1
|
Zubkova E, Kalinin A, Bolotskaya A, Beloglazova I, Menshikov M. Autophagy-Dependent Secretion: Crosstalk between Autophagy and Exosome Biogenesis. Curr Issues Mol Biol 2024; 46:2209-2235. [PMID: 38534758 DOI: 10.3390/cimb46030142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 03/28/2024] Open
Abstract
The cellular secretome is pivotal in mediating intercellular communication and coordinating responses to stressors. Exosomes, initially recognized for their role in waste disposal, have now emerged as key intercellular messengers with significant therapeutic and diagnostic potential. Similarly, autophagy has transcended its traditional role as a waste removal mechanism, emerging as a regulator of intracellular communication pathways and a contributor to a unique autophagy-dependent secretome. Secretory authophagy, initiated by various stress stimuli, prompts the selective release of proteins implicated in inflammation, including leaderless proteins that bypass the conventional endoplasmic reticulum-Golgi secretory pathway. This reflects the significant impact of stress-induced autophagy on cellular secretion profiles, including the modulation of exosome release. The convergence of exosome biogenesis and autophagy is exemplified by the formation of amphisomes, vesicles that integrate autophagic and endosomal pathways, indicating their synergistic interplay. Regulatory proteins common to both pathways, particularly mTORC1, emerge as potential therapeutic targets to alter cellular secretion profiles involved in various diseases. This review explores the dynamic interplay between autophagy and exosome formation, highlighting the potential to influence the secretome composition. While the modulation of exosome secretion and cytokine preconditioning is well-established in regenerative medicine, the strategic manipulation of autophagy is still underexplored, presenting a promising but uncharted therapeutic landscape.
Collapse
Affiliation(s)
- Ekaterina Zubkova
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
| | - Alexander Kalinin
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Anastasya Bolotskaya
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
- Institute of Clinical Medicine, Sechenov University, 119435 Moscow, Russia
| | - Irina Beloglazova
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
| | - Mikhail Menshikov
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
| |
Collapse
|
2
|
Long DM, Cravetchi O, Chow ES, Allen C, Kretzschmar D. The amyloid precursor protein intracellular domain induces sleep disruptions and its nuclear localization fluctuates in circadian pacemaker neurons in Drosophila and mice. Neurobiol Dis 2024; 192:106429. [PMID: 38309627 DOI: 10.1016/j.nbd.2024.106429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 11/17/2023] [Accepted: 02/01/2024] [Indexed: 02/05/2024] Open
Abstract
The most prominent symptom of Alzheimer's disease (AD) is cognitive decline; however, sleep and other circadian disruptions are also common in AD patients. Sleep disruptions have been connected with memory problems and therefore the changes in sleep patterns observed in AD patients may also actively contribute to cognitive decline. However, the underlying molecular mechanisms that connect sleep disruptions and AD are unclear. A characteristic feature of AD is the formation of plaques consisting of Amyloid-β (Aβ) peptides generated by cleavage of the Amyloid Precursor Protein (APP). Besides Aβ, APP cleavage generates several other fragments, including the APP intracellular domain (AICD) that has been linked to transcriptional regulation and neuronal homeostasis. Here we show that overexpression of the AICD reduces the early evening expression of two core clock genes and disrupts the sleep pattern in flies. Analyzing the subcellular localization of the AICD in pacemaker neurons, we found that the AICD levels in the nucleus are low during daytime but increase at night. While this pattern of nuclear AICD persisted with age, the nighttime levels were higher in aged flies. Increasing the cleavage of the fly APP protein also disrupted AICD nuclear localization. Lastly, we show that the day/nighttime nuclear pattern of the AICD is also detectable in neurons in the suprachiasmatic nucleus of mice and that it also changes with age. Together, these data suggest that AD-associated changes in APP processing and the subsequent changes in AICD levels may cause sleep disruptions in AD.
Collapse
Affiliation(s)
- Dani M Long
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR 97239, USA.
| | - Olga Cravetchi
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR 97239, USA
| | - Eileen S Chow
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| | - Charles Allen
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR 97239, USA
| | - Doris Kretzschmar
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR 97239, USA
| |
Collapse
|
3
|
Elhady MM, Adly SA, Elshebiny HA, Moselhy SS. Detection the severity of organophosphate intoxication using sensitive serum biomarkers S100B and amyloid β (Aβ) in Egyptian subjects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:105194-105201. [PMID: 37713081 PMCID: PMC10579114 DOI: 10.1007/s11356-023-29748-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/03/2023] [Indexed: 09/16/2023]
Abstract
Organophosphate (OP) is a compound considered the main leading cause of morbidity and mortality from poisoning worldwide. Serum pseudocholinesterase was evaluated as a diagnostic indicator; it cannot be used to monitor therapy or severity of the intoxication. The rationale of the current study was to evaluate sensitivity, specificity, and cut-off values of serum S100B and amyloid β for neurological affection severity. This study was carried out on sixty OP-impaired patients; in addition, 20 normal controls were included. Serum liver and kidney function tests, malondialdehyde, pseudocholinesterase, and the levels of S100B and amyloid β (Aβ) were determined. Data showed that Pearson's analysis indicated that the serum level of S100B was positively correlated with Aβ. On the contrary, the activity of pseudocholinesterase was negatively correlated with both of S100B and Aβ. Serum ALT, AST, creatinine, urea, acetylcholine, and MDA levels were elevated while pseudocholinesterase activity was reduced in moderate and severe OP intoxication versus control. A drastic elevation (p<0.001) in the levels of S100B and Aβ was performed in the patient group suffering from OP intoxication versus the normal group. The diagnostic statistical validation of targeted parameters in distinguishing between moderate OP intoxication and control clarifies that S100B displayed the best AUC (0.997) followed by Aβ (AUC=0.992), while the diagnostic veracity of S100B and Aβ in setting apart severe OP-intoxicated and normal subjects stated the symmetric efficacy of potential markers. It was concluded that the significant changes in the levels of S100B and Aβ were directly proportional to the degree of severity of OP intoxication.
Collapse
Affiliation(s)
- Mostafa M Elhady
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Sara A Adly
- Poison Control Center, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Husam A Elshebiny
- Poison Control Center, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Said S Moselhy
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
4
|
Knittel LM, Swanson TL, Lee HJ, Copenhaver PF. Fasciclin 2 plays multiple roles in promoting cell migration within the developing nervous system of Manduca sexta. Dev Biol 2023; 499:31-46. [PMID: 37121309 PMCID: PMC10247491 DOI: 10.1016/j.ydbio.2023.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/07/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023]
Abstract
The coordination of neuronal and glial migration is essential to the formation of most nervous systems, requiring a complex interplay of cell-intrinsic responses and intercellular guidance cues. During the development of the enteric nervous system (ENS) in Manduca sexta (tobacco hornworm), the IgCAM Fasciclin 2 (Fas2) serves several distinct functions to regulate these processes. As the ENS forms, a population of 300 neurons (EP cells) undergoes sequential phases of migration along well-defined muscle pathways on the visceral mesoderm to form a branching Enteric Plexus, closely followed by a trailing wave of proliferating glial cells that enwrap the neurons. Initially, both the neurons and glial cells express a GPI-linked form of Fas2 (GPI-Fas2), which helps maintain cell-cell contact among the pre-migratory neurons and later promotes glial ensheathment. The neurons then switch isoforms, predominantly expressing a combination of transmembrane isoforms lacking an intracellular PEST domain (TM-Fas2 PEST-), while their muscle band pathways on the midgut transiently express transmembrane isoforms containing this domain (TM-Fas2 PEST+). Using intracellular injection protocols to manipulate Fas2 expression in cultured embryos, we found that TM-Fas2 promotes the directed migration and outgrowth of individual neurons in the developing ENS. Concurrently, TM-Fas2 expression by the underlying muscle bands is also required as a substrate cue to support normal migration, while glial expression of GPI-Fas2 helps support their ensheathment of the migratory neurons. These results demonstrate how a specific IgCAM can play multiple roles that help coordinate neuronal and glial migration in the developing nervous system.
Collapse
Affiliation(s)
- Laura M Knittel
- Department of Cell, Developmental and Cancer Biology L-215, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
| | - Tracy L Swanson
- Department of Cell, Developmental and Cancer Biology L-215, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
| | - Hun Joo Lee
- Department of Cell, Developmental and Cancer Biology L-215, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
| | - Philip F Copenhaver
- Department of Cell, Developmental and Cancer Biology L-215, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
| |
Collapse
|
5
|
Quinn JF, Kelly MJ, Harris CJ, Hack W, Gray NE, Kulik V, Bostick Z, Brumbach BH, Copenhaver PF. The novel estrogen receptor modulator STX attenuates Amyloid-β neurotoxicity in the 5XFAD mouse model of Alzheimer's disease. Neurobiol Dis 2022; 174:105888. [PMID: 36209948 PMCID: PMC10108899 DOI: 10.1016/j.nbd.2022.105888] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/09/2022] [Accepted: 10/05/2022] [Indexed: 11/21/2022] Open
Abstract
Based on previous evidence that the non-steroidal estrogen receptor modulator STX mitigates the effects of neurotoxic Amyloid-β (Aβ) in vitro, we have evaluated its neuroprotective benefits in a mouse model of Alzheimer's disease. Cohorts of 5XFAD mice, which begin to accumulate cerebral Aβ at two months of age, were treated with orally-administered STX starting at 6 months of age for two months. After behavioral testing to evaluate cognitive function, biochemical and immunohistochemical assays were used to analyze key markers of mitochondrial function and synaptic integrity. Oral STX treatment attenuated Aβ-associated mitochondrial toxicity and synaptic toxicity in the brain, as previously documented in cultured neurons. STX also moderately improved spatial memory in 5XFAD mice. In addition, STX reduced markers for reactive astrocytosis and microgliosis surrounding amyloid plaques, and also unexpectedly reduced overall levels of cerebral Aβ in the brain. The neuroprotective effects of STX were more robust in females than in males. These results suggest that STX may have therapeutic potential in Alzheimer's Disease.
Collapse
Affiliation(s)
- Joseph F Quinn
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States of America; Parkinson's Disease Research, Education, and Clinical Center, Portland Veterans Affairs Medical Center, Portland, OR, United States of America.
| | - Martin J Kelly
- Department of Chemical Physiology and Biochemistry, OHSU, Portland, OR, United States of America
| | - Christopher J Harris
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States of America
| | - Wyatt Hack
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States of America
| | - Nora E Gray
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States of America
| | - Veronika Kulik
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States of America
| | - Zoe Bostick
- Department of Cell, Developmental and Cancer Biology, OHSU, Portland, OR, United States of America
| | - Barbara H Brumbach
- Biostatistics and Design Program, OHSU-PSU School of Public Health, Portland, OR, United States of America
| | - Philip F Copenhaver
- Department of Cell, Developmental and Cancer Biology, OHSU, Portland, OR, United States of America
| |
Collapse
|
6
|
Robinson W, Godenschwege TA. Live Imaging of Axonal Transport in the Adult Drosophila Central Nervous System. Methods Mol Biol 2022; 2431:417-428. [PMID: 35412290 DOI: 10.1007/978-1-0716-1990-2_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Live imaging of axons allows for the determination of motility and directionality of proteins or organelles. In Drosophila, axonal transport has been predominantly characterized in peripheral neurons, such as larval motor neurons and sensory neurons of the adult wing. As peripheral neurons and central nervous system (CNS) neurons are inherently different, we provide a method to live-image axonal transport of CNS neurons in the cervical connective using an upright or inverted microscope. The method involves dissecting and mounting an entire CNS in a glass bottom petri dish, which is suitable for imaging of nearly any axon in cervical connective. Here, we show an example for simultaneous imaging of both giant fiber axons, which are part of the fly's escape response circuitry, and due to their large diameter provide outstanding resolution.
Collapse
Affiliation(s)
- Wayne Robinson
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL, USA
| | - Tanja A Godenschwege
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL, USA.
| |
Collapse
|
7
|
Lai SSM, Ng KY, Koh RY, Chok KC, Chye SM. Endosomal-lysosomal dysfunctions in Alzheimer's disease: Pathogenesis and therapeutic interventions. Metab Brain Dis 2021; 36:1087-1100. [PMID: 33881723 DOI: 10.1007/s11011-021-00737-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/08/2021] [Indexed: 12/14/2022]
Abstract
The endosomal-lysosomal system mediates the process of protein degradation through endocytic pathway. This system consists of early endosomes, late endosomes, recycling endosomes and lysosomes. Each component in the endosomal-lysosomal system plays individual crucial role and they work concordantly to ensure protein degradation can be carried out functionally. Dysregulation in the endosomal-lysosomal system can contribute to the pathogenesis of neurodegenerative diseases such as Alzheimer's disease (AD). In AD endosomal-lysosomal abnormalities are the earliest pathological features to note and hence it is important to understand the involvement of endosomal-lysosomal dysfunction in the pathogenesis of AD. In-depth understanding of this dysfunction can allow development of new therapeutic intervention to prevent and treat AD.
Collapse
Affiliation(s)
- Shereen Shi Min Lai
- School of Health Science, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Khuen Yen Ng
- School of Pharmacy, Monash University Malaysia, 47500, Selangor, Malaysia
| | - Rhun Yian Koh
- Division of Biomedical Science and Biotechnology, School of Health Science, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Kian Chung Chok
- School of Health Science, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Soi Moi Chye
- Division of Biomedical Science and Biotechnology, School of Health Science, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
8
|
Penserga T, Kudumala SR, Poulos R, Godenschwege TA. A Role for Drosophila Amyloid Precursor Protein in Retrograde Trafficking of L1-Type Cell Adhesion Molecule Neuroglian. Front Cell Neurosci 2019; 13:322. [PMID: 31354437 PMCID: PMC6640005 DOI: 10.3389/fncel.2019.00322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/01/2019] [Indexed: 11/21/2022] Open
Abstract
The role of the Amyloid Precursor Protein (APP) in the pathology of Alzheimer's disease (AD) has been well studied. However, the normal function of APP in the nervous system is poorly understood. Here, we characterized the role of the Drosophila homolog (APPL) in the adult giant fiber (GF) neurons. We find that endogenous APPL is transported from the synapse to the soma in the adult. Live-imaging revealed that retrograde moving APPL vesicles co-traffic with L1-type cell adhesion molecule Neuroglian (Nrg). In APPL null mutants, stationary Nrg vesicles were increased along the axon, and the number of Nrg vesicles moving in retrograde but not anterograde direction was reduced. In contrast, trafficking of endo-lysosomal vesicles, which did not co-localize with APPL in GF axons, was not affected. This suggests that APPL loss of function does not generally disrupt axonal transport but that APPL has a selective role in the effectiveness of retrograde transport of proteins it co-traffics with. While the GF terminals of APPL loss of function animals exhibited pruning defects, APPL gain of function had no disruptive effect on GF morphology and function, or on retrograde axonal transport of Nrg. However, cell-autonomous developmental expression of a secretion-deficient form of APPL (APPL-SD), lacking the α-, β-, and, γ-secretase cleavage sites, resulted in progressive retraction of the GF terminals. Conditional expression of APPL-SD in mature GFs caused accumulation of Nrg in normal sized synaptic terminals, which was associated with severely reduced retrograde flux of Nrg labeled vesicles in the axons. Albeit β-secretase null mutants developed GF terminals they also exhibited Nrg accumulations. This suggests that cleavage defective APPL has a toxic effect on retrograde trafficking and that β-secretase cleavage has a function in Nrg sorting in endosomal compartments at the synapse. In summary, our results suggest a role for APPL and its proteolytic cleavage sites in retrograde trafficking, thus our findings are of relevance to the understanding of the endogenous role of APP as well as to the development of therapeutic treatments of Alzheimer's disease.
Collapse
|
9
|
Furotani K, Kamimura K, Yajima T, Nakayama M, Enomoto R, Tamura T, Okazawa H, Sone M. Suppression of the synaptic localization of a subset of proteins including APP partially ameliorates phenotypes of the Drosophila Alzheimer's disease model. PLoS One 2018; 13:e0204048. [PMID: 30226901 PMCID: PMC6143267 DOI: 10.1371/journal.pone.0204048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/31/2018] [Indexed: 11/19/2022] Open
Abstract
APP (amyloid precursor protein), the causative molecule of Alzheimer's disease, is synthesized in neuronal cell bodies and subsequently transported to synapses. We previously showed that the yata gene is required for the synaptic transport of the APP orthologue in Drosophila melanogaster. In this study, we examined the effect of a reduction in yata expression in the Drosophila Alzheimer's disease model, in which expression of human mutant APP was induced. The synaptic localization of APP and other synaptic proteins was differentially inhibited by yata knockdown and null mutation. Expression of APP resulted in abnormal synaptic morphology and the premature death of animals. These phenotypes were partially but significantly rescued by yata knockdown, whereas yata knockdown itself caused no abnormality. Moreover, we observed that synaptic transmission accuracy was impaired in our model, and this phenotype was improved by yata knockdown. Thus, our data suggested that the phenotypes caused by APP can be partially prevented by inhibition of the synaptic localization of a subset of synaptic proteins including APP.
Collapse
Affiliation(s)
- Koto Furotani
- Faculty of Science, Toho University, Funabashi, Japan
| | | | | | | | - Rena Enomoto
- Faculty of Science, Toho University, Funabashi, Japan
| | - Takuya Tamura
- Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hitoshi Okazawa
- Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masaki Sone
- Faculty of Science, Toho University, Funabashi, Japan
- * E-mail:
| |
Collapse
|
10
|
O'Keefe L, Denton D. Using Drosophila Models of Amyloid Toxicity to Study Autophagy in the Pathogenesis of Alzheimer's Disease. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5195416. [PMID: 29888266 PMCID: PMC5985114 DOI: 10.1155/2018/5195416] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/20/2018] [Accepted: 04/10/2018] [Indexed: 12/24/2022]
Abstract
Autophagy is a conserved catabolic pathway that involves the engulfment of cytoplasmic components such as large protein aggregates and organelles that are delivered to the lysosome for degradation. This process is important in maintaining neuronal function and raises the possibility of a role for autophagy in neurodegenerative diseases. Alzheimer's disease (AD) is the most prevalent form of these diseases and is characterized by the accumulation of amyloid plaques in the brain which arise due to the misfolding and aggregation of toxic peptides, including amyloid beta (Aβ). There is substantial evidence from both AD patients and animal models that autophagy is dysregulated in this disease. However, it remains to be determined whether this is protective or pathogenic as there is evidence that autophagy can act to promote the degradation as well as function in the generation of toxic Aβ peptides. Understanding the molecular details of the extensive crosstalk that occurs between the autophagic and endolysosomal cellular pathways is essential for identifying the molecular details of amyloid toxicity. Drosophila models that express the toxic proteins that aggregate in AD have been generated and have been shown to recapitulate hallmarks of the disease. Here we focus on what is known about the role of autophagy in amyloid toxicity in AD from mammalian models and how Drosophila models can be used to further investigate AD pathogenesis.
Collapse
Affiliation(s)
- Louise O'Keefe
- Department of Genetics and Evolution, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
- Hopwood Centre for Neurobiology, South Australian Health and Medical Research Institute, P.O. Box 11060, Adelaide, SA 5001, Australia
| | - Donna Denton
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5001, Australia
| |
Collapse
|
11
|
Rieche F, Carmine-Simmen K, Poeck B, Kretzschmar D, Strauss R. Drosophila Full-Length Amyloid Precursor Protein Is Required for Visual Working Memory and Prevents Age-Related Memory Impairment. Curr Biol 2018; 28:817-823.e3. [PMID: 29478851 DOI: 10.1016/j.cub.2018.01.077] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 12/21/2017] [Accepted: 01/26/2018] [Indexed: 01/15/2023]
Abstract
The β-amyloid precursor protein (APP) plays a central role in the etiology of Alzheimer's disease (AD). However, its normal physiological functions are still unclear. APP is cleaved by various secretases whereby sequential processing by the β- and γ-secretases produces the β-amyloid peptide that is accumulating in plaques that typify AD. In addition, this produces secreted N-terminal sAPPβ fragments and the APP intracellular domain (AICD). Alternative cleavage by α-secretase results in slightly longer secreted sAPPα fragments and the identical AICD. Whereas the AICD has been connected with transcriptional regulation, sAPPα fragments have been suggested to have a neurotrophic and neuroprotective role [1]. Moreover, expression of sAPPα in APP-deficient mice could rescue their deficits in learning, spatial memory, and long-term potentiation [2]. Loss of the Drosophila APP-like (APPL) protein impairs associative olfactory memory formation and middle-term memory that can be rescued with a secreted APPL fragment [3]. We now show that APPL is also essential for visual working memory. Interestingly, this short-term memory declines rapidly with age, and this is accompanied by enhanced processing of APPL in aged flies. Furthermore, reducing secretase-mediated proteolytic processing of APPL can prevent the age-related memory loss, whereas overexpression of the secretases aggravates the aging effect. Rescue experiments confirmed that this memory requires signaling of full-length APPL and that APPL negatively regulates the neuronal-adhesion molecule Fasciclin 2. Overexpression of APPL or one of its secreted N termini results in a dominant-negative interaction with the FASII receptor. Therefore, our results show that specific memory processes require distinct APPL products.
Collapse
Affiliation(s)
- Franziska Rieche
- Institut für Entwicklungsbiologie und Neurobiologie, Johannes Gutenberg-Universität Mainz, Colonel-Kleinmann-Weg 2, 55099 Mainz, Germany
| | - Katia Carmine-Simmen
- Oregon Institute of Occupational Health Sciences, 3181 S.W. Sam Jackson Park Road, Portland, OR 97201, USA
| | - Burkhard Poeck
- Institut für Entwicklungsbiologie und Neurobiologie, Johannes Gutenberg-Universität Mainz, Colonel-Kleinmann-Weg 2, 55099 Mainz, Germany
| | - Doris Kretzschmar
- Oregon Institute of Occupational Health Sciences, 3181 S.W. Sam Jackson Park Road, Portland, OR 97201, USA.
| | - Roland Strauss
- Institut für Entwicklungsbiologie und Neurobiologie, Johannes Gutenberg-Universität Mainz, Colonel-Kleinmann-Weg 2, 55099 Mainz, Germany.
| |
Collapse
|
12
|
Ntsapi C, Lumkwana D, Swart C, du Toit A, Loos B. New Insights Into Autophagy Dysfunction Related to Amyloid Beta Toxicity and Neuropathology in Alzheimer's Disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 336:321-361. [DOI: 10.1016/bs.ircmb.2017.07.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Abid NB, Yoon G, Kim MO. Molecular Cloning and Expression of Osmotin in a Baculovirus-Insect System: Purified Osmotin Mitigates Amyloid-beta Deposition in Neuronal Cells. Sci Rep 2017; 7:8147. [PMID: 28811634 PMCID: PMC5557928 DOI: 10.1038/s41598-017-08396-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/11/2017] [Indexed: 12/25/2022] Open
Abstract
Osmotin is a pathogenesis-related plant protein, have gained focus of research because of its homology with mammalian adiponectin. The therapeutic properties of osmotin have been explored in recent years as it exhibits neuroprotective effects against amyloid beta-, glutamate- and ethanol-induced synaptic dysfunction and neurodegeneration. In the present study, the full-length gene of the tobacco plant osmotin was cloned and expressed in the Sf9 insect cell line using the baculovirus expression system. In vitro analysis of purified Osmotin protein showed excellent cell viability, p-AMPK activation and a reduction in amyloid-beta deposition. Immunofluorescent analysis showed significant reduction in amyloid beta deposition in APP over expressing neuronal cells. Osmotin inhibited amyloid beta deposition by influencing expression of APP processing genes including APP, ADAM 10 and BACE 1. Purified Osmotin showed reduction in amyloid beta deposition in different in vitro models as well. Osmotin showed similar mechanism when compared with mammalian adiponectin in different in vitro models. The present method will be an excellent approach for the efficient and cost-effective production of the functional protein to be utilized for therapeutic purposes. Reduction in amyloid beta deposition by activation of p-AMPK influencing APP processing genes makes osmotin a potent therapeutic candidate for neurodegenerative diseases.
Collapse
Affiliation(s)
- Noman Bin Abid
- Division of Life Science and Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Gwangho Yoon
- Division of Life Science and Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Myeong Ok Kim
- Division of Life Science and Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju, 660-701, Republic of Korea.
| |
Collapse
|
14
|
Westmark CJ. Commentary: Depletion of the Fragile X Mental Retardation Protein in Embryonic Stem Cells Alters the Kinetics of Neurogenesis. Front Mol Neurosci 2017; 10:29. [PMID: 28223919 PMCID: PMC5293769 DOI: 10.3389/fnmol.2017.00029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 01/24/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
- Cara J Westmark
- Department of Neurology, University of Wisconsin Madison, WI, USA
| |
Collapse
|
15
|
Copenhaver PF, Kögel D. Role of APP Interactions with Heterotrimeric G Proteins: Physiological Functions and Pathological Consequences. Front Mol Neurosci 2017; 10:3. [PMID: 28197070 PMCID: PMC5281615 DOI: 10.3389/fnmol.2017.00003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/05/2017] [Indexed: 12/27/2022] Open
Abstract
Following the discovery that the amyloid precursor protein (APP) is the source of β-amyloid peptides (Aβ) that accumulate in Alzheimer’s disease (AD), structural analyses suggested that the holoprotein resembles a transmembrane receptor. Initial studies using reconstituted membranes demonstrated that APP can directly interact with the heterotrimeric G protein Gαo (but not other G proteins) via an evolutionarily G protein-binding motif in its cytoplasmic domain. Subsequent investigations in cell culture showed that antibodies against the extracellular domain of APP could stimulate Gαo activity, presumably mimicking endogenous APP ligands. In addition, chronically activating wild type APP or overexpressing mutant APP isoforms linked with familial AD could provoke Go-dependent neurotoxic responses, while biochemical assays using human brain samples suggested that the endogenous APP-Go interactions are perturbed in AD patients. More recently, several G protein-dependent pathways have been implicated in the physiological roles of APP, coupled with evidence that APP interacts both physically and functionally with Gαo in a variety of contexts. Work in insect models has demonstrated that the APP ortholog APPL directly interacts with Gαo in motile neurons, whereby APPL-Gαo signaling regulates the response of migratory neurons to ligands encountered in the developing nervous system. Concurrent studies using cultured mammalian neurons and organotypic hippocampal slice preparations have shown that APP signaling transduces the neuroprotective effects of soluble sAPPα fragments via modulation of the PI3K/Akt pathway, providing a mechanism for integrating the stress and survival responses regulated by APP. Notably, this effect was also inhibited by pertussis toxin, indicating an essential role for Gαo/i proteins. Unexpectedly, C-terminal fragments (CTFs) derived from APP have also been found to interact with Gαs, whereby CTF-Gαs signaling can promote neurite outgrowth via adenylyl cyclase/PKA-dependent pathways. These reports offer the intriguing perspective that G protein switching might modulate APP-dependent responses in a context-dependent manner. In this review, we provide an up-to-date perspective on the model that APP plays a variety of roles as an atypical G protein-coupled receptor in both the developing and adult nervous system, and we discuss the hypothesis that disruption of these normal functions might contribute to the progressive neuropathologies that typify AD.
Collapse
Affiliation(s)
- Philip F Copenhaver
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Sciences University, Portland OR, USA
| | - Donat Kögel
- Experimental Neurosurgery, Goethe University Frankfurt Frankfurt am Main, Germany
| |
Collapse
|