 was intracerebroventricular injected in IL-1β-luc transgenic mice, followed by fluorescence evaluation and brain tissue collection. Results showed that (+)-JQ1 treatment could significantly reduce LPS induced transcription of inflammatory cytokines both in vitro and in vivo. (+)-JQ1 could inhibit LPS induced MAPK but not PI3K signaling phosphorylation, NFκB relocalization and transcription activity. In animal experiments, (+)-JQ1 postponed LPS induced microglial and astrocytes activation, which was also dependent on MAPK/NFκB signaling. Conclusions Thus, our data demonstrated that (+)-JQ1 could inhibit LPS induced microglia associated neuroinflammation, via the attenuation of MAPK/NFκB signaling.
Collapse
Affiliation(s)
- Huanhuan Wang
- 1School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Wenhai Huang
- 2Institute of Materia Medica, Zhejiang Academy of Medical Sciences, No. 182, Tianmushan Road, Hangzhou, 310013 China
| | - Meihao Liang
- 2Institute of Materia Medica, Zhejiang Academy of Medical Sciences, No. 182, Tianmushan Road, Hangzhou, 310013 China
| | - Yingying Shi
- 1School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Chixiao Zhang
- 2Institute of Materia Medica, Zhejiang Academy of Medical Sciences, No. 182, Tianmushan Road, Hangzhou, 310013 China
| | - Qin Li
- 2Institute of Materia Medica, Zhejiang Academy of Medical Sciences, No. 182, Tianmushan Road, Hangzhou, 310013 China
| | - Meng Liu
- 1School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Yikai Shou
- 1School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Hongping Yin
- 1School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Xiaozheng Zhu
- 1School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Xiaoyan Sun
- 3School of Information Science and Engineering, Hangzhou Normal University, Hangzhou, China
| | - Yu Hu
- 1School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Zhengrong Shen
- 2Institute of Materia Medica, Zhejiang Academy of Medical Sciences, No. 182, Tianmushan Road, Hangzhou, 310013 China
| |
Collapse
|
31
|
Delmar M, Laird DW, Naus CC, Nielsen MS, Verselis VK, White TW. Connexins and Disease. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a029348. [PMID: 28778872 DOI: 10.1101/cshperspect.a029348] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Inherited or acquired alterations in the structure and function of connexin proteins have long been associated with disease. In the present work, we review current knowledge on the role of connexins in diseases associated with the heart, nervous system, cochlea, and skin, as well as cancer and pleiotropic syndromes such as oculodentodigital dysplasia (ODDD). Although incomplete by virtue of space and the extent of the topic, this review emphasizes the fact that connexin function is not only associated with gap junction channel formation. As such, both canonical and noncanonical functions of connexins are fundamental components in the pathophysiology of multiple connexin related disorders, many of them highly debilitating and life threatening. Improved understanding of connexin biology has the potential to advance our understanding of mechanisms, diagnosis, and treatment of disease.
Collapse
Affiliation(s)
- Mario Delmar
- The Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York 10016
| | - Dale W Laird
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A5C1, Canada
| | - Christian C Naus
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Morten S Nielsen
- Department of Biological Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Vytautas K Verselis
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, New York 10461
| | - Thomas W White
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York 11790
| |
Collapse
|
32
|
Aguilera G, Colín-González AL, Rangel-López E, Chavarría A, Santamaría A. Redox Signaling, Neuroinflammation, and Neurodegeneration. Antioxid Redox Signal 2018; 28:1626-1651. [PMID: 28467722 DOI: 10.1089/ars.2017.7099] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Production of pro-inflammatory and anti-inflammatory cytokines is part of the defense system that mostly microglia and macrophages display to induce normal signaling to counteract the deleterious actions of invading pathogens in the brain. Also, redox activity in the central nervous system (CNS) constitutes an integral part of the metabolic processes needed by cells to exert their normal molecular and biochemical functions. Under normal conditions, the formation of reactive oxygen and nitrogen species, and the following oxidative activity encounter a healthy balance with immunological responses to preserve cell functions in the brain. However, under different pathological conditions, inflammatory responses recruit pro-oxidant signals and vice versa. The aim of this article is to review the basic concepts about the triggering of inflammatory and oxidative responses in the CNS. Recent Advances: Diverse concurrent toxic pathways are described to provide a solid mechanistic scope for considering intervention at the experimental and clinical levels that are aimed at diminishing the harmful actions of these two contributing factors to nerve cell damage. Critical Issues and Future Directions: The main conclusion supports the existence of a narrow cross-talk between pro-inflammatory and oxidative signals that can lead to neuronal damage and subsequent neurodegeneration. Further investigation about critical pathways crosslinking oxidative stress and inflammation will strength our knowlegde on this topic. Antioxid. Redox Signal. 28, 1626-1651.
Collapse
Affiliation(s)
- Gabriela Aguilera
- 1 Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía , Mexico City, Mexico
| | - Ana Laura Colín-González
- 1 Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía , Mexico City, Mexico
| | - Edgar Rangel-López
- 1 Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía , Mexico City, Mexico
| | - Anahí Chavarría
- 2 Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México , Mexico City, Mexico
| | - Abel Santamaría
- 1 Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía , Mexico City, Mexico
| |
Collapse
|
33
|
Abstract
Major depressive disorder (MDD) is a chronic and debilitating illness that affects over 350 million people worldwide; however, current treatments have failed to cure or prevent the progress of depression. Increasing evidence suggests a crucial role for connexins in MDD. In this review, we have summarised recent accomplishments regarding the role of connexins, gap junctions, and hemichannels in the aetiology of MDD, and discussed the limitations of current research. A blockage of gap junctions or hemichannels induces depressive behaviour. Possible underlying mechanisms include the regulation of neurosecretory functions and synaptic activity by gap junctions and hemichannels. Gap junctions are functionally inhibited under stress conditions. Conversely, hemichannel permeability is increased. Antidepressants inhibit hemichannel permeability; however, they have contrasting effects on the function of gap junctions under normal conditions and can protect them against stress. In conclusion, the blockage of hemichannels concurrent with improvements in gap junction functionality might be potential targets for depression treatment.
Collapse
Affiliation(s)
- Cong-Yuan Xia
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Tohru Yamakuni
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; College of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| |
Collapse
|
34
|
Affiliation(s)
- Ryo Yamasaki
- Department of Neurology; Neurological Institute; Graduate School of Medical Sciences; Kyushu University; Fukuoka Japan
| |
Collapse
|
35
|
|
36
|
Rodrigues-Neves AC, Aires ID, Vindeirinho J, Boia R, Madeira MH, Gonçalves FQ, Cunha RA, Santos PF, Ambrósio AF, Santiago AR. Elevated Pressure Changes the Purinergic System of Microglial Cells. Front Pharmacol 2018; 9:16. [PMID: 29416510 PMCID: PMC5787565 DOI: 10.3389/fphar.2018.00016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/05/2018] [Indexed: 12/20/2022] Open
Abstract
Glaucoma is the second cause of blindness worldwide and is characterized by the degeneration of retinal ganglion cells (RGCs) and optic nerve atrophy. Increased microglia reactivity is an early event in glaucoma that may precede the loss of RGCs, suggesting that microglia and neuroinflammation are involved in the pathophysiology of this disease. Although global changes of the purinergic system have been reported in experimental and human glaucoma, it is not known if this is due to alterations of the purinergic system of microglial cells, the resident immune cells of the central nervous system. We now studied if elevated hydrostatic pressure (EHP), mimicking ocular hypertension, changed the extracellular levels of ATP and adenosine and the expression, density and activity of enzymes, transporters and receptors defining the purinergic system. The exposure of the murine microglial BV-2 cell line to EHP increased the extracellular levels of ATP and adenosine, increased the density of ecto-nucleoside triphosphate diphosphohydrolase 1 (E-NTPDase1, CD39) and decreased the density of the equilibrative nucleotide transporter 2 as well as the activity of adenosine deaminase. The expression of adenosine A1 receptor also decreased, but the adenosine A3 receptor was not affected. Notably, ATP and adenosine selectively control migration rather than phagocytosis, both bolstered by EHP. The results show that the purinergic system is altered in microglia in conditions of elevated pressure. Understanding the impact of elevated pressure on the purinergic system will help to unravel the mechanisms underlying inflammation and neurodegeneration associated with glaucoma.
Collapse
Affiliation(s)
- Ana C Rodrigues-Neves
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - Inês D Aires
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - Joana Vindeirinho
- CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Raquel Boia
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - Maria H Madeira
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - Francisco Q Gonçalves
- CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Rodrigo A Cunha
- CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Paulo F Santos
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal.,Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - António F Ambrósio
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Association for Innovation and Biomedical Research on Light and Image, Coimbra, Portugal
| | - Ana R Santiago
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Association for Innovation and Biomedical Research on Light and Image, Coimbra, Portugal
| |
Collapse
|
37
|
Galinsky R, Davidson JO, Dean JM, Green CR, Bennet L, Gunn AJ. Glia and hemichannels: key mediators of perinatal encephalopathy. Neural Regen Res 2018; 13:181-189. [PMID: 29557357 PMCID: PMC5879879 DOI: 10.4103/1673-5374.226378] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Perinatal encephalopathy remains a major cause of disability, such as cerebral palsy. Therapeutic hypothermia is now well established to partially reduce risk of disability in late preterm/term infants. However, new and complementary therapeutic targets are needed to further improve outcomes. There is increasing evidence that glia play a key role in neural damage after hypoxia-ischemia and infection/inflammation. In this review, we discuss the role of astrocytic gap junction (connexin) hemichannels in the spread of neural injury after hypoxia-ischemia and/or infection/inflammation. Potential mechanisms of hemichannel mediated injury likely involve impaired intracellular calcium handling, loss of blood-brain barrier integrity and release of adenosine triphosphate (ATP) resulting in over-activation of purinergic receptors. We propose the hypothesis that inflammation-induced opening of connexin hemichannels is a key regulating event that initiates a vicious cycle of excessive ATP release, which in turn propagates activation of purinergic receptors on microglia and astrocytes. This suggests that developing new neuroprotective strategies for preterm infants will benefit from a detailed understanding of glial and connexin hemichannel responses.
Collapse
Affiliation(s)
- Robert Galinsky
- Department of Physiology, University of Auckland, Auckland, New Zealand; The Ritchie Centre, Hudson Institute of Medical Research, Victoria, Australia
| | - Joanne O Davidson
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Justin M Dean
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Colin R Green
- Department of Ophthalmology, University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Department of Physiology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
38
|
Lannes N, Eppler E, Etemad S, Yotovski P, Filgueira L. Microglia at center stage: a comprehensive review about the versatile and unique residential macrophages of the central nervous system. Oncotarget 2017; 8:114393-114413. [PMID: 29371994 PMCID: PMC5768411 DOI: 10.18632/oncotarget.23106] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/15/2017] [Indexed: 02/07/2023] Open
Abstract
Microglia cells are the unique residential macrophages of the central nervous system (CNS). They have a special origin, as they derive from the embryonic yolk sac and enter the developing CNS at a very early stage. They play an important role during CNS development and adult homeostasis. They have a major contribution to adult neurogenesis and neuroinflammation. Thus, they participate in the pathogenesis of neurodegenerative diseases and contribute to aging. They play an important role in sustaining and breaking the blood-brain barrier. As innate immune cells, they contribute substantially to the immune response against infectious agents affecting the CNS. They play also a major role in the growth of tumours of the CNS. Microglia are consequently the key cell population linking the nervous and the immune system. This review covers all different aspects of microglia biology and pathology in a comprehensive way.
Collapse
Affiliation(s)
- Nils Lannes
- Albert Gockel, Anatomy, Department of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Elisabeth Eppler
- Pestalozzistrasse Zo, Department of BioMedicine, University of Basel, CH-4056 Basel, Switzerland
| | - Samar Etemad
- Building 71/218 RBWH Herston, Centre for Clinical Research, The University of Queensland, QLD 4029 Brisbane, Australia
| | - Peter Yotovski
- Albert Gockel, Anatomy, Department of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Luis Filgueira
- Albert Gockel, Anatomy, Department of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|
39
|
Jean-Xavier C, Sharples SA, Mayr KA, Lognon AP, Whelan PJ. Retracing your footsteps: developmental insights to spinal network plasticity following injury. J Neurophysiol 2017; 119:521-536. [PMID: 29070632 DOI: 10.1152/jn.00575.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
During development of the spinal cord, a precise interaction occurs between descending projections and sensory afferents, with spinal networks that lead to expression of coordinated motor output. In the rodent, during the last embryonic week, motor output first occurs as regular bursts of spontaneous activity, progressing to stochastic patterns of episodes that express bouts of coordinated rhythmic activity perinatally. Locomotor activity becomes functionally mature in the 2nd postnatal wk and is heralded by the onset of weight-bearing locomotion on the 8th and 9th postnatal day. Concomitantly, there is a maturation of intrinsic properties and key conductances mediating plateau potentials. In this review, we discuss spinal neuronal excitability, descending modulation, and afferent modulation in the developing rodent spinal cord. In the adult, plastic mechanisms are much more constrained but become more permissive following neurotrauma, such as spinal cord injury. We discuss parallel mechanisms that contribute to maturation of network function during development to mechanisms of pathological plasticity that contribute to aberrant motor patterns, such as spasticity and clonus, which emerge following central injury.
Collapse
Affiliation(s)
- C Jean-Xavier
- Hotchkiss Brain Institute, University of Calgary , Calgary, Alberta , Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary , Calgary, Alberta , Canada
| | - S A Sharples
- Hotchkiss Brain Institute, University of Calgary , Calgary, Alberta , Canada.,Department of Neuroscience, University of Calgary , Calgary, Alberta , Canada
| | - K A Mayr
- Hotchkiss Brain Institute, University of Calgary , Calgary, Alberta , Canada.,Department of Neuroscience, University of Calgary , Calgary, Alberta , Canada
| | - A P Lognon
- Department of Comparative Biology and Experimental Medicine, University of Calgary , Calgary, Alberta , Canada
| | - P J Whelan
- Hotchkiss Brain Institute, University of Calgary , Calgary, Alberta , Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary , Calgary, Alberta , Canada
| |
Collapse
|
40
|
Galinsky R, Davidson JO, Lear CA, Bennet L, Green CR, Gunn AJ. Connexin hemichannel blockade improves survival of striatal GABA-ergic neurons after global cerebral ischaemia in term-equivalent fetal sheep. Sci Rep 2017; 7:6304. [PMID: 28740229 PMCID: PMC5524909 DOI: 10.1038/s41598-017-06683-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/15/2017] [Indexed: 11/17/2022] Open
Abstract
Basal ganglia injury at term remains a major cause of disability, such as cerebral palsy. In this study we tested the hypotheses that blockade of astrocytic connexin hemichannels with a mimetic peptide would improve survival of striatal phenotypic neurons after global cerebral ischaemia in term-equivalent fetal sheep, and that neuronal survival would be associated with electrophysiological recovery. Fetal sheep (0.85 gestation) were randomly assigned to receive a short or long (1 or 25 h) intracerebroventricular infusion of a mimetic peptide or vehicle, starting 90 minutes after 30 minutes of cerebral ischaemia. Sheep were killed 7 days after ischaemia. Cerebral ischaemia was associated with reduced numbers of calbindin-28k, calretinin, parvalbumin and GAD positive striatal neurons (P < 0.05 ischaemia + vehicle, n = 6 vs. sham ischaemia, n = 6) but not ChAT or nNOS positive neurons. Short infusion of peptide (n = 6) did not significantly improve survival of any striatal phenotype. Long infusion of peptide (n = 6) was associated with increased survival of calbindin-28k, calretinin, parvalbumin and GAD positive neurons (P < 0.05 vs. ischaemia + vehicle). Neurophysiological recovery was associated with improved survival of calbindin-28k, calretinin and parvalbumin positive striatal neurons (P < 0.05 for all). In conclusion, connexin hemichannel blockade after cerebral ischaemia in term-equivalent fetal sheep improves survival of striatal GABA-ergic neurons.
Collapse
Affiliation(s)
- Robert Galinsky
- Department of Physiology, The University of Auckland, Auckland, New Zealand.,The Ritchie Centre, Hudson Institute of Medical Research, Victoria, Australia
| | - Joanne O Davidson
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Christopher A Lear
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Colin R Green
- Department of Ophthalmology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Department of Physiology, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
41
|
Orellana JA, Cerpa W, Carvajal MF, Lerma-Cabrera JM, Karahanian E, Osorio-Fuentealba C, Quintanilla RA. New Implications for the Melanocortin System in Alcohol Drinking Behavior in Adolescents: The Glial Dysfunction Hypothesis. Front Cell Neurosci 2017; 11:90. [PMID: 28424592 PMCID: PMC5380733 DOI: 10.3389/fncel.2017.00090] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/15/2017] [Indexed: 12/12/2022] Open
Abstract
Alcohol dependence causes physical, social, and moral harms and currently represents an important public health concern. According to the World Health Organization (WHO), alcoholism is the third leading cause of death worldwide, after tobacco consumption and hypertension. Recent epidemiologic studies have shown a growing trend in alcohol abuse among adolescents, characterized by the consumption of large doses of alcohol over a short time period. Since brain development is an ongoing process during adolescence, short- and long-term brain damage associated with drinking behavior could lead to serious consequences for health and wellbeing. Accumulating evidence indicates that alcohol impairs the function of different components of the melanocortin system, a major player involved in the consolidation of addictive behaviors during adolescence and adulthood. Here, we hypothesize the possible implications of melanocortins and glial cells in the onset and progression of alcohol addiction. In particular, we propose that alcohol-induced decrease in α-MSH levels may trigger a cascade of glial inflammatory pathways that culminate in altered gliotransmission in the ventral tegmental area and nucleus accumbens (NAc). The latter might potentiate dopaminergic drive in the NAc, contributing to increase the vulnerability to alcohol dependence and addiction in the adolescence and adulthood.
Collapse
Affiliation(s)
- Juan A Orellana
- Centro de Investigación y Estudio del Consumo de Alcohol en AdolescentesSantiago, Chile.,Laboratorio de Neurociencias, Departamento de Neurología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Waldo Cerpa
- Centro de Investigación y Estudio del Consumo de Alcohol en AdolescentesSantiago, Chile.,Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Maria F Carvajal
- Centro de Investigación y Estudio del Consumo de Alcohol en AdolescentesSantiago, Chile.,Unidad de Neurociencia, Centro de Investigación Biomédica, Universidad Autónoma de ChileSantiago, Chile
| | - José M Lerma-Cabrera
- Centro de Investigación y Estudio del Consumo de Alcohol en AdolescentesSantiago, Chile.,Unidad de Neurociencia, Centro de Investigación Biomédica, Universidad Autónoma de ChileSantiago, Chile
| | - Eduardo Karahanian
- Centro de Investigación y Estudio del Consumo de Alcohol en AdolescentesSantiago, Chile.,Unidad de Neurociencia, Centro de Investigación Biomédica, Universidad Autónoma de ChileSantiago, Chile
| | - Cesar Osorio-Fuentealba
- Centro de Investigación y Estudio del Consumo de Alcohol en AdolescentesSantiago, Chile.,Facultad de Kinesiología, Artes y Educación Física, Universidad Metropolitana de Ciencias de la EducaciónSantiago, Chile
| | - Rodrigo A Quintanilla
- Centro de Investigación y Estudio del Consumo de Alcohol en AdolescentesSantiago, Chile.,Laboratory of Neurodegenerative Diseases, Universidad Autónoma de ChileSantiago, Chile
| |
Collapse
|
42
|
Mittal R, Debs LH, Nguyen D, Patel AP, Grati M, Mittal J, Yan D, Eshraghi AA, Liu XZ. Signaling in the Auditory System: Implications in Hair Cell Regeneration and Hearing Function. J Cell Physiol 2017; 232:2710-2721. [DOI: 10.1002/jcp.25695] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 11/18/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Rahul Mittal
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - Luca H. Debs
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - Desiree Nguyen
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - Amit P. Patel
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - M'hamed Grati
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - Jeenu Mittal
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - Denise Yan
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - Adrien A. Eshraghi
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - Xue Zhong Liu
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| |
Collapse
|