1
|
Han M, Zeng D, Tan W, Chen X, Bai S, Wu Q, Chen Y, Wei Z, Mei Y, Zeng Y. Brain region-specific roles of brain-derived neurotrophic factor in social stress-induced depressive-like behavior. Neural Regen Res 2025; 20:159-173. [PMID: 38767484 PMCID: PMC11246125 DOI: 10.4103/nrr.nrr-d-23-01419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/23/2023] [Accepted: 01/19/2024] [Indexed: 05/22/2024] Open
Abstract
Brain-derived neurotrophic factor is a key factor in stress adaptation and avoidance of a social stress behavioral response. Recent studies have shown that brain-derived neurotrophic factor expression in stressed mice is brain region-specific, particularly involving the corticolimbic system, including the ventral tegmental area, nucleus accumbens, prefrontal cortex, amygdala, and hippocampus. Determining how brain-derived neurotrophic factor participates in stress processing in different brain regions will deepen our understanding of social stress psychopathology. In this review, we discuss the expression and regulation of brain-derived neurotrophic factor in stress-sensitive brain regions closely related to the pathophysiology of depression. We focused on associated molecular pathways and neural circuits, with special attention to the brain-derived neurotrophic factor-tropomyosin receptor kinase B signaling pathway and the ventral tegmental area-nucleus accumbens dopamine circuit. We determined that stress-induced alterations in brain-derived neurotrophic factor levels are likely related to the nature, severity, and duration of stress, especially in the above-mentioned brain regions of the corticolimbic system. Therefore, BDNF might be a biological indicator regulating stress-related processes in various brain regions.
Collapse
Affiliation(s)
- Man Han
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Deyang Zeng
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Wei Tan
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Xingxing Chen
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Shuyuan Bai
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Qiong Wu
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Yushan Chen
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Zhen Wei
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Yufei Mei
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Yan Zeng
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
2
|
Tang X, Xiang X, Yu Y, Huang S, Pan C, Gan S, Yao Y. Surgery-induced neuroinflammatory transcriptional programs in medial prefrontal cortex of mice during early phase of perioperative neurocognitive disorders. PeerJ 2024; 12:e18664. [PMID: 39650559 PMCID: PMC11623096 DOI: 10.7717/peerj.18664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/18/2024] [Indexed: 12/11/2024] Open
Abstract
Patients receiving anesthesia and surgery may experience cognitive dysfunction, memory deficits, and mental disturbances, which are referred to as perioperative neurocognitive disorders (PND). The function of the medial prefrontal cortex (mPFC) is disrupted during early phase of PND. To gain insight into the mechanisms of PND, we collected mouse mPFC tissues 6 h post-surgery and performed RNA sequencing analysis. In total, 178 differentially expressed genes (DEGs) were identified, including 105 upregulated and 73 downregulated genes. Bioinformatic analysis highlighted the significant enrichment of these DEGs in several immune-related biological processes and signaling pathways, suggesting that pronounced neuroinflammatory transcriptional programming in the mPFC was evoked during early phase of PND. Interleukin-6 level increased in both serum and mPFC, while the mRNA levels of Il-6, Tnf-α, and Il-1β remained unchanged. Taken together, our findings suggest that a distinct and acute neuroinflammatory response in the mPFC is evoked after peripheral surgery, which might play a key role in the development of PND.
Collapse
Affiliation(s)
- Xiaodong Tang
- Department of Anesthesiology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xuwu Xiang
- Department of Anesthesiology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yang Yu
- Department of Anesthesiology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shuyuan Huang
- Department of Anesthesiology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Caifei Pan
- Department of Anesthesiology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shuyuan Gan
- Department of Anesthesiology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yongxing Yao
- Department of Anesthesiology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Sun J, Jia K, Sun M, Zhang X, Chen J, Zhu G, Li C, Lian B, Du Z, Sun H, Sun L. The GluA1-Related BDNF Pathway Is Involved in PTSD-Induced Cognitive Flexibility Deficit in Attentional Set-Shifting Tasks of Rats. J Clin Med 2022; 11:jcm11226824. [PMID: 36431303 PMCID: PMC9694369 DOI: 10.3390/jcm11226824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Background: Post-Traumatic Stress Disorder (PTSD) is a severe psychological disorder characterized by intrusive thoughts, heightened arousal, avoidance, and flashbacks. Cognitive flexibility dysfunction has been linked with the emergence of PTSD, including response inhibition deficits and impaired attentional switching, which results in difficulties for PTSD patients when disengaging attention from trauma-related stimuli. However, the molecular mechanisms of cognitive flexibility deficits remain unclear. Methods: The animals were exposed to a single prolonged stress and electric foot shock (SPS&S) procedure to induce PTSD-like features. Once the model was established, the changes in cognitive flexibility were assessed using an attentional set-shifting task (ASST) in order to investigate the effects of traumatic stress on cognitive flexibility. Additionally, the molecular alterations of certain proteins (AMPA Receptor 1 (GluA1), brain-derived neurotrophic factor (BDNF), and Postsynaptic density protein 95 (PSD95) in the medial prefrontal cortex (mPFC) were measured using Western blot and immunofluorescence. Results: The SPS&S model exhibited PTSD-like behaviors and induced reversal learning and set-shifting ability deficit in the ASST. These behavioral changes are accompanied by decreased GluA1, BDNF, and PSD95 protein expression in the mPFC. Further analysis showed a correlative relationship between the behavioral and molecular alterations. Conclusions: The SPS&S model induced cognitive flexibility deficits, and the potential underlying mechanism could be mediated by GluA1-related BDNF signaling in the mPFC.
Collapse
Affiliation(s)
- Jiaming Sun
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang 261053, China
| | - Keli Jia
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang 261053, China
| | - Mingtao Sun
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang 261053, China
| | - Xianqiang Zhang
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital/Institute of Mental Health and the Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing 100191, China
| | - Jinhong Chen
- College of Extended Education, Weifang Medical University, 7166# Baotong West Street, Weifang 261053, China
| | - Guohui Zhu
- Mental Health Centre of Weifang City, Weifang 261071, China
| | - Changjiang Li
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang 261053, China
| | - Bo Lian
- Department of Bioscience and Technology, Weifang Medical University, 7166# Baotong West Street, Weifang 261053, China
| | - Zhongde Du
- Cerebral Center, Sunshine Union Hospital, 9000# Yingqian Street, Weifang 261205, China
| | - Hongwei Sun
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang 261053, China
- Correspondence: (H.S.); (L.S.)
| | - Lin Sun
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang 261053, China
- Correspondence: (H.S.); (L.S.)
| |
Collapse
|
4
|
Role of sirtuin1 in impairments of emotion-related behaviors in mice with chronic mild unpredictable stress during adolescence. Physiol Behav 2022; 257:113971. [PMID: 36183852 DOI: 10.1016/j.physbeh.2022.113971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/02/2022] [Accepted: 09/23/2022] [Indexed: 11/22/2022]
Abstract
Long-term exposure to physical and/or psychosocial stress during early life and/or adolescence increases the risk of psychiatric disorders such as major depressive disorder and anxiety disorders. However, the molecular mechanisms underlying early stress-induced brain dysfunction are poorly understood. In the present study, mice at 4 weeks old were subjected to chronic mild unpredictable stress (CMUS) for 4 weeks, and subsequently to assays of emotion-related behaviors. Thereafter, they were sacrificed and their brains were collected for real-time quantitative polymerase chain reaction (RT-qPCR). Mice with CMUS during adolescence showed despair behavior, anxiety-like behavior, social behavior deficits, and anhedonia in forced-swim, marble-burying, social interaction, and sucrose preference tests, respectively. Additionally, RT-qPCR revealed that the expression levels of sirtuin1 (SIRT1), a NAD+-dependent deacetylase that mediates stress responses, were down-regulated in the prefrontal cortex and hippocampus of mice with CMUS compared with control mice. Next, to investigate the pathophysiological role of decreased Sirt1 expression levels in stress-induced behavioral deficits, we assessed the effects of resveratrol, a pharmacological activator of SIRT1, in mice exposed to CMUS. Chronic treatment with resveratrol prevented -induced social behavior deficits and depression-like behaviors. These results suggest that CMUS during adolescence decreases Sirt1 expression in the brain, leading to deficits in emotional behavior. Accordingly, SIRT1 activators, such as resveratrol, may be preventive agents against abnormalities in emotional behavior following stress during an immature period.
Collapse
|
5
|
Aleksic M, Brkic Z, Petrovic Z, Francija E, Lukic I, Adzic M. Sex‐specific contribution of glucocorticoid receptor alpha isoforms to anxiety and depressive‐like behavior in mice. J Neurosci Res 2022; 100:1239-1253. [DOI: 10.1002/jnr.25032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 01/17/2022] [Accepted: 01/29/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Minja Aleksic
- Department of Molecular Biology and Endocrinology, “VINČA” Institute of Nuclear Sciences ‐ National Institute of thе Republic of Serbia University of Belgrade Belgrade Serbia
| | - Zeljka Brkic
- Department of Molecular Biology and Endocrinology, “VINČA” Institute of Nuclear Sciences ‐ National Institute of thе Republic of Serbia University of Belgrade Belgrade Serbia
| | - Zorica Petrovic
- Dominick P. Purpura Department of Neuroscience Albert Einstein College of Medicine Bronx New York USA
| | - Ester Francija
- Department of Molecular Biology and Endocrinology, “VINČA” Institute of Nuclear Sciences ‐ National Institute of thе Republic of Serbia University of Belgrade Belgrade Serbia
| | - Iva Lukic
- Department of Molecular Biology and Endocrinology, “VINČA” Institute of Nuclear Sciences ‐ National Institute of thе Republic of Serbia University of Belgrade Belgrade Serbia
| | - Miroslav Adzic
- Department of Molecular Biology and Endocrinology, “VINČA” Institute of Nuclear Sciences ‐ National Institute of thе Republic of Serbia University of Belgrade Belgrade Serbia
| |
Collapse
|
6
|
Kato D, Suto T, Obata H, Saito S. The efficacy of duloxetine depends on spinal cholinergic plasticity in neuropathic pain model rats. IBRO Neurosci Rep 2022; 12:188-196. [PMID: 35243478 PMCID: PMC8881419 DOI: 10.1016/j.ibneur.2022.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/10/2022] [Indexed: 12/25/2022] Open
Abstract
Antidepressants, such as duloxetine, are widely used to treat chronic pain, including neuropathic pain; however, their efficacy is unsatisfactory. In our previous studies, we showed that in a spinal nerve ligation (SNL) rat model, the descending noradrenergic inhibitory system, which involves in the anti-hypersensitivity mechanism of antidepressants, decrease its activity over time following peripheral nerve injury. In this study, we hypothesized that the analgesic effects of duloxetine may diminish following the attenuation of the descending noradrenergic inhibitory system. The analgesic effects of duloxetine in SNL model rats at the early (SNL2W) and chronic (SNL6W) phases following spinal nerve ligation were compared. Male Sprague-Dawley rats were randomly assigned to the SNL2W or SNL6W groups and used to evaluate the anti-allodynic effects of duloxetine using the von Frey filament test. The anti-allodynic effects of duloxetine at a dose of 10 mg/kg were lower in SNL6W rats than in SNL2W rats. Basal noradrenaline concentrations in rat spinal dorsal horns were higher in the SNL6W group than in the SNL2W group, and there was no difference in the increase in spinal noradrenaline concentrations between the 2 groups following duloxetine administration. In addition, we found that duloxetine-induced acetylcholine (ACh) release and choline acetyltransferase (ChAT) expression in the spinal dorsal horn decreased in SNL6W rats. At a dose of 30 mg/kg, duloxetine showed anti-allodynic effects even in SNL6W rats and induced ACh release in the spinal cord. Furthermore, these anti-allodynic effects were completely inhibited by intrathecal atropine (muscarinic antagonist) administration. Moreover, 5 daily intraperitoneal injections of the TrkB agonist, 7,8-dihydroxyflavone (5 mg/kg), not only restored ChAT expression, but also decreased the anti-allodynic effects of duloxetine. These findings suggest that the attenuation of the anti-allodynic effects of duloxetine at the chronic phase of SNL may be due to impaired spinal acetylcholine-mediated analgesia. In addition, the activation of BDNF-TrkB signaling may be beneficial in reversing this impairment. The anti-allodynic effect of duloxetine decreases at chronic stage following nerve injury than at early phase. There are no differences in the inhibition of noradrenaline reuptake by duloxetine between SNL2W and SNL6W rats. The spinal ChAT immunoreactivity and duloxetine-induced spinal ACh release are reduced in SNL6W rats. TrkB agonist increases spinal ChAT and restores the attenuation of anti-allodynic effects of duloxetine in SNL6W rats.
Collapse
Affiliation(s)
- Daiki Kato
- Department of Anesthesiology, Gunma University Graduate School of Medicine, 3-39-22 Showa, Maebashi, Gunma 371-8511, Japan
| | - Takashi Suto
- Department of Anesthesiology, Gunma University Graduate School of Medicine, 3-39-22 Showa, Maebashi, Gunma 371-8511, Japan
- Correspondence to: Department of Anesthesiology, Gunma University Graduate School of Medicine, #1, 3-39-22 Showa-machi, Maebashi-shi, Gunma 371-8511, Japan.
| | - Hideaki Obata
- Department of Anesthesiology, Saitama Medical Center, Saitama Medical University, 1981 Kamoda, Kawagoe, Saitama 350-8550, Japan
| | - Shigeru Saito
- Department of Anesthesiology, Gunma University Graduate School of Medicine, 3-39-22 Showa, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
7
|
Chong PS, Poon CH, Roy J, Tsui KC, Lew SY, Phang MWL, Tan RJY, Cheng PG, Fung ML, Wong KH, Lim LW. Neurogenesis-dependent antidepressant-like activity of Hericium erinaceus in an animal model of depression. Chin Med 2021; 16:132. [PMID: 34876186 PMCID: PMC8650354 DOI: 10.1186/s13020-021-00546-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/27/2021] [Indexed: 12/26/2022] Open
Abstract
Background Depression is a severe neuropsychiatric disorder that affects more than 264 million people worldwide. The efficacy of conventional antidepressants are barely adequate and many have side effects. Hericium erinaceus (HE) is a medicinal mushroom that has been reported to have therapeutic potential for treating depression. Methods Animals subjected to chronic restraint stress were given 4 weeks HE treatment. Animals were then screened for anxiety and depressive-like behaviours. Gene and protein assays, as well as histological analysis were performed to probe the role of neurogenesis in mediating the therapeutic effect of HE. Temozolomide was administered to validate the neurogenesis-dependent mechanism of HE. Results The results showed that 4 weeks of HE treatment ameliorated depressive-like behaviours in mice subjected to 14 days of restraint stress. Further molecular assays demonstrated the 4-week HE treatment elevated the expression of several neurogenesis-related genes and proteins, including doublecortin, nestin, synaptophysin, brain-derived neurotrophic factor (BDNF), tropomyosin receptor kinase B (TrkB), phosphorylated extracellular signal-regulated kinase, and phosphorylated cAMP response element-binding protein (pCREB). Increased bromodeoxyuridine-positive cells were also observed in the dentate gyrus of the hippocampus, indicating enhanced neurogenesis. Neurogenesis blocker temozolomide completely abolished the antidepressant-like effects of HE, confirming a neurogenesis-dependent mechanism. Moreover, HE induced anti-neuroinflammatory effects through reducing astrocyte activation in the hippocampus, which was also abolished with temozolomide administration. Conclusion HE exerts antidepressant effects by promoting neurogenesis and reducing neuroinflammation through enhancing the BDNF-TrkB-CREB signalling pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-021-00546-8.
Collapse
Affiliation(s)
- Pit Shan Chong
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong SAR, China
| | - Chi Him Poon
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong SAR, China
| | - Jaydeep Roy
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong SAR, China
| | - Ka Chun Tsui
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong SAR, China
| | - Sze Yuen Lew
- Department of Anatomy, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Michael Weng Lok Phang
- Department of Anatomy, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Rachael Julia Yuenyinn Tan
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong SAR, China
| | - Poh Guat Cheng
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.,Ganofarm R&D SDN BHD, 01-01, SKYPOD SQUARE, Persiaran Puchong Jaya Selatan, Bandar Puchong Jaya, 47100, Puchong, Selangor, Malaysia
| | - Man-Lung Fung
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong SAR, China
| | - Kah Hui Wong
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong SAR, China. .,Department of Anatomy, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Lee Wei Lim
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong SAR, China.
| |
Collapse
|
8
|
Mancha-Gutiérrez HM, Estrada-Camarena E, Mayagoitia-Novales L, López-Pacheco E, López-Rubalcava C. Chronic Social Defeat During Adolescence Induces Short- and Long-Term Behavioral and Neuroendocrine Effects in Male Swiss-Webster Mice. Front Behav Neurosci 2021; 15:734054. [PMID: 34658806 PMCID: PMC8514669 DOI: 10.3389/fnbeh.2021.734054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/03/2021] [Indexed: 12/15/2022] Open
Abstract
Chronic stress exposure during adolescence is a significant risk factor for the development of depression. Chronic social defeat (CSD) in rodents is an animal model of depression with excellent ethological, predictive, discriminative, and face validity. Because the CSD model has not been thoroughly examined as a model of stress-induced depression within the adolescence stage, the present study analyzed the short- and long-term behavioral and neuroendocrine effects of CSD during early adolescence. Therefore, adolescent male Swiss-Webster (SW) mice were exposed to the CSD model from postnatal day (PND) 28 to PND37. Twenty-four hours (mid-adolescence) or 4 weeks (early adulthood) later, mice were tested in two models of depression; the social interaction test (SIT) and forced swimming test (FST); cognitive deficits were evaluated in the Barnes maze (BM). Finally, corticosterone and testosterone content was measured before, during, and after CSD exposure, and serotonin transporter (SERT) autoradiography was studied after CSD in adolescent and adult mice. CSD during early adolescence induced enduring depression-like behaviors as inferred from increased social avoidance and immobility behavior in the SIT and FST, respectively, which correlated in an age-dependent manner with SERT binding in the hippocampus; CSD during early adolescence also induced long-lasting learning and memory impairments in the Barnes maze (BM). Finally, CSD during early adolescence increased serum corticosterone levels in mid-adolescence and early adulthood and delayed the expected increase in serum testosterone levels observed at this age. In conclusion: (1) CSD during early adolescence induced long-lasting depression-like behaviors, (2) sensitivity of SERT density during normal brain development was revealed, (3) CSD during early adolescence induced enduring cognitive deficits, and (4) results highlight the vulnerability of the adolescent brain to social stressors on the adrenal and gonadal axes, which emphasizes the importance of an adequate interaction between both axes during adolescence for normal development of brain and behavior.
Collapse
Affiliation(s)
| | - Erika Estrada-Camarena
- Laboratorio de Neuropsicofarmacología, Dirección de Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Lilian Mayagoitia-Novales
- Departamento de Etologia, Dirección de Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Elena López-Pacheco
- Departamento de Farmacobiología, CINVESTAV-Sede Sur Coapa, Mexico City, Mexico
| | | |
Collapse
|
9
|
A Role of BDNF in the Depression Pathogenesis and a Potential Target as Antidepressant: The Modulator of Stress Sensitivity "Shati/Nat8l-BDNF System" in the Dorsal Striatum. Pharmaceuticals (Basel) 2021; 14:ph14090889. [PMID: 34577589 PMCID: PMC8469819 DOI: 10.3390/ph14090889] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022] Open
Abstract
Depression is one of the most common mental diseases, with increasing numbers of patients globally each year. In addition, approximately 30% of patients with depression are resistant to any treatment and do not show an expected response to first-line antidepressant drugs. Therefore, novel antidepressant agents and strategies are required. Although depression is triggered by post-birth stress, while some individuals show the pathology of depression, others remain resilient. The molecular mechanisms underlying stress sensitivity remain unknown. Brain-derived neurotrophic factor (BDNF) has both pro- and anti-depressant effects, dependent on brain region. Considering the strong region-specific contribution of BDNF to depression pathogenesis, the regulation of BDNF in the whole brain is not a beneficial strategy for the treatment of depression. We reviewed a novel finding of BDNF function in the dorsal striatum, which induces vulnerability to social stress, in addition to recent research progress regarding the brain regional functions of BDNF, including the prefrontal cortex, hippocampus, and nucleus accumbens. Striatal BDNF is regulated by Shati/Nat8l, an N-acetyltransferase through epigenetic regulation. Targeting of Shati/Nat8l would allow BDNF to be striatum-specifically regulated, and the striatal Shati/Nat8l-BDNF pathway could be a promising novel therapeutic agent for the treatment of depression by modulating sensitivity to stress.
Collapse
|
10
|
Dalmaz C, Barth B, Pokhvisneva I, Wang Z, Patel S, Quillfeldt JA, Mendonça Filho EJ, de Lima RMS, Arcego DM, Sassi RB, Hall GBC, Kobor MS, Meaney MJ, Silveira PP. Prefrontal cortex VAMP1 gene network moderates the effect of the early environment on cognitive flexibility in children. Neurobiol Learn Mem 2021; 185:107509. [PMID: 34454100 DOI: 10.1016/j.nlm.2021.107509] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 08/10/2021] [Accepted: 08/20/2021] [Indexed: 01/07/2023]
Abstract
During development, genetic and environmental factors interact to modify specific phenotypes. Both in humans and in animal models, early adversities influence cognitive flexibility, an important brain function related to behavioral adaptation to variations in the environment. Abnormalities in cognitive functions are related to changes in synaptic connectivity in the prefrontal cortex (PFC), and altered levels of synaptic proteins. We investigated if individual variations in the expression of a network of genes co-expressed with the synaptic protein VAMP1 in the prefrontal cortex moderate the effect of early environmental quality on the performance of children in cognitive flexibility tasks. Genes overexpressed in early childhood and co-expressed with the VAMP1 gene in the PFC were selected for study. SNPs from these genes (post-clumping) were compiled in an expression-based polygenic score (PFC-ePRS-VAMP1). We evaluated cognitive performance of the 4 years-old children in two cohorts using similar cognitive flexibility tasks. In the first cohort (MAVAN) we utilized two CANTAB tasks: (a) the Intra-/Extra-dimensional Set Shift (IED) task, and (b) the Spatial Working Memory (SWM) task. In the second cohort, GUSTO, we used the Dimensional Change Card Sort (DCCS) task. The results show that in 4 years-old children, the PFC-ePRS-VAMP1 network moderates responsiveness to the effects of early adversities on the performance in attentional flexibility tests. The same result was observed for a spatial working memory task. Compared to attentional flexibility, reversal learning showed opposite effects of the environment, as moderated by the ePRS. A parallel ICA analysis was performed to identify relationships between whole-brain voxel based gray matter density and SNPs that comprise the PFC-ePRS-VAMP1. The early environment predicts differences in gray matter content in regions such as prefrontal and temporal cortices, significantly associated with a genetic component related to Wnt signaling pathways. Our data suggest that a network of genes co-expressed with VAMP1 in the PFC moderates the influence of early environment on cognitive function in children.
Collapse
Affiliation(s)
- Carla Dalmaz
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada; Depto Bioquimica e PPG CB Bioquimica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; PPG Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Barbara Barth
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada; Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Irina Pokhvisneva
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Zihan Wang
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Sachin Patel
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Jorge A Quillfeldt
- PPG Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Depto Biofisica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Euclides J Mendonça Filho
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Randriely Merscher Sobreira de Lima
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada; PPG Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Danusa M Arcego
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada; Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Roberto Britto Sassi
- Mood Disorders Program, Department of Psychiatry & Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Geoffrey B C Hall
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Michael S Kobor
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Department of Medical Genetics, The University of British Columbia, 938 West 28th Avenue, Vancouver, BC V5Z 4H4, Canada
| | - Michael J Meaney
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada; Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada; Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Patrícia P Silveira
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada; Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada; PPG Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
11
|
Zahir M, Shariatzadeh S, Khosravi A, Alshaikh FA, Moradi P, Ghaderi M, Farsinejad P, Louyeh PA, Ilkhani S, Nakhaei P, Taheri A, Fagheh AF, Akhavan-Sigari R. High risk of drug toxicity in social isolation stress due to liver dysfunction: Role of oxidative stress and inflammation. Brain Behav 2021; 11:e2317. [PMID: 34333854 PMCID: PMC8413800 DOI: 10.1002/brb3.2317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Previous studies have shown that social isolation stress (SIS) could associate with several systemic diseases; however, the role of SIS on liver dysfunction has yet to be established. This study aimed to investigate the effect of SIS on liver function and possible drug toxicity through liver inflammation and oxidative stress. METHODS Male Naval Medical Research Institute mice in two groups of SIS and control were treated with typical anti-depressant and anxiolytic agents including fluoxetine, norfluoxetine, desipramine, and imipramine in both groups. Then blood concentrations (or their active metabolites) of these drugs were assessed. Liver function test, including aspartate transaminase (AST), alanine aminotransferase (ALT), total bilirubin, and conjugated bilirubin), oxidative activity, inflammatory cytokines, and the gene expression of cytochrome P450 enzymes were assessed. RESULTS We observed that the liver enzymes including AST and ALT was slightly higher in SIS animals. The blood concentrations of fluoxetine, norfluoxetine, desipramine, and imipramine were significantly higher in SIS animals. The gene expression of CYP1A2, CYP2A6, CYP2C9, CYP2C29, and CYP2D were significantly decreased in SIS animals. Our results showed that SIS animals had significantly higher level of tumor necrosis factor-α, interleukin-1β, and interleukin-6. SIS could significantly decrease the activity of antioxidant agent (Glutathione). CONCLUSION We hypothesized that SIS could induce liver dysfunction and decrease the rate of drug clearance through liver inflammation and oxidative stress; therefore, the blood concentration of anti-depressant/anxiolytic agents should closely monitor in SIS due to the high toxicity of these agents.
Collapse
Affiliation(s)
- Maziar Zahir
- Tehran University of Medical Sciences, Tehran, Iran
| | - Siavash Shariatzadeh
- Department of Pharmacology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Parichehr Moradi
- Biomedical Engineering Department, University of Isfahan, Isfahan, Iran
| | | | - Parsa Farsinejad
- Department of Pharmacology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Saba Ilkhani
- Department of Pharmacology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pooria Nakhaei
- Department of Pharmacology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Taheri
- Tehran University of Medical Sciences, Tehran, Iran
| | | | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Tuebingen, Germany
| |
Collapse
|
12
|
Harb M, Jagusch J, Durairaja A, Endres T, Leßmann V, Fendt M. BDNF haploinsufficiency induces behavioral endophenotypes of schizophrenia in male mice that are rescued by enriched environment. Transl Psychiatry 2021; 11:233. [PMID: 33888685 PMCID: PMC8062437 DOI: 10.1038/s41398-021-01365-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/26/2021] [Accepted: 04/12/2021] [Indexed: 02/02/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is implicated in a number of processes that are crucial for healthy functioning of the brain. Schizophrenia is associated with low BDNF levels in the brain and blood, however, not much is known about BDNF's role in the different symptoms of schizophrenia. Here, we used BDNF-haploinsufficient (BDNF+/-) mice to investigate the role of BDNF in different mouse behavioral endophenotypes of schizophrenia. Furthermore, we assessed if an enriched environment can prevent the observed changes. In this study, male mature adult wild-type and BDNF+/- mice were tested in mouse paradigms for cognitive flexibility (attentional set shifting), sensorimotor gating (prepulse inhibition), and associative emotional learning (safety and fear conditioning). Before these tests, half of the mice had a 2-month exposure to an enriched environment, including running wheels. After the tests, BDNF brain levels were quantified. BDNF+/- mice had general deficits in the attentional set-shifting task, increased startle magnitudes, and prepulse inhibition deficits. Contextual fear learning was not affected but safety learning was absent. Enriched environment housing completely prevented the observed behavioral deficits in BDNF+/- mice. Notably, the behavioral performance of the mice was negatively correlated with BDNF protein levels. These novel findings strongly suggest that decreased BDNF levels are associated with several behavioral endophenotypes of schizophrenia. Furthermore, an enriched environment increases BDNF protein to wild-type levels and is thereby able to rescue these behavioral endophenotypes.
Collapse
Affiliation(s)
- Mahmoud Harb
- grid.5807.a0000 0001 1018 4307Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Justina Jagusch
- grid.5807.a0000 0001 1018 4307Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Archana Durairaja
- grid.5807.a0000 0001 1018 4307Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Thomas Endres
- grid.5807.a0000 0001 1018 4307Institute of Physiology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Volkmar Leßmann
- Institute of Physiology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany. .,Center for Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.
| | - Markus Fendt
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany. .,Center for Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.
| |
Collapse
|
13
|
Meejuru GF, Somavarapu A, Danduga RCSR, Nissankara Roa LS, Kola PK. Protective effects of duloxetine against chronic immobilisation stress-induced anxiety, depression, cognitive impairment and neurodegeneration in mice. J Pharm Pharmacol 2021; 73:522-534. [PMID: 33793839 DOI: 10.1093/jpp/rgaa003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/05/2020] [Indexed: 01/23/2023]
Abstract
OBJECTIVES This study aimed to evaluate the effect of duloxetine (10 and 20 mg/kg) against chronic immobilisation stress (CIS)-induced anxiety, depression, cognitive impairment and neurodegeneration in mice. METHODS CIS, 2 h/10 days (11:00 AM-1:00 PM) was applied after 30 min of pretreatment with saline, duloxetine 10 mg/kg and 20 mg/kg to the respective groups of animals, except the control group. Animals were examined for physiological (body weight, locomotion and grip strength), psychological (memory impairment, anxiety and depression), neurochemical (GABA and glutamate), biochemical (MDA, catalase, glutathione, superoxide dismutase) and histopathological changes. KEY FINDINGS CIS exposure revealed anxiety-like behaviour, depression-like behaviour, motor in-coordination and learning and memory impairment in mice. Besides, CIS induction decreased the antioxidant enzymes (GSH, SOD and catalase), GABA and the viable neuronal cell count, whereas CIS exposure significantly elevated the MDA, AChE activity and glutamate content in the cortex and hippocampus. Pretreatment with duloxetine10 and 20 mg/kg showed dose-dependent ameliorated effect against the CIS-induced alterations in mice. CONCLUSION In conclusion, the results of this study demonstrated the protective effect of duloxetine against neuropsychiatric symptoms, memory impairment caused by CIS-induction through inhibition of oxidative stress, AChE activity and glutamate release.
Collapse
Affiliation(s)
- Glory Florence Meejuru
- Department of Pharmacology, University College of Pharmaceutical Sciences, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, Andhra Pradesh, India
| | - Anushri Somavarapu
- Department of Pharmacology, University College of Pharmaceutical Sciences, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, Andhra Pradesh, India
| | - Ravi Chandra Sekhara Reddy Danduga
- Department of Pharmacology, University College of Pharmaceutical Sciences, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, Andhra Pradesh, India
| | | | - Phani Kumar Kola
- Department of Pharmacology, University College of Pharmaceutical Sciences, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, Andhra Pradesh, India
| |
Collapse
|
14
|
Xu H, Wang J, Jing H, Ellenbroek B, Shao F, Wang W. mPFC GABAergic transmission mediated the role of BDNF signaling in cognitive impairment but not anxiety induced by adolescent social stress. Neuropharmacology 2020; 184:108412. [PMID: 33245959 DOI: 10.1016/j.neuropharm.2020.108412] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/19/2020] [Accepted: 11/21/2020] [Indexed: 12/16/2022]
Abstract
Depression with comorbid anxiety or cognitive symptoms can vary in terms of symptoms, pathophysiology and antidepressant efficacy, but the underlying neurobiological mechanisms remain to be elucidated. Previous studies from our group and others have shown that as a classic animal model of depression, adolescent social stress (ASS) could stably induce a variety of emotional and cognitive alterations in adult animals, and accompanied by transcriptional decrease in brain-derived neurotrophic factor (BDNF) total and promoter IV levels in the medial prefrontal cortex (mPFC). The present study further identified the GABAergic synaptic and molecular changes downstream of BDNF signaling impairment in the mPFC and roles in various behavioral phenotypes induced by ASS. We found that ASS induced a set of emotional and cognitive symptoms, including decreased social interest, impaired cognitive function, and increased anxiety-like behavior, as well as decreased GABAergic transmission in the mPFC. The specific deletion of BDNF promoter IV directly caused impairments in social interest, cognitive function, and inhibition of GABAergic transmission, but no changes in anxiety-like behavior. Acute microinjections of tropomyosin-related kinase B (TrkB) agonists into the mPFC and chronic antidepressant treatment ameliorated the changes in social behavior and cognition, as well as the reduction in GABAergic synaptic transmission in the mPFC, but not anxiety in previously stressed adult mice. These results suggest that the downstream GABAergic transmission of BDNF signaling in the mPFC involved in depression with comorbid cognitive dysfunction induced by ASS and can be used as a therapeutic target for the treatment of cognitive dysfunction in depression. This article is part of the special issue on Stress, Addiction and Plasticity.
Collapse
Affiliation(s)
- Hang Xu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
| | - Jiesi Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
| | - Haiyang Jing
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Bart Ellenbroek
- School of Psychology, Victoria University of Wellington, Kelburn, Wellington, 6012, New Zealand
| | - Feng Shao
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Weiwen Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
15
|
Hericium erinaceus potentially rescues behavioural motor deficits through ERK-CREB-PSD95 neuroprotective mechanisms in rat model of 3-acetylpyridine-induced cerebellar ataxia. Sci Rep 2020; 10:14945. [PMID: 32913245 PMCID: PMC7483741 DOI: 10.1038/s41598-020-71966-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 08/24/2020] [Indexed: 12/17/2022] Open
Abstract
Cerebellar ataxia is a neurodegenerative disorder with no definitive treatment. Although several studies have demonstrated the neuroprotective effects of Hericium erinaceus (H.E.), its mechanisms in cerebellar ataxia remain largely unknown. Here, we investigated the neuroprotective effects of H.E. treatment in an animal model of 3-acetylpyridine (3-AP)-induced cerebellar ataxia. Animals administered 3-AP injection exhibited remarkable impairments in motor coordination and balance. There were no significant effects of 25 mg/kg H.E. on the 3-AP treatment group compared to the 3-AP saline group. Interestingly, there was also no significant difference in the 3-AP treatment group compared to the non-3-AP control, indicating a potential rescue of motor deficits. Our results revealed that 25 mg/kg H.E. normalised the neuroplasticity-related gene expression to the level of non-3-AP control. These findings were further supported by increased protein expressions of pERK1/2-pCREB-PSD95 as well as neuroprotective effects on cerebellar Purkinje cells in the 3-AP treatment group compared to the 3-AP saline group. In conclusion, our findings suggest that H.E. potentially rescued behavioural motor deficits through the neuroprotective mechanisms of ERK-CREB-PSD95 in an animal model of 3-AP-induced cerebellar ataxia.
Collapse
|
16
|
Miao Z, Wang Y, Sun Z. The Relationships Between Stress, Mental Disorders, and Epigenetic Regulation of BDNF. Int J Mol Sci 2020; 21:ijms21041375. [PMID: 32085670 PMCID: PMC7073021 DOI: 10.3390/ijms21041375] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/01/2020] [Accepted: 02/15/2020] [Indexed: 12/25/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF), a critical member of the neurotrophic family, plays an important role in multiple stress-related mental disorders. Although alterations in BDNF in multiple brain regions of individuals experiencing stress have been demonstrated in previous studies, it appears that a set of elements are involved in the complex regulation. In this review, we summarize the specific brain regions with altered BDNF expression during stress exposure. How various environmental factors, including both physical and psychological stress, affect the expression of BDNF in specific brain regions are further summarized. Moreover, epigenetic regulation of BDNF, including DNA methylation, histone modification, and noncoding RNA, in response to diverse types of stress, as well as sex differences in the sensitivity of BDNF to the stress response, is also summarized. Clarification of the underlying role of BDNF in the stress process will promote our understanding of the pathology of stress-linked mental disorders and provide a potent target for the future treatment of stress-related illness.
Collapse
Affiliation(s)
- Zhuang Miao
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China;
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China;
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Yan Wang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China;
- School of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongsheng Sun
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China;
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China;
- School of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
- Correspondence:
| |
Collapse
|
17
|
Guan L, Yu WS, Shrestha S, Or YZ, Lufkin T, Chan YS, Lin VCL, Lim LW. TTC9A deficiency induces estradiol-mediated changes in hippocampus and amygdala neuroplasticity-related gene expressions in female mice. Brain Res Bull 2020; 157:162-168. [PMID: 32057953 DOI: 10.1016/j.brainresbull.2020.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 12/23/2019] [Accepted: 02/07/2020] [Indexed: 01/03/2023]
Abstract
The involvement of tetratricopeptide repeat domain 9A (TTC9A) deficiency in anxiety-like responses and behavioral despair through estradiol action on the serotonergic system has been reported. Emerging evidence suggests that estradiol is a potent modulator of neuroplasticity. As estradiol and neuroplasticity changes are both implicated in mood regulation, and estradiol activity is negatively regulated by TTC9A, we hypothesized that the behavioral changes induced by Ttc9a-/- is also mediated by neuroplasticity-related mechanisms. To understand the effects of TTC9A and estradiol modulation on neuroplasticity functions, we performed a behavioral analysis of tail suspension immobility and neuroplasticity-related gene expression study of brain samples collected in a previous study involving ovariectomized (OVX) Ttc9a-/- mice with estradiol or vehicle treatment. We observed that OVX-Ttc9a-/- mice had significantly reduced the tail suspension immobility compared to OVX-Ttc9a-/- estradiol-treated mice. Interestingly, there was an upregulation in gene expression of tropomyosin receptor kinase B (Trkb) in the ventral hippocampus, as well as brain-derived neurotrophic factor (Bdnf) and postsynaptic density protein-95 (Psd-95) in the amygdala of OVX-Ttc9a-/- mice compared to those treated with estradiol. These findings indicate that estradiol plays an inhibitory role in neuroplasticity in Ttc9a-/- mice. These observations were not found in the wildtype mice, as the presence of TTC9A suppressed the effects of estradiol. Our data suggest the behavioral alterations in Ttc9a-/- mice were mediated by estradiol regulation involving neuroplasticity-related mechanisms in both the hippocampus and amygdala regions.
Collapse
Affiliation(s)
- Li Guan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; Department of Physiology, Guangzhou University of Chinese Medicine, Guangdong, PR China
| | - Wing Shan Yu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Smeeta Shrestha
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Yu Zuan Or
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Thomas Lufkin
- Department of Biology, Clarkson University, Potsdam, New York, United States
| | - Ying-Shing Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | | | - Lee Wei Lim
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
18
|
Zhou J, Ma X, Li C, Liao A, Yang Z, Ren H, Tang J, Li J, Li Z, He Y, Chen X. Frequency-Specific Changes in the Fractional Amplitude of the Low-Frequency Fluctuations in the Default Mode Network in Medication-Free Patients With Bipolar II Depression: A Longitudinal Functional MRI Study. Front Psychiatry 2020; 11:574819. [PMID: 33488415 PMCID: PMC7819893 DOI: 10.3389/fpsyt.2020.574819] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 11/24/2020] [Indexed: 12/27/2022] Open
Abstract
Objective: This study aimed to examine the treatment-related changes of the fractional amplitude of low-frequency fluctuations (fALFF) in the default mode network (DMN) across different bands after the medication-free patients with bipolar II depression received a 16-week treatment of escitalopram and lithium. Methods: A total of 23 medication-free patients with bipolar II depression and 29 healthy controls (HCs) were recruited. We evaluated the fALFF values of slow 4 (0.027-0.073 Hz) band and slow 5 (0.01-0.027 Hz) band of the patients and compared the results with those of the 29 HCs at baseline. After 16-week treatment of escitalopram with lithium, the slow 4 and slow 5 fALFF values of the patients were assessed and compared with the baselines of patients and HCs. The depressive symptoms of bipolar II depression in patients were assessed with a 17-item Hamilton Depression Rating Scale (HDRS) before and after treatment. Results: Treatment-related effects showed increased slow 5 fALFF in cluster D (bilateral medial superior frontal gyrus, bilateral superior frontal gyrus, right middle frontal gyrus, and bilateral anterior cingulate), cluster E (bilateral precuneus/posterior cingulate, left cuneus), and cluster F (left angular, left middle temporal gyrus, left superior temporal gyrus, and left supramarginal gyrus) in comparison with the baseline of the patients. Moreover, a positive association was found between the increase in slow 5 fALFF values (follow-up value minus the baseline values) in cluster D and the decrease in HDRS scores (baseline HDRS scores minus follow-up HDRS scores) at follow-up, and the same association between the increase in slow 5 fALFF values and the decrease in HDRS scores was found in cluster E. Conclusions: The study reveals that the hypoactivity of slow 5 fALFF in the DMN is related to depression symptoms and might be corrected by the administration of escitalopram with lithium, implying that slow 5 fALFF of the DMN plays a key role in bipolar depression.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, Changsha, China.,National Technology Institute on Mental Disorders, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China.,Mental Health Institute of Central South University, Changsha, China
| | - Xiaoqian Ma
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, Changsha, China.,National Technology Institute on Mental Disorders, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China.,Mental Health Institute of Central South University, Changsha, China
| | - Chunwang Li
- Department of Radiology, Hunan Children's Hospital, Changsha, China
| | - Aijun Liao
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, Changsha, China.,National Technology Institute on Mental Disorders, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China.,Mental Health Institute of Central South University, Changsha, China
| | - Zihao Yang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, Changsha, China.,National Technology Institute on Mental Disorders, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China.,Mental Health Institute of Central South University, Changsha, China
| | - Honghong Ren
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, Changsha, China.,National Technology Institute on Mental Disorders, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China.,Mental Health Institute of Central South University, Changsha, China
| | - Jinsong Tang
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Jinguang Li
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, Changsha, China.,National Technology Institute on Mental Disorders, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China.,Mental Health Institute of Central South University, Changsha, China
| | - Zongchang Li
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, Changsha, China.,National Technology Institute on Mental Disorders, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China.,Mental Health Institute of Central South University, Changsha, China
| | - Ying He
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, Changsha, China.,National Technology Institute on Mental Disorders, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China.,Mental Health Institute of Central South University, Changsha, China
| | - Xiaogang Chen
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, Changsha, China.,National Technology Institute on Mental Disorders, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China.,Mental Health Institute of Central South University, Changsha, China
| |
Collapse
|
19
|
Prowse N, Dwyer Z, Thompson A, Fortin T, Elson K, Robeson H, Fenner B, Hayley S. Early life selective knockdown of the TrkB receptor and maternal separation modulates adult stress phenotype. Behav Brain Res 2020; 378:112260. [DOI: 10.1016/j.bbr.2019.112260] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/23/2019] [Accepted: 09/23/2019] [Indexed: 12/21/2022]
|
20
|
Zhang Y, Xu H, Wang J, Ren F, Shao F, Ellenbroek B, Lin W, Wang W. Transient upregulation of immune activity induced by adolescent social stress is involved in cognitive deficit in adult male mice and early intervention with minocycline. Behav Brain Res 2019; 374:112136. [DOI: 10.1016/j.bbr.2019.112136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/27/2019] [Accepted: 07/27/2019] [Indexed: 02/06/2023]
|
21
|
Breach MR, Moench KM, Wellman CL. Social instability in adolescence differentially alters dendritic morphology in the medial prefrontal cortex and its response to stress in adult male and female rats. Dev Neurobiol 2019; 79:839-856. [PMID: 31612626 DOI: 10.1002/dneu.22723] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/09/2019] [Accepted: 10/11/2019] [Indexed: 01/01/2023]
Abstract
Adolescence is an important period for HPA axis development and synapse maturation and reorganization in the prefrontal cortex (PFC). Thus, stress during adolescence could alter stress-sensitive brain regions such as the PFC and may alter the impact of future stressors on these brain regions. Given that women are more susceptible to many stress-linked psychological disorders in which dysfunction of PFC is implicated, and that this increased vulnerability emerges in adolescence, stress during this time could have sex-dependent effects. Therefore, we investigated the effects of adolescent social instability stress (SIS) on dendritic morphology of Golgi-stained pyramidal cells in the medial PFC of adult male and female rats. We then examined dendritic reorganization following chronic restraint stress (CRS) with and without a rest period in adult rats that had been stressed in adolescence. Adolescent SIS conferred long-term alterations in prelimbic of males and females, whereby females show reduced apical length and basilar thin spine density and males show reduced basilar length. CRS in adulthood failed to produce immediate dendritic remodeling in SIS rats. However, CRS followed by a rest period reduced apical dendritic length and increases mushroom spine density in adolescently stressed adult males. Conversely, CRS followed by rest produced apical outgrowth and decreased mushroom spine density in adolescently stressed adult females. These results suggest that stress during adolescence alters development of the PFC and modulates stress-induced dendritic changes in adulthood.
Collapse
Affiliation(s)
- Michaela R Breach
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Kelly M Moench
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
- Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA
| | - Cara L Wellman
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
- Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA
| |
Collapse
|
22
|
Sex differences in depressive-like behaviour may relate to imbalance of microglia activation in the hippocampus. Brain Behav Immun 2019; 81:188-197. [PMID: 31181346 DOI: 10.1016/j.bbi.2019.06.012] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 12/23/2022] Open
Abstract
As is reported, the incidence and prevalence of depression are higher in women than in men, but the cause of this sex difference remains elusive. Although recent studies implicated that over-activated microglia played a crucial role in depression, whether hippocampal microglia associates with the sex difference of depressive-like behaviours is intriguing. In the present study, both male and female mice were subjected to chronic unpredictable mild stress (CUMS) for 4 weeks. Behavioural tests were performed to evaluate depressive-like phenotypes, while several microglia-related biomarkers and neurotrophic factor in hippocampi were detected to analyse sex difference. As a result, CUMS interfered with the body weight gain, sucrose preference and spontaneous activity in mice of both sexes. However, this effect tended to be more impressive in females. Generally, hippocampal microglia were activated regardless of sex, but the expressions of pro- and anti-inflammatory factors induced by CUMS were sex-specific. Chronic stress increased hippocampal iNOS and IL-1β mRNA levels only in male mice, while upregulated TNF-α mRNA just in females. Meanwhile, the expressions of hippocampal IL-10, Arg-1 and IL-1ra were all downregulated in CUMS females rather than males. In addition, though the ratios of the pro- vs. anti-inflammatory cytokines elevated after the stress paradigm in both sexes, we noticed more remarkable trends in female mice regarding TNF-α/IL-10 and iNOS/Arg-1. This discovery suggested that females were inclined to be more pro-inflammatory after stress. Afterwards, we observed that the expressions of BDNF and its receptor TrkB in hippocampus decreased greater in female compared to male mice when facing stress stimulations. Furthermore, the depressive-like behaviours were correlated to BDNF mRNA quantities in both sex mice, and there was also a sex-specific relationship between BDNF and hippocampal microglia-related inflammatory biomarkers. Collectively, our study speculated that the imbalance of microglial pro- and anti-inflammatory states as well as the BDNF-TrkB-dependent pathway in hippocampus is involved in the depressive-like behaviours. The "microglia-neuroinflammation-BDNF" interconnection may be a fundamental mechanism for sex differences in depression.
Collapse
|
23
|
Xiao M, Zhu W, Wei J, Lei X, Xia LX. The relationship among resting-state brain activity and connectivity, agreeableness and displaced aggression: Two possible mediation models. J Affect Disord 2019; 256:641-649. [PMID: 31299446 DOI: 10.1016/j.jad.2019.06.046] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/18/2019] [Accepted: 06/30/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Displaced aggression is a specific form of attack prompted by rumination on anger experiences and revenge thought which might lead to expression of anger on innocent people. There is sufficient evidence demonstrating the potential role of agreeableness in reducing displaced aggression in theory. However, little is known about the neural basis of displaced aggression and how agreeableness and the underlying neural mechanisms link to displaced aggression. METHODS In this investigation, we examined these issues on 123 college students by assessing resting-state brain activity (i.e. amplitude of low-frequency fluctuation, ALFF) and connectivity (i.e. resting-state functional connectivity, RSFC). RESULTS Whole-brain correlation analysis revealed that a higher level of displaced aggression was linked with decreased ALFF in the left dorsomedial prefrontal cortex (dmPFC) and decreased RSFC between the left dmPFC and left ventromedial prefrontal cortex (vmPFC). Mediation analysis further revealed that left dmPFC activity and the left dmPFC-vmPFC connectivity mediated the relationship between agreeableness and displaced aggression, as well as agreeableness mediated the relation between left dmPFC activity and the left dmPFC-vmPFC connectivity and displaced aggression. LIMITATIONS Only ALFF and RSFC were used as indicators of brain function in this study. The two mediation models need to be further tested by longitudinal design or experimental methods in further studies. CONCLUSIONS This study suggested that dmPFC and vmPFC might be the functional neural markers of displaced aggression and provided two possible mediation models regarding the relationship among the resting-state brain activity and connectivity, agreeableness and displaced aggression.
Collapse
Affiliation(s)
- Mingyue Xiao
- Research Center of Psychology and Social Development, Southwest University, China; Key Laboratory of Cognition and Personality, Southwest University, Ministry of Education, China
| | - Wenfeng Zhu
- Research Center of Psychology and Social Development, Southwest University, China; Key Laboratory of Cognition and Personality, Southwest University, Ministry of Education, China
| | - Jiaming Wei
- Research Center of Psychology and Social Development, Southwest University, China; Key Laboratory of Cognition and Personality, Southwest University, Ministry of Education, China
| | - Xu Lei
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, China; Key Laboratory of Cognition and Personality, Southwest University, Ministry of Education, China.
| | - Ling-Xiang Xia
- Research Center of Psychology and Social Development, Southwest University, China; Key Laboratory of Cognition and Personality, Southwest University, Ministry of Education, China.
| |
Collapse
|
24
|
Gao W, Chen S, Biswal B, Lei X, Yuan J. Temporal dynamics of spontaneous default-mode network activity mediate the association between reappraisal and depression. Soc Cogn Affect Neurosci 2019; 13:1235-1247. [PMID: 30339260 PMCID: PMC6277739 DOI: 10.1093/scan/nsy092] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 10/12/2018] [Indexed: 12/24/2022] Open
Abstract
Cognitive reappraisal is associated with major depressive disorder (MDD), while spontaneous activity patterns of the default mode network (DMN) is implicated in reappraisal and MDD. However, neural mechanisms subserving the close association of spontaneous reappraisal and depression are unclear. Spontaneous reappraisal, depression and resting-state functional magnetic resonance imaging (rsfMRI) were measured from 105 healthy subjects. We assessed the temporal complexity (Hurst exponent), Regional Homogeneity (ReHo) and fractional Amplitude of Low Frequency Fluctuation (fALFF) profiles of DMN, a network involved in both reappraisal and depression. Mediation effects of these standard measures on the relationship between reappraisal and depression, and the contributions of each DMN subregion, were assessed. Results indicated that Hurst exponent (H) of DMN, whether extracted by independent component analysis (ICA) or region of interest (ROI), was significantly associated with reappraisal scores. An individual with a higher reappraisal score has a lower Hurst value of DMN. Mediation analyses suggest that H of DMN partially mediates the association between reappraisal and the degree of depression, and this mediation effect arises from the contribution of medial prefrontal cortex. Neither ReHo nor fALFF showed a similar correlation or mediation effect. These findings suggest that temporal dynamics of DMN play an important role in emotion regulation and its association with depression. H of DMN may serve as a neural marker mediating the association between reappraisal and depression.
Collapse
Affiliation(s)
- Wei Gao
- The Laboratory for Affect Cognition and Regulation (ACRLAB), Key Laboratory of Cognition and Personality of Ministry of Education (SWU), Faculty of Psychology, Southwest University, Chongqing, China
| | - ShengDong Chen
- The Laboratory for Affect Cognition and Regulation (ACRLAB), Key Laboratory of Cognition and Personality of Ministry of Education (SWU), Faculty of Psychology, Southwest University, Chongqing, China
| | - Bharat Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Xu Lei
- Sleep and Neuroimaging Center, Faculty of Psychology, Southwest University, Chongqing, China
| | - JiaJin Yuan
- The Laboratory for Affect Cognition and Regulation (ACRLAB), Key Laboratory of Cognition and Personality of Ministry of Education (SWU), Faculty of Psychology, Southwest University, Chongqing, China
| |
Collapse
|
25
|
Suto T, Kato D, Obata H, Saito S. Tropomyosin Receptor Kinase B Receptor Activation in the Locus Coeruleus Restores Impairment of Endogenous Analgesia at a Late Stage Following Nerve Injury in Rats. THE JOURNAL OF PAIN 2018; 20:600-609. [PMID: 30529695 DOI: 10.1016/j.jpain.2018.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 11/08/2018] [Accepted: 11/28/2018] [Indexed: 12/16/2022]
Abstract
A rat model of neuropathic pain at 6 weeks after spinal nerve ligation (SNL6w) exhibits both mechanical hypersensitivity and impaired noxious stimuli-induced analgesia (NSIA). Repeated treatment with antidepressants can produce antihypersensitivity and restore NSIA. To examine the involvement of a brain-derived neurotrophic factor-mediated mechanism, a tropomyosin receptor kinase B (TrkB) agonist, 7,8-dihydroxyflavone (DHF), was administered to SNL6w rats (5 mg/kg/d for 5 days). Mechanical hypersensitivity was evaluated using the von Frey filament test and paw pressure test. NSIA was examined by measuring the change in the hind paw withdrawal threshold 30 minutes after painful stimulation induced by capsaicin injection into the fore paw. Changes in the concentrations of glutamate and GABA in the locus coeruleus area were measured by in vivo microdialysis. DHF treatment did not affect mechanical hypersensitivity, although it restored NSIA by reducing GABA release in response to the fore paw capsaicin injection. DHF treatment did not alter the baseline concentration of glutamate or GABA. These findings suggest that DHF treatment restored the stimuli-response activity of the locus coeruleus without affecting the tonic activity of the locus coeruleus. The brain-derived neurotrophic factor-TkB signaling is also involved in the NSIA-restoring effect of amitriptyline. PERSPECTIVE: This article demonstrates that repeated treatment with TrkB agonist, DHF, restored endogenous analgesia. Repeated amitriptyline treatment showed similar effect via TrkB-mediated mechanisms, and the effect may be independent from the effect of antihypersensitivity. This effect of TrkB activation is promising for patients with chronic pain with impaired descending inhibition.
Collapse
Affiliation(s)
- Takashi Suto
- Department of Anesthesiology, Gunma University Graduate School of Medicine, Gunma, Japan.
| | - Daiki Kato
- Department of Anesthesiology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Hideaki Obata
- Department of Anesthesiology and Center for Pain Management, Fukushima Medical University, Fukushima, Japan
| | - Shigeru Saito
- Department of Anesthesiology, Gunma University Graduate School of Medicine, Gunma, Japan
| |
Collapse
|
26
|
Barfield ET, Gourley SL. Prefrontal cortical trkB, glucocorticoids, and their interactions in stress and developmental contexts. Neurosci Biobehav Rev 2018; 95:535-558. [PMID: 30477984 PMCID: PMC6392187 DOI: 10.1016/j.neubiorev.2018.10.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/14/2018] [Accepted: 10/23/2018] [Indexed: 02/07/2023]
Abstract
The tropomyosin/tyrosine receptor kinase B (trkB) and glucocorticoid receptor (GR) regulate neuron structure and function and the hormonal stress response. Meanwhile, disruption of trkB and GR activity (e.g., by chronic stress) can perturb neuronal morphology in cortico-limbic regions implicated in stressor-related illnesses like depression. Further, several of the short- and long-term neurobehavioral consequences of stress depend on the developmental timing and context of stressor exposure. We review how the levels and activities of trkB and GR in the prefrontal cortex (PFC) change during development, interact, are modulated by stress, and are implicated in depression. We review evidence that trkB- and GR-mediated signaling events impact the density and morphology of dendritic spines, the primary sites of excitatory synapses in the brain, highlighting effects in adolescents when possible. Finally, we review the role of neurotrophin and glucocorticoid systems in stress-related metaplasticity. We argue that better understanding the long-term effects of developmental stressors on PFC trkB, GR, and related factors may yield insights into risk for chronic, remitting depression and related neuropsychiatric illnesses.
Collapse
Affiliation(s)
- Elizabeth T Barfield
- Department of Pediatrics, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA; Graduate Program in Neuroscience, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA; Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA; Department of Psychiatry and Behavioral Sciences, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA.
| | - Shannon L Gourley
- Department of Pediatrics, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA; Graduate Program in Neuroscience, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA; Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA; Department of Psychiatry and Behavioral Sciences, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA; Molecular and Systems Pharmacology Program, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA.
| |
Collapse
|
27
|
Larsen B, Luna B. Adolescence as a neurobiological critical period for the development of higher-order cognition. Neurosci Biobehav Rev 2018; 94:179-195. [PMID: 30201220 PMCID: PMC6526538 DOI: 10.1016/j.neubiorev.2018.09.005] [Citation(s) in RCA: 396] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/29/2018] [Accepted: 09/06/2018] [Indexed: 01/08/2023]
Abstract
The transition from adolescence to adulthood is characterized by improvements in higher-order cognitive abilities and corresponding refinements of the structure and function of the brain regions that support them. Whereas the neurobiological mechanisms that govern early development of sensory systems are well-understood, the mechanisms that drive developmental plasticity of association cortices, such as prefrontal cortex (PFC), during adolescence remain to be explained. In this review, we synthesize neurodevelopmental findings at the cellular, circuit, and systems levels in PFC and evaluate them through the lens of established critical period (CP) mechanisms that guide early sensory development. We find remarkable correspondence between these neurodevelopmental processes and the mechanisms driving CP plasticity, supporting the hypothesis that adolescent development is driven by CP mechanisms that guide the rapid development of neurobiology and cognitive ability during adolescence and their subsequent stability in adulthood. Critically, understanding adolescence as a CP not only provides a mechanism for normative adolescent development, it provides a framework for understanding the role of experience and neurobiology in the emergence of psychopathology that occurs during this developmental period.
Collapse
Affiliation(s)
- Bart Larsen
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, 15213, United States; Center for the Neural Basis of Cognition, Pittsburgh, PA, 15213, United States.
| | - Beatriz Luna
- Center for the Neural Basis of Cognition, Pittsburgh, PA, 15213, United States; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, United States
| |
Collapse
|
28
|
Richendrfer H, Creton R. Cluster analysis profiling of behaviors in zebrafish larvae treated with antidepressants and pesticides. Neurotoxicol Teratol 2018; 69:54-62. [PMID: 29101052 PMCID: PMC5930167 DOI: 10.1016/j.ntt.2017.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 10/17/2017] [Accepted: 10/30/2017] [Indexed: 01/24/2023]
Abstract
Antidepressants are used by a substantial number of women in their childbearing years. Treatment may continue during pregnancy, since untreated depression poses a risk to the mother and child. However, many antidepressants readily pass through the placental barrier to reach the fetus or may be ingested by the newborn via breastmilk. Little is known about the effects of antidepressants on brain development and subsequent behavior in young children. In the current study, we used zebrafish as a model system to examine the neurodevelopmental effects of three commonly prescribed antidepressants, sertraline, duloxetine and bupropion. Zebrafish were exposed to these antidepressants during development and were examined for changes in larval avoidance behavior, activity, social behaviors, and anxiety-related behaviors. The results show that antidepressants commonly affect larval swim speeds and resting, and differentially affect other behaviors depending upon the exposure period. Using cluster analysis profiling, we compared the obtained results to previous reports on behavioral defects induced by organophosphate pesticides. We found that the behavioral profiles induced by antidepressants and pesticides overlap, indicating a common mechanism of action. We conclude that developmental antidepressant exposures lead to specific behavioral changes in zebrafish larvae. At present, it is not known if antidepressants have similar effects in human development.
Collapse
Affiliation(s)
- Holly Richendrfer
- Brown University, Department of Molecular and Cellular Biology and Biochemistry, Providence, RI 02912, United States.
| | - Robbert Creton
- Brown University, Department of Molecular and Cellular Biology and Biochemistry, Providence, RI 02912, United States
| |
Collapse
|
29
|
Chen WG, Zheng JX, Xu X, Hu YM, Ma YM. Hippocampal FXR plays a role in the pathogenesis of depression: A preliminary study based on lentiviral gene modulation. Psychiatry Res 2018; 264:374-379. [PMID: 29677620 DOI: 10.1016/j.psychres.2018.04.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/29/2018] [Accepted: 04/10/2018] [Indexed: 01/23/2023]
Abstract
As a well-known bile acid receptor, the role of Farnesoid X receptor (FXR) in the digestive system and cardiovascular system has been widely explored. However, there are very few studies involving FXR in the central nervous system. In this study, we explored the role of FXR in the pathogenesis of depression, a serious and worldwide neuropsychiatric disease. It was found that chronic unpredictable mild stress (CUMS) fully enhanced the protein and mRNA expressions of FXR in hippocampus, but not medial prefrontal cortex (mPFC). Overexpression of hippocampal FXR induced notable depressive-like behaviors and decreased expression of brain-derived neurotrophic factor (BDNF) in naïve rats, while knockdown of hippocampal FXR fully prevented the effects of CUMS on rat behaviors and hippocampal BDNF expression. Taken together, our research extends the knowledge of FXR's role in the central nervous system, and may provide a potential and novel therapeutic target for treating depression.
Collapse
Affiliation(s)
- Wei-Guan Chen
- Department of Rehabilitation Medicine, The Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, PR China
| | - Jia-Xuan Zheng
- Department of Rehabilitation Medicine, The Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, PR China
| | - Xi Xu
- Department of Rehabilitation Medicine, The Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, PR China
| | - Yu-Ming Hu
- Department of Rehabilitation Medicine, The Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, PR China
| | - Yu-Min Ma
- Department of Internal Medicine, The Second Peoples Hospital of Nantong, No. 43, XingRong Street, Tangzha Town, Nantong, Jiangsu 226002, PR China.
| |
Collapse
|
30
|
Region-Dependent Alterations in Cognitive Function and ERK1/2 Signaling in the PFC in Rats after Social Defeat Stress. Neural Plast 2018; 2018:9870985. [PMID: 29849577 PMCID: PMC5925180 DOI: 10.1155/2018/9870985] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 02/26/2018] [Indexed: 12/23/2022] Open
Abstract
Cognitive dysfunctions are highly comorbid with depression. Impairments of cognitive flexibility, which are modulated by the monoaminergic system of the prefrontal cortex (PFC), are increasingly recognized as an important component of the pathophysiology and treatment of depression. However, the downstream molecular mechanisms remain unclear. Using a classical model of depression, this study investigated the effects of social defeat stress on emotional behaviors, on cognitive flexibility in the attentional set-shifting task (AST), and on the expression of extracellular signal-regulated kinase 1 and 2 (ERK1 and ERK2) and their downstream signaling molecules cAMP-response element binding protein (CREB) and brain-derived neurotrophic factor (BDNF) in two subregions of the PFC, the medial prefrontal cortex (mPFC), and the orbitofrontal cortex (OFC). The results showed that stress induced emotional and cognitive alterations associated with depression, including a decreased sucrose intake ratio and impaired reversal learning and set-shifting performance in the AST. Additionally, rats in the stress group showed a significant decrease only in ERK2 signaling in the mPFC, while more extensive decreases in both ERK1 signaling and ERK2 signaling were observed in the OFC. Along with the decreased ERK signaling, compared to controls, stressed rats showed downregulation of CREB phosphorylation and BDNF expression in both the OFC and the mPFC. Further analysis showed that behavioral changes were differentially correlated with several molecules in subregions of the PFC. These results suggested that social defeat stress was an effective animal model to induce both emotional and cognitive symptoms of depression and that the dysfunction of ERK signaling activities in the PFC might be a potential underlying biological mechanism.
Collapse
|
31
|
Effects of adolescent social stress and antidepressant treatment on cognitive inflexibility and Bdnf epigenetic modifications in the mPFC of adult mice. Psychoneuroendocrinology 2018; 88:92-101. [PMID: 29195162 DOI: 10.1016/j.psyneuen.2017.11.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/22/2017] [Accepted: 11/25/2017] [Indexed: 12/17/2022]
Abstract
Adolescent social stress (ASS) can increase susceptibility to depression in adulthood. However, the underlying psychological and neural mechanisms remain unclear. Cortically mediated cognitive dysfunctions are increasingly recognized as an independent and important risk factor of depression. Using social defeat stress, a classical animal model of depression, our previous studies found that mice subjected to this form of stress during early adolescence displayed cognitive inflexibility (CI) in adulthood. This change was accompanied by a down-regulation of Bdnf gene expression in the medial prefrontal cortex (mPFC); this gene encodes a key molecule involved in depression and antidepressant action. In the present paper, we identified epigenetic modification of Bdnf as a possible mechanism underlying the behavioral and molecular changes. ASS induced a set of depressive phenotypes, including increased social avoidance and CI, as well as reduced levels of total Bdnf and isoform IV but not isoform I or VI transcripts in the mPFC. In parallel with changes in Bdnf gene expression, previously stressed adult mice showed increased levels of dimethylation of histone H3 at lysine K9 (H3K9me2) immediately downstream of the Bdnf IV promoter. On the other hand, no differences were found in trimethylation of histone H3 at lysine K4 (H3K4me3) or in acetylation of histone H3 at lysine K9 (H3K9ac) or at K4 (H3K4ac) in the Bdnf IV promoter. Likewise, no alterations were found in DNA methylation of the Bdnf IV promoter. Additionally, treatment with the chronic antidepressant tranylcypromine reversed Bdnf epigenetic changes and related gene transcription while also reversing CI, but not social avoidance, in previously stressed adult mice. These results suggest that epigenetic changes to the Bdnf gene in the mPFC after adolescent social adversity may be involved in the regulation of cognitive dysfunction in depression and antidepressant action in adulthood.
Collapse
|
32
|
Zhu C, Xu J, Lin Y, Ju P, Duan D, Luo Y, Ding W, Huang S, Chen J, Cui D. Loss of Microglia and Impaired Brain-Neurotrophic Factor Signaling Pathway in a Comorbid Model of Chronic Pain and Depression. Front Psychiatry 2018; 9:442. [PMID: 30356873 PMCID: PMC6190863 DOI: 10.3389/fpsyt.2018.00442] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/28/2018] [Indexed: 12/15/2022] Open
Abstract
Major depressive disorder (MDD) and chronic pain are two complex disorders that often coexist. The underlying basis for this comorbidity is unknown. In the current investigation, microglia and the brain-derived neurotrophic factor (BDNF)-cAMP response element-binding protein (CREB) pathway were investigated. A comorbidity model, with characteristics of both MDD and chronic pain, was developed by the administration of dextran sodium sulfate (DSS) and the induction of chronic unpredictable psychological stress (CUS). Mechanical threshold sensory testing and the visceromotor response (VMR) were employed to measure mechanical allodynia and visceral hypersensitivity, respectively. RT-qPCR and western blotting were used to assess mRNA and protein levels of ionized calcium-binding adaptor molecule 1 (Iba-1), nuclear factor-kappa B (NF-κB), nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBa), BDNF, and CREB. In comorbid animals, mechanical allodynia and visceral hypersensitivities were significant with increased mRNA and protein levels for NF-κB-p65 and IκBa. Furthermore, the comorbid animals had deceased mRNA and protein levels for Iba-1, BDNF, and CREB as well as a reduced number and density of microglia in the medial prefrontal cortex (mPFC). These results together suggest that DSS and CUS can induce the comorbidities of chronic pain and depression-like behavior. The pathology of this comorbidity involves loss of microglia within the mPFC with subsequent activation of NF-κB-p65 and down-regulation of BDNF/p-CREB signaling.
Collapse
Affiliation(s)
- Cuizhen Zhu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinjie Xu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yezhe Lin
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peijun Ju
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongxia Duan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanjia Luo
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenhua Ding
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengnan Huang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinghong Chen
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Donghong Cui
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
33
|
Barfield ET, Gourley SL. Adolescent Corticosterone and TrkB Pharmaco-Manipulations Sex-Dependently Impact Instrumental Reversal Learning Later in Life. Front Behav Neurosci 2017; 11:237. [PMID: 29270114 PMCID: PMC5725412 DOI: 10.3389/fnbeh.2017.00237] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/14/2017] [Indexed: 02/01/2023] Open
Abstract
Early-life trauma can increase the risk for, and severity of, several psychiatric illnesses. These include drug use disorders, and some correlations appear to be stronger in women. Understanding the long-term consequences of developmental stressor or stress hormone exposure and possible sex differences is critically important. So-called “reversal learning” tasks are commonly used in rodents to model cognitive deficits in stress- and addiction-related illnesses in humans. Here, we exposed mice to the primary stress hormone corticosterone (CORT) during early adolescence (postnatal days 31–42), then tested behavioral flexibility in adulthood using an instrumental reversal learning task. CORT-exposed female, but not male, mice developed perseverative errors. Despite resilience to subchronic CORT exposure, males developed reversal performance impairments following exposure to physical stressors. Administration of a putative tyrosine kinase receptor B (trkB) agonist, 7,8-dihydroxyflavone (7,8-DHF), during adolescence blocked CORT-induced errors in females and improved performance in males. Conversely, blockade of trkB by ANA-12 impaired performance. These data suggest that trkB-based interventions could have certain protective benefits in the context of early-life stressor exposure. We consider the implications of our findings in an extended “Discussion” section.
Collapse
Affiliation(s)
- Elizabeth T Barfield
- Department of Pediatrics, Emory University, Atlanta, GA, United States.,Graduate Program in Neuroscience, Emory University, Atlanta, GA, United States.,Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States.,Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States
| | - Shannon L Gourley
- Department of Pediatrics, Emory University, Atlanta, GA, United States.,Graduate Program in Neuroscience, Emory University, Atlanta, GA, United States.,Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States.,Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States
| |
Collapse
|
34
|
Brain-derived neurotrophic factor signaling plays a role in resilience to stress promoted by isoquinoline in defeated mice. J Psychiatr Res 2017; 94:78-87. [PMID: 28688339 DOI: 10.1016/j.jpsychires.2017.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 06/24/2017] [Accepted: 06/29/2017] [Indexed: 12/12/2022]
Abstract
Certain stressful life events have been associated with the onset of depression. This study aims to investigate if 7-fluoro-1,3-diphenylisoquinoline-1-amine (FDPI) is effective against social avoidance induced by social defeat stress model in mice. Furthermore, it was investigated the effects of FDPI in the mouse prefrontal cortical plasticity-related proteins and some parameters of toxicity. Adult Swiss mice were subjected to social defeat stress for 10 days. Two protocols with FDPI were carried out: 1- FDPI (25 mg/kg, intragastric) was administered to mice 24 h after the last social defeat stress episode; 2- FDPI (1-25 mg/kg, intragastric) was administered to mice once a day for 10 days concomitant with the social defeat stress. The mice performed social avoidance and locomotor tests. The prefrontal cortical protein contents of kinase B (Akt), extracellular signal-regulated kinase (ERK), cAMP-response element binding protein (CREB), pro-brain-derived neurotrophic factor (proBDNF), p75NTR, neuronal nuclear protein (NeuN) and nuclear factor-κB (NF-κB) were determined in mice. A single administration of FDPI (25 mg/kg) partially protected against social avoidance induced by stress in mice. Repeated administration of FDPI (25 mg/kg) protected against social avoidance induced by stress in mice. Social defeat stress decreased the protein contents of p75NTR, NeuN and the pERK/ERK ratio but increased those of proBDNF and the pCREB/CREB ratio, without changing that of NF-κB. Repeated administration of FDPI modulated signaling pathways altered by social defeat stress in mice. The present findings demonstrate that FDPI promoted resilience to stress in mice.
Collapse
|
35
|
Integrating Spatial Working Memory and Remote Memory: Interactions between the Medial Prefrontal Cortex and Hippocampus. Brain Sci 2017; 7:brainsci7040043. [PMID: 28420200 PMCID: PMC5406700 DOI: 10.3390/brainsci7040043] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/11/2017] [Accepted: 04/14/2017] [Indexed: 12/22/2022] Open
Abstract
In recent years, two separate research streams have focused on information sharing between the medial prefrontal cortex (mPFC) and hippocampus (HC). Research into spatial working memory has shown that successful execution of many types of behaviors requires synchronous activity in the theta range between the mPFC and HC, whereas studies of memory consolidation have shown that shifts in area dependency may be temporally modulated. While the nature of information that is being communicated is still unclear, spatial working memory and remote memory recall is reliant on interactions between these two areas. This review will present recent evidence that shows that these two processes are not as separate as they first appeared. We will also present a novel conceptualization of the nature of the medial prefrontal representation and how this might help explain this area’s role in spatial working memory and remote memory recall.
Collapse
|