1
|
Jeejan J, Rao L, Sadasivan S, Lopes R, Dsouza N. Impact of cysteine mutations on the structural dynamics and functional impairment of SOD1: insights into the pathogenicity of amyotrophic lateral sclerosis. Genomics Inform 2025; 23:7. [PMID: 40050936 PMCID: PMC11884185 DOI: 10.1186/s44342-025-00041-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/28/2025] [Indexed: 03/10/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rare neurodegenerative disease prevalent in American and European populations, with its onset and progression significantly influenced by mutations in the superoxide dismutase 1 (SOD1) protein. While previous studies have highlighted the effects of mutations in the metal-binding region and catalytic region and dimerisation of SOD1, the impact of mutations involving the Cysteine residue at the N-terminal end remains unexplored. This study investigates the effects of Cysteine-to-Trp, Phe, Ser, and Gly mutations at the 6th position of SOD1's N-terminal end on its structural dynamics and functional impairment. Our computational analysis using PolyPhen-2, PROVEAN, Meta-SNP, and PhD-SNP predicted mutations to be deleterious, with their negative impacts likely contributing to disease development. Furthermore, stability studies and bonding pattern changes due to the mutations, analysed by mCSM, SDM, DUET, Dynamut2, and PremPS revealed changes in free energy and disruption in intramolecular interactions. The molecular dynamics studies revealed distinct changes in stability patterns among the mutations, particularly in Cys6Trp and Cys6Phe. All the mutations primarily altered the catalytic region of the protein; additionally, Cys6Phe and Cys6Gly caused disruption in the metal-binding region. The impact of mutations on the dimerisation of SOD1, analysed using MM/PBSA showed destabilisation due to Cys6Phe mutation. These findings provide molecular insights into the clinical symptoms observed in patients, highlighting the critical impact of the Cys6Phe mutation on the metal-binding and catalytic loops of SOD1 along with destabilisation of dimer formation. Overall, our analysis offers valuable insights into the molecular mechanisms driving structural changes in SOD1 due to mutations, contributing to a deeper understanding of their role in ALS pathogenicity.
Collapse
Affiliation(s)
- Jessica Jeejan
- Department of Biotechnology, St. Xavier's College, Maharashtra, Mumbai, India
| | - Lawanya Rao
- Department of Biotechnology, St. Xavier's College, Maharashtra, Mumbai, India
| | - Shivank Sadasivan
- Department of Biotechnology, St. Xavier's College, Maharashtra, Mumbai, India
| | - Richa Lopes
- Department of Biotechnology, St. Xavier's College, Maharashtra, Mumbai, India
| | - Norine Dsouza
- Department of Biotechnology, St. Xavier's College, Maharashtra, Mumbai, India.
| |
Collapse
|
2
|
Percio A, Cicchinelli M, Masci D, Summo M, Urbani A, Greco V. Oxidative Cysteine Post Translational Modifications Drive the Redox Code Underlying Neurodegeneration and Amyotrophic Lateral Sclerosis. Antioxidants (Basel) 2024; 13:883. [PMID: 39199129 PMCID: PMC11351139 DOI: 10.3390/antiox13080883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 09/01/2024] Open
Abstract
Redox dysregulation, an imbalance between oxidants and antioxidants, is crucial in the pathogenesis of various neurodegenerative diseases. Within this context, the "redoxome" encompasses the network of redox molecules collaborating to maintain cellular redox balance and signaling. Among these, cysteine-sensitive proteins are fundamental for this homeostasis. Due to their reactive thiol groups, cysteine (Cys) residues are particularly susceptible to oxidative post-translational modifications (PTMs) induced by free radicals (reactive oxygen, nitrogen, and sulfur species) which profoundly affect protein functions. Cys-PTMs, forming what is referred to as "cysteinet" in the redox proteome, are essential for redox signaling in both physiological and pathological conditions, including neurodegeneration. Such modifications significantly influence protein misfolding and aggregation, key hallmarks of neurodegenerative diseases such as Alzheimer's, Parkinson's, and notably, amyotrophic lateral sclerosis (ALS). This review aims to explore the complex landscape of cysteine PTMs in the cellular redox environment, elucidating their impact on neurodegeneration at protein level. By investigating specific cysteine-sensitive proteins and the regulatory networks involved, particular emphasis is placed on the link between redox dysregulation and ALS, highlighting this pathology as a prime example of a neurodegenerative disease wherein such redox dysregulation is a distinct hallmark.
Collapse
Affiliation(s)
- Anna Percio
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (A.P.); (M.C.); (D.M.); (M.S.); (A.U.)
- Department of Laboratory Diagnostic and Infectious Diseases, Unity of Chemistry, Biochemistry and Clinical Molecular Biology, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, 00168 Rome, Italy
| | - Michela Cicchinelli
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (A.P.); (M.C.); (D.M.); (M.S.); (A.U.)
- Department of Laboratory Diagnostic and Infectious Diseases, Unity of Chemistry, Biochemistry and Clinical Molecular Biology, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, 00168 Rome, Italy
| | - Domiziana Masci
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (A.P.); (M.C.); (D.M.); (M.S.); (A.U.)
| | - Mariagrazia Summo
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (A.P.); (M.C.); (D.M.); (M.S.); (A.U.)
| | - Andrea Urbani
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (A.P.); (M.C.); (D.M.); (M.S.); (A.U.)
- Department of Laboratory Diagnostic and Infectious Diseases, Unity of Chemistry, Biochemistry and Clinical Molecular Biology, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, 00168 Rome, Italy
| | - Viviana Greco
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (A.P.); (M.C.); (D.M.); (M.S.); (A.U.)
- Department of Laboratory Diagnostic and Infectious Diseases, Unity of Chemistry, Biochemistry and Clinical Molecular Biology, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, 00168 Rome, Italy
| |
Collapse
|
3
|
Tsekrekou M, Giannakou M, Papanikolopoulou K, Skretas G. Protein aggregation and therapeutic strategies in SOD1- and TDP-43- linked ALS. Front Mol Biosci 2024; 11:1383453. [PMID: 38855322 PMCID: PMC11157337 DOI: 10.3389/fmolb.2024.1383453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/02/2024] [Indexed: 06/11/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with severe socio-economic impact. A hallmark of ALS pathology is the presence of aberrant cytoplasmic inclusions composed of misfolded and aggregated proteins, including both wild-type and mutant forms. This review highlights the critical role of misfolded protein species in ALS pathogenesis, particularly focusing on Cu/Zn superoxide dismutase (SOD1) and TAR DNA-binding protein 43 (TDP-43), and emphasizes the urgent need for innovative therapeutic strategies targeting these misfolded proteins directly. Despite significant advancements in understanding ALS mechanisms, the disease remains incurable, with current treatments offering limited clinical benefits. Through a comprehensive analysis, the review focuses on the direct modulation of the misfolded proteins and presents recent discoveries in small molecules and peptides that inhibit SOD1 and TDP-43 aggregation, underscoring their potential as effective treatments to modify disease progression and improve clinical outcomes.
Collapse
Affiliation(s)
- Maria Tsekrekou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Maria Giannakou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
- Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina Papanikolopoulou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Centre “Alexander Fleming”, Vari, Greece
- ResQ Biotech, Patras Science Park, Rio, Greece
| | - Georgios Skretas
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
- ResQ Biotech, Patras Science Park, Rio, Greece
- Institute for Bio-innovation, Biomedical Sciences Research Centre “Alexander Fleming”, Vari, Greece
| |
Collapse
|
4
|
Yan X, Kuster D, Mohanty P, Nijssen J, Pombo-García K, Rizuan A, Franzmann TM, Sergeeva A, Passos PM, George L, Wang SH, Shenoy J, Danielson HL, Honigmann A, Ayala YM, Fawzi NL, Mittal J, Alberti S, Hyman AA. Intra-condensate demixing of TDP-43 inside stress granules generates pathological aggregates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576837. [PMID: 38328053 PMCID: PMC10849624 DOI: 10.1101/2024.01.23.576837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Cytosolic aggregation of the nuclear protein TDP-43 is associated with many neurodegenerative diseases, but the triggers for TDP-43 aggregation are still debated. Here, we demonstrate that TDP-43 aggregation requires a double event. One is up-concentration in stress granules beyond a threshold, and the other is oxidative stress. These two events collectively induce intra-condensate demixing, giving rise to a dynamic TDP-43 enriched phase within stress granules, which subsequently transitions into pathological aggregates. Mechanistically, intra-condensate demixing is triggered by local unfolding of the RRM1 domain for intermolecular disulfide bond formation and by increased hydrophobic patch interactions in the C-terminal domain. By engineering TDP-43 variants resistant to intra-condensate demixing, we successfully eliminate pathological TDP-43 aggregates in cells. We conclude that up-concentration inside condensates and simultaneous exposure to environmental stress could be a general pathway for protein aggregation, with intra-condensate demixing constituting a key intermediate step.
Collapse
Affiliation(s)
- Xiao Yan
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG); Dresden, Saxony, 01307; Germany
| | - David Kuster
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG); Dresden, Saxony, 01307; Germany
- These authors contributed equally
| | - Priyesh Mohanty
- Artie McFerrin Department of Chemical Engineering, Texas A&M University; College Station, TX 77843; USA
- These authors contributed equally
| | - Jik Nijssen
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG); Dresden, Saxony, 01307; Germany
- These authors contributed equally
| | - Karina Pombo-García
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG); Dresden, Saxony, 01307; Germany
- These authors contributed equally
| | - Azamat Rizuan
- Artie McFerrin Department of Chemical Engineering, Texas A&M University; College Station, TX 77843; USA
| | - Titus M. Franzmann
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden; Dresden, Saxony, 01307; Germany
| | - Aleksandra Sergeeva
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG); Dresden, Saxony, 01307; Germany
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden; Dresden, Saxony, 01307; Germany
| | - Patricia M. Passos
- Edward Doisy Department of Biochemistry and Molecular Biology, Saint Louis University; St. Louis, MO 63104; USA
| | - Leah George
- Edward Doisy Department of Biochemistry and Molecular Biology, Saint Louis University; St. Louis, MO 63104; USA
| | - Szu-Huan Wang
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University; Providence, RI 02912; USA
| | - Jayakrishna Shenoy
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University; Providence, RI 02912; USA
| | - Helen L. Danielson
- Center for Biomedical Engineering, Brown University; Providence, RI 02912; USA
| | - Alf Honigmann
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden; Dresden, Saxony, 01307; Germany
| | - Yuna M. Ayala
- Edward Doisy Department of Biochemistry and Molecular Biology, Saint Louis University; St. Louis, MO 63104; USA
| | - Nicolas L. Fawzi
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University; Providence, RI 02912; USA
| | - Jeetain Mittal
- Artie McFerrin Department of Chemical Engineering, Texas A&M University; College Station, TX 77843; USA
- Department of Chemistry, Texas A&M University; College Station, TX 77843; USA
- Interdisciplinary Graduate Program in Genetics and Genomics, Texas A&M University; College Station, TX 77843; USA
| | - Simon Alberti
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden; Dresden, Saxony, 01307; Germany
| | - Anthony A. Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG); Dresden, Saxony, 01307; Germany
- Lead contact
| |
Collapse
|
5
|
Rajan S, Yoon HS. Covalent ligands of nuclear receptors. Eur J Med Chem 2023; 261:115869. [PMID: 37857142 DOI: 10.1016/j.ejmech.2023.115869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023]
Abstract
Nuclear receptors (NRs) are ligand-induced transcriptional factors implicated in several physiological pathways. Naïve ligands bind to their cognate receptors and modulate gene expression as agonists or antagonists. It has been observed that some ligands bind via covalent bonding with the NR Ligand Binding Domain (LBD) residues. While many such instances have been known since the 1980s, a consolidated account of these ligands and their interactions with NR-LBD is yet to be documented. To negate this, we have culled out the human NR-LBDs that form a covalent attachment with ligands. According to the study, 16 of the 48 human NRs have been targeted by covalent ligands. It was found that conserved cysteines prone to covalent attachment are predominantly located in NR-LBD helices 3 and 11. These conserved cysteines are also observed in many of the remaining NRs, which can be probed for their reactivity. Thus, the structural insights into NR-LBD interactions with covalent ligands presented here would aid drug discovery efforts targeting NRs.
Collapse
Affiliation(s)
- Sreekanth Rajan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Ho Sup Yoon
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore; College of Pharmacy, CHA University, 120 Haeryong-ro, Pocheon-si, Gyeonggi-do, 11160, Republic of Korea; CHA Advanced Research Institute, 335 Pangyo-ro, Bundang-gu, Seongnam-si, 13488, Republic of Korea.
| |
Collapse
|
6
|
Fujii J, Osaki T, Soma Y, Matsuda Y. Critical Roles of the Cysteine-Glutathione Axis in the Production of γ-Glutamyl Peptides in the Nervous System. Int J Mol Sci 2023; 24:ijms24098044. [PMID: 37175751 PMCID: PMC10179188 DOI: 10.3390/ijms24098044] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
γ-Glutamyl moiety that is attached to the cysteine (Cys) residue in glutathione (GSH) protects it from peptidase-mediated degradation. The sulfhydryl group of the Cys residue represents most of the functions of GSH, which include electron donation to peroxidases, protection of reactive sulfhydryl in proteins via glutaredoxin, and glutathione conjugation of xenobiotics, whereas Cys-derived sulfur is also a pivotal component of some redox-responsive molecules. The amount of Cys that is available tends to restrict the capacity of GSH synthesis. In in vitro systems, cystine is the major form in the extracellular milieu, and a specific cystine transporter, xCT, is essential for survival in most lines of cells and in many primary cultivated cells as well. A reduction in the supply of Cys causes GPX4 to be inhibited due to insufficient GSH synthesis, which leads to iron-dependent necrotic cell death, ferroptosis. Cells generally cannot take up GSH without the removal of γ-glutamyl moiety by γ-glutamyl transferase (GGT) on the cell surface. Meanwhile, the Cys-GSH axis is essentially common to certain types of cells; primarily, neuronal cells that contain a unique metabolic system for intercellular communication concerning γ-glutamyl peptides. After a general description of metabolic processes concerning the Cys-GSH axis, we provide an overview and discuss the significance of GSH-related compounds in the nervous system.
Collapse
Affiliation(s)
- Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan
| | - Tsukasa Osaki
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan
| | - Yuya Soma
- Graduate School of Nursing, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan
| | - Yumi Matsuda
- Graduate School of Nursing, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan
| |
Collapse
|
7
|
Trist BG, Genoud S, Roudeau S, Rookyard A, Abdeen A, Cottam V, Hare DJ, White M, Altvater J, Fifita JA, Hogan A, Grima N, Blair IP, Kysenius K, Crouch PJ, Carmona A, Rufin Y, Claverol S, Van Malderen S, Falkenberg G, Paterson DJ, Smith B, Troakes C, Vance C, Shaw CE, Al-Sarraj S, Cordwell S, Halliday G, Ortega R, Double KL. Altered SOD1 maturation and post-translational modification in amyotrophic lateral sclerosis spinal cord. Brain 2022; 145:3108-3130. [PMID: 35512359 PMCID: PMC9473357 DOI: 10.1093/brain/awac165] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/29/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Aberrant self-assembly and toxicity of wild-type and mutant superoxide dismutase 1 (SOD1) has been widely examined in silico, in vitro, and in transgenic animal models of amyotrophic lateral sclerosis (ALS). Detailed examination of the protein in disease-affected tissues from ALS patients, however, remains scarce. We employed histological, biochemical and analytical techniques to profile alterations to SOD1 protein deposition, subcellular localization, maturation and post-translational modification in post-mortem spinal cord tissues from ALS cases and controls. Tissues were dissected into ventral and dorsal spinal cord grey matter to assess the specificity of alterations within regions of motor neuron degeneration. We provide evidence of the mislocalization and accumulation of structurally-disordered, immature SOD1 protein conformers in spinal cord motor neurons of SOD1-linked and non-SOD1-linked familial ALS cases, and sporadic ALS cases, compared with control motor neurons. These changes were collectively associated with instability and mismetallation of enzymatically-active SOD1 dimers, as well as alterations to SOD1 post-translational modifications and molecular chaperones governing SOD1 maturation. Atypical changes to SOD1 protein were largely restricted to regions of neurodegeneration in ALS cases, and clearly differentiated all forms of ALS from controls. Substantial heterogeneity in the presence of these changes was also observed between ALS cases. Our data demonstrates that varying forms of SOD1 proteinopathy are a common feature of all forms of ALS, and support the presence of one or more convergent biochemical pathways leading to SOD1 proteinopathy in ALS. The majority of these alterations are specific to regions of neurodegeneration, and may therefore constitute valid targets for therapeutic development.
Collapse
Affiliation(s)
- Benjamin G Trist
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Sian Genoud
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Stéphane Roudeau
- Univ. Bordeaux, CNRS, CENBG, UMR 5797, F-33170 Gradignan, France
| | - Alexander Rookyard
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Amr Abdeen
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Veronica Cottam
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Dominic J Hare
- School of Biosciences, The University of Melbourne, Parkville, Victoria 3010, Australia.,Atomic Medicine Initiative, University of Technology Sydney, Broadway, New South Wales 2007, Australia
| | - Melanie White
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jens Altvater
- Sydney Mass Spectrometry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jennifer A Fifita
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Alison Hogan
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Natalie Grima
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Ian P Blair
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Kai Kysenius
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Peter J Crouch
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Asuncion Carmona
- Univ. Bordeaux, CNRS, CENBG, UMR 5797, F-33170 Gradignan, France
| | - Yann Rufin
- Plateforme Biochimie, University of Bordeaux, France
| | | | - Stijn Van Malderen
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Gerald Falkenberg
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - David J Paterson
- Australian Synchrotron, ANSTO, Clayton, Victoria 3168, Australia
| | - Bradley Smith
- Maurice Wohl Clinical Neuroscience Institute and the Institute of Psychiatry, Psychology and Neuroscience, King's College London, Camberwell, SE5 9RT, London, UK
| | - Claire Troakes
- UK Dementia Research Institute at King's College London, 5 Cutcombe Road, London, SE5 9RT, UK
| | - Caroline Vance
- Maurice Wohl Clinical Neuroscience Institute and the Institute of Psychiatry, Psychology and Neuroscience, King's College London, Camberwell, SE5 9RT, London, UK
| | - Christopher E Shaw
- UK Dementia Research Institute at King's College London, 5 Cutcombe Road, London, SE5 9RT, UK
| | - Safa Al-Sarraj
- London Neurodegenerative Diseases Brain Bank, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF, London, UK
| | - Stuart Cordwell
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Glenda Halliday
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Richard Ortega
- Univ. Bordeaux, CNRS, CENBG, UMR 5797, F-33170 Gradignan, France
| | - Kay L Double
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
8
|
Zhang JY, Yang BB, Yang YD, Wang R, Li L. Specific chiroptical sensing of cysteine via ultrasound-assisted formation of disulfide bonds in aqueous solution. ULTRASONICS SONOCHEMISTRY 2022; 86:106007. [PMID: 35436673 PMCID: PMC9036132 DOI: 10.1016/j.ultsonch.2022.106007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/04/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
Cysteine (Cys) can serve as a biomarker to indicate diseases or disorders, and its chiral sensing has attracted increasing attention. Herein, we established an ultrasound-facilitated chiral sensing method for Cys using 4-chloro-7-nitro-1,2,3-benzoxadiazole (NBD-Cl) and electronic circular dichroism (ECD) spectroscopy. The formation of chiral disulfide bonds induced degenerate exciton coupling between two NBD chromophores, resulting in intense Cotton effects (CEs) of the sensing product. The anisotropy factor (g) was linearly correlated with the enantiomeric excess of Cys across the visible region (400-500 nm), and other natural amino acids or biothiols did not interfere with the detection. This ultrasound-promoted efficient and specific chiral sensing method of Cys has potential for application in the diagnosis of related diseases.
Collapse
Affiliation(s)
- Jun-Yao Zhang
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Bei-Bei Yang
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ya-Dong Yang
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ru Wang
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Li Li
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
9
|
Cha SJ, Lee S, Choi HJ, Han YJ, Jeon YM, Jo M, Lee S, Nahm M, Lim SM, Kim SH, Kim HJ, Kim K. Therapeutic modulation of GSTO activity rescues FUS-associated neurotoxicity via deglutathionylation in ALS disease models. Dev Cell 2022; 57:783-798.e8. [PMID: 35320731 DOI: 10.1016/j.devcel.2022.02.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/25/2021] [Accepted: 02/23/2022] [Indexed: 11/28/2022]
Abstract
Fused in sarcoma (FUS) is a DNA/RNA-binding protein that is involved in DNA repair and RNA processing. FUS is associated with neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). However, the molecular mechanisms underlying FUS-mediated neurodegeneration are largely unknown. Here, using a Drosophila model, we showed that the overexpression of glutathione transferase omega 2 (GstO2) reduces cytoplasmic FUS aggregates and prevents neurodegenerative phenotypes, including neurotoxicity and mitochondrial dysfunction. We found a FUS glutathionylation site at the 447th cysteine residue in the RanBP2-type ZnF domain. The glutathionylation of FUS induces FUS aggregation by promoting phase separation. GstO2 reduced cytoplasmic FUS aggregation by deglutathionylation in Drosophila brains. Moreover, we demonstrated that the overexpression of human GSTO1, the homolog of Drosophila GstO2, attenuates FUS-induced neurotoxicity and cytoplasmic FUS accumulation in mouse neuronal cells. Thus, the modulation of FUS glutathionylation might be a promising therapeutic strategy for FUS-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Sun Joo Cha
- Department of Medical Science, Soonchunhyang University, Asan 31538, Korea
| | - Seongsoo Lee
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju 61186, Korea
| | - Hyun-Jun Choi
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan 31151, Korea
| | - Yeo Jeong Han
- Department of Medical Science, Soonchunhyang University, Asan 31538, Korea
| | - Yu-Mi Jeon
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu 41068, Korea
| | - Myungjin Jo
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu 41068, Korea
| | - Shinrye Lee
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu 41068, Korea
| | - Minyeop Nahm
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu 41068, Korea
| | - Su Min Lim
- Department of Neurology, College of Medicine, Hanyang University, Seoul 04763, Korea; Medical Research Institute, Hanyang University, Seoul 04763, Korea
| | - Seung Hyun Kim
- Department of Neurology, College of Medicine, Hanyang University, Seoul 04763, Korea; Medical Research Institute, Hanyang University, Seoul 04763, Korea
| | - Hyung-Jun Kim
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu 41068, Korea.
| | - Kiyoung Kim
- Department of Medical Science, Soonchunhyang University, Asan 31538, Korea.
| |
Collapse
|
10
|
Martinez-Banaclocha M. N-Acetyl-Cysteine: Modulating the Cysteine Redox Proteome in Neurodegenerative Diseases. Antioxidants (Basel) 2022; 11:antiox11020416. [PMID: 35204298 PMCID: PMC8869501 DOI: 10.3390/antiox11020416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 12/14/2022] Open
Abstract
In the last twenty years, significant progress in understanding the pathophysiology of age-associated neurodegenerative diseases has been made. However, the prevention and treatment of these diseases remain without clinically significant therapeutic advancement. While we still hope for some potential genetic therapeutic approaches, the current reality is far from substantial progress. With this state of the issue, emphasis should be placed on early diagnosis and prompt intervention in patients with increased risk of neurodegenerative diseases to slow down their progression, poor prognosis, and decreasing quality of life. Accordingly, it is urgent to implement interventions addressing the psychosocial and biochemical disturbances we know are central in managing the evolution of these disorders. Genomic and proteomic studies have shown the high molecular intricacy in neurodegenerative diseases, involving a broad spectrum of cellular pathways underlying disease progression. Recent investigations indicate that the dysregulation of the sensitive-cysteine proteome may be a concurrent pathogenic mechanism contributing to the pathophysiology of major neurodegenerative diseases, opening new therapeutic opportunities. Considering the incidence and prevalence of these disorders and their already significant burden in Western societies, they will become a real pandemic in the following decades. Therefore, we propose large-scale investigations, in selected groups of people over 40 years of age with decreased blood glutathione levels, comorbidities, and/or mild cognitive impairment, to evaluate supplementation of the diet with low doses of N-acetyl-cysteine, a promising and well-tolerated therapeutic agent suitable for long-term use.
Collapse
|
11
|
Jagaraj CJ, Parakh S, Atkin JD. Emerging Evidence Highlighting the Importance of Redox Dysregulation in the Pathogenesis of Amyotrophic Lateral Sclerosis (ALS). Front Cell Neurosci 2021; 14:581950. [PMID: 33679322 PMCID: PMC7929997 DOI: 10.3389/fncel.2020.581950] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/21/2020] [Indexed: 12/20/2022] Open
Abstract
The cellular redox state, or balance between cellular oxidation and reduction reactions, serves as a vital antioxidant defence system that is linked to all important cellular activities. Redox regulation is therefore a fundamental cellular process for aerobic organisms. Whilst oxidative stress is well described in neurodegenerative disorders including amyotrophic lateral sclerosis (ALS), other aspects of redox dysfunction and their contributions to pathophysiology are only just emerging. ALS is a fatal neurodegenerative disease affecting motor neurons, with few useful treatments. Hence there is an urgent need to develop more effective therapeutics in the future. Here, we discuss the increasing evidence for redox dysregulation as an important and primary contributor to ALS pathogenesis, which is associated with multiple disease mechanisms. Understanding the connection between redox homeostasis, proteins that mediate redox regulation, and disease pathophysiology in ALS, may facilitate a better understanding of disease mechanisms, and lead to the design of better therapeutic strategies.
Collapse
Affiliation(s)
- Cyril Jones Jagaraj
- Department of Biomedical Sciences, Macquarie University Centre for MND Research, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Sonam Parakh
- Department of Biomedical Sciences, Macquarie University Centre for MND Research, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Julie D Atkin
- Department of Biomedical Sciences, Macquarie University Centre for MND Research, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
12
|
Wang P, Zhang Q, Li S, Cheng B, Xue H, Wei Z, Shao T, Liu ZX, Cheng H, Wang Z. iCysMod: an integrative database for protein cysteine modifications in eukaryotes. Brief Bioinform 2021; 22:6066620. [PMID: 33406221 DOI: 10.1093/bib/bbaa400] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/23/2020] [Accepted: 12/07/2020] [Indexed: 01/06/2023] Open
Abstract
As important post-translational modifications, protein cysteine modifications (PCMs) occurring at cysteine thiol group play critical roles in the regulation of various biological processes in eukaryotes. Due to the rapid advancement of high-throughput proteomics technologies, a large number of PCM events have been identified but remain to be curated. Thus, an integrated resource of eukaryotic PCMs will be useful for the research community. In this work, we developed an integrative database for protein cysteine modifications in eukaryotes (iCysMod), which curated and hosted 108 030 PCM events for 85 747 experimentally identified sites on 31 483 proteins from 48 eukaryotes for 8 types of PCMs, including oxidation, S-nitrosylation (-SNO), S-glutathionylation (-SSG), disulfide formation (-SSR), S-sulfhydration (-SSH), S-sulfenylation (-SOH), S-sulfinylation (-SO2H) and S-palmitoylation (-S-palm). Then, browse and search options were provided for accessing the dataset, while various detailed information about the PCM events was well organized for visualization. With human dataset in iCysMod, the sequence features around the cysteine modification sites for each PCM type were analyzed, and the results indicated that various types of PCMs presented distinct sequence recognition preferences. Moreover, different PCMs can crosstalk with each other to synergistically orchestrate specific biological processes, and 37 841 PCM events involved in 119 types of PCM co-occurrences at the same cysteine residues were finally obtained. Taken together, we anticipate that the database of iCysMod would provide a useful resource for eukaryotic PCMs to facilitate related researches, while the online service is freely available at http://icysmod.omicsbio.info.
Collapse
Affiliation(s)
- Panqin Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Qingfeng Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shihua Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ben Cheng
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Han Xue
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhen Wei
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Tian Shao
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ze-Xian Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Han Cheng
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhenlong Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
13
|
Oxidative Stress in Amyotrophic Lateral Sclerosis: Pathophysiology and Opportunities for Pharmacological Intervention. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5021694. [PMID: 33274002 PMCID: PMC7683149 DOI: 10.1155/2020/5021694] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/25/2020] [Accepted: 10/24/2020] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease or Charcot disease, is a fatal neurodegenerative disease that affects motor neurons (MNs) and leads to death within 2–5 years of diagnosis, without any effective therapy available. Although the pathological mechanisms leading to ALS are still unknown, a wealth of evidence indicates that an excessive reactive oxygen species (ROS) production associated with an inefficient antioxidant defense represents an important pathological feature in ALS. Substantial evidence indicates that oxidative stress (OS) is implicated in the loss of MNs and in mitochondrial dysfunction, contributing decisively to neurodegeneration in ALS. Although the modulation of OS represents a promising approach to protect MNs from degeneration, the fact that several antioxidants with beneficial effects in animal models failed to show any therapeutic benefit in patients raises several questions that should be analyzed. Using specific queries for literature search on PubMed, we review here the role of OS-related mechanisms in ALS, including the involvement of altered mitochondrial function with repercussions in neurodegeneration. We also describe antioxidant compounds that have been mostly tested in preclinical and clinical trials of ALS, also describing their respective mechanisms of action. While the description of OS mechanism in the different mutations identified in ALS has as principal objective to clarify the contribution of OS in ALS, the description of positive and negative outcomes for each antioxidant is aimed at paving the way for novel opportunities for intervention. In conclusion, although antioxidant strategies represent a very promising approach to slow the progression of the disease, it is of utmost need to invest on the characterization of OS profiles representative of each subtype of patient, in order to develop personalized therapies, allowing to understand the characteristics of antioxidants that have beneficial effects on different subtypes of patients.
Collapse
|
14
|
Finelli MJ. Redox Post-translational Modifications of Protein Thiols in Brain Aging and Neurodegenerative Conditions-Focus on S-Nitrosation. Front Aging Neurosci 2020; 12:254. [PMID: 33088270 PMCID: PMC7497228 DOI: 10.3389/fnagi.2020.00254] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/24/2020] [Indexed: 12/14/2022] Open
Abstract
Reactive oxygen species and reactive nitrogen species (RONS) are by-products of aerobic metabolism. RONS trigger a signaling cascade that can be transduced through oxidation-reduction (redox)-based post-translational modifications (redox PTMs) of protein thiols. This redox signaling is essential for normal cellular physiology and coordinately regulates the function of redox-sensitive proteins. It plays a particularly important role in the brain, which is a major producer of RONS. Aberrant redox PTMs of protein thiols can impair protein function and are associated with several diseases. This mini review article aims to evaluate the role of redox PTMs of protein thiols, in particular S-nitrosation, in brain aging, and in neurodegenerative diseases. It also discusses the potential of using redox-based therapeutic approaches for neurodegenerative conditions.
Collapse
Affiliation(s)
- Mattéa J Finelli
- School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
15
|
Carrera-Juliá S, Moreno ML, Barrios C, de la Rubia Ortí JE, Drehmer E. Antioxidant Alternatives in the Treatment of Amyotrophic Lateral Sclerosis: A Comprehensive Review. Front Physiol 2020; 11:63. [PMID: 32116773 PMCID: PMC7016185 DOI: 10.3389/fphys.2020.00063] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/21/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that produces a selective loss of the motor neurons of the spinal cord, brain stem and motor cortex. Oxidative stress (OS) associated with mitochondrial dysfunction and the deterioration of the electron transport chain has been shown to be a factor that contributes to neurodegeneration and plays a potential role in the pathogenesis of ALS. The regions of the central nervous system affected have high levels of reactive oxygen species (ROS) and reduced antioxidant defenses. Scientific studies propose treatment with antioxidants to combat the characteristic OS and the regeneration of nicotinamide adenine dinucleotide (NAD+) levels by the use of precursors. This review examines the possible roles of nicotinamide riboside and pterostilbene as therapeutic strategies in ALS.
Collapse
Affiliation(s)
- Sandra Carrera-Juliá
- Doctoral Degree’s School, Catholic University of Valencia “San Vicente Mártir”, Valencia, Spain
- Department of Nutrition and Dietetics, Catholic University of Valencia “San Vicente Mártir”, Valencia, Spain
| | - Mari Luz Moreno
- Department of Basic Sciences, Catholic University of Valencia “San Vicente Mártir”, Valencia, Spain
| | - Carlos Barrios
- Institute for Research on Musculoskeletal Disorders, Catholic University of Valencia “San Vicente Mártir”, Valencia, Spain
| | | | - Eraci Drehmer
- Department of Basic Sciences, Catholic University of Valencia “San Vicente Mártir”, Valencia, Spain
| |
Collapse
|
16
|
François-Moutal L, Perez-Miller S, Scott DD, Miranda VG, Mollasalehi N, Khanna M. Structural Insights Into TDP-43 and Effects of Post-translational Modifications. Front Mol Neurosci 2019; 12:301. [PMID: 31920533 PMCID: PMC6934062 DOI: 10.3389/fnmol.2019.00301] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022] Open
Abstract
Transactive response DNA binding protein (TDP-43) is a key player in neurodegenerative diseases. In this review, we have gathered and presented structural information on the different regions of TDP-43 with high resolution structures available. A thorough understanding of TDP-43 structure, effect of modifications, aggregation and sites of localization is necessary as we develop therapeutic strategies targeting TDP-43 for neurodegenerative diseases. We discuss how different domains as well as post-translational modification may influence TDP-43 overall structure, aggregation and droplet formation. The primary aim of the review is to utilize structural insights as we develop an understanding of the deleterious behavior of TDP-43 and highlight locations of established and proposed post-translation modifications. TDP-43 structure and effect on localization is paralleled by many RNA-binding proteins and this review serves as an example of how structure may be modulated by numerous compounding elements.
Collapse
Affiliation(s)
- Liberty François-Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States.,Center for Innovation in Brain Science, Tucson, AZ, United States
| | - Samantha Perez-Miller
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States.,Center for Innovation in Brain Science, Tucson, AZ, United States
| | - David D Scott
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States.,Center for Innovation in Brain Science, Tucson, AZ, United States
| | - Victor G Miranda
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States.,Center for Innovation in Brain Science, Tucson, AZ, United States
| | - Niloufar Mollasalehi
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States.,Center for Innovation in Brain Science, Tucson, AZ, United States.,Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, United States
| | - May Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States.,Center for Innovation in Brain Science, Tucson, AZ, United States
| |
Collapse
|
17
|
Chen Y, Cohen TJ. Aggregation of the nucleic acid-binding protein TDP-43 occurs via distinct routes that are coordinated with stress granule formation. J Biol Chem 2019; 294:3696-3706. [PMID: 30630951 PMCID: PMC6416430 DOI: 10.1074/jbc.ra118.006351] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/08/2019] [Indexed: 12/13/2022] Open
Abstract
TAR DNA-binding protein 43 (TDP-43) is a nucleic acid-binding protein, and its aggregation represents the defining pathology in amyotrophic lateral sclerosis (ALS) and related proteinopathies. Recent studies implicate cytoplasmic stress granules (SGs) as hubs that may facilitate TDP-43 aggregation. Here, using cellular fractionation, biochemical analyses, and histological assays, we show that TDP-43 targeted to the cytoplasm has multiple fates. Whereas a TDP-43 subpopulation is indeed recruited to SGs, mature aggregated TDP-43, produced with aggregate-prone TDP-43 variants or exposure to oxidative stress, generates distinct TDP-43 inclusions that are surprisingly devoid of SGs. Consistent with this observation, we found that SG components are predominantly excluded from TDP-43 pathology in motor neurons from individuals with ALS. We generated de novo SGs by expressing the fragile X protein (FMRP) and found that rather than directly engaging TDP-43 aggregates, SGs can sequester the proteostasis factor histone deacetylase 6 (HDAC6) and thereby impede TDP-43 clearance from cells. These findings indicate that SGs form distinct cytoplasmic structures that can indirectly enhance TDP-43 aggregation. Therapeutic approaches that inhibit SG formation may therefore be effective at suppressing TDP-43-mediated toxicity in patients with ALS and related TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Youjun Chen
- From the Department of Neurology, University of North Carolina Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Todd J Cohen
- From the Department of Neurology, University of North Carolina Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|
18
|
Prasad A, Bharathi V, Sivalingam V, Girdhar A, Patel BK. Molecular Mechanisms of TDP-43 Misfolding and Pathology in Amyotrophic Lateral Sclerosis. Front Mol Neurosci 2019; 12:25. [PMID: 30837838 PMCID: PMC6382748 DOI: 10.3389/fnmol.2019.00025] [Citation(s) in RCA: 485] [Impact Index Per Article: 80.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/21/2019] [Indexed: 12/11/2022] Open
Abstract
TAR DNA binding protein 43 (TDP-43) is a versatile RNA/DNA binding protein involved in RNA-related metabolism. Hyper-phosphorylated and ubiquitinated TDP-43 deposits act as inclusion bodies in the brain and spinal cord of patients with the motor neuron diseases: amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). While the majority of ALS cases (90-95%) are sporadic (sALS), among familial ALS cases 5-10% involve the inheritance of mutations in the TARDBP gene and the remaining (90-95%) are due to mutations in other genes such as: C9ORF72, SOD1, FUS, and NEK1 etc. Strikingly however, the majority of sporadic ALS patients (up to 97%) also contain the TDP-43 protein deposited in the neuronal inclusions, which suggests of its pivotal role in the ALS pathology. Thus, unraveling the molecular mechanisms of the TDP-43 pathology seems central to the ALS therapeutics, hence, we comprehensively review the current understanding of the TDP-43's pathology in ALS. We discuss the roles of TDP-43's mutations, its cytoplasmic mis-localization and aberrant post-translational modifications in ALS. Also, we evaluate TDP-43's amyloid-like in vitro aggregation, its physiological vs. pathological oligomerization in vivo, liquid-liquid phase separation (LLPS), and potential prion-like propagation propensity of the TDP-43 inclusions. Finally, we describe the various evolving TDP-43-induced toxicity mechanisms, such as the impairment of endocytosis and mitotoxicity etc. and also discuss the emerging strategies toward TDP-43 disaggregation and ALS therapeutics.
Collapse
Affiliation(s)
| | | | | | | | - Basant K. Patel
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, India
| |
Collapse
|
19
|
Sharma S, Young RJ, Chen J, Chen X, Oh EC, Schiller MR. Minimotifs dysfunction is pervasive in neurodegenerative disorders. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2018; 4:414-432. [PMID: 30225339 PMCID: PMC6139474 DOI: 10.1016/j.trci.2018.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Minimotifs are modular contiguous peptide sequences in proteins that are important for posttranslational modifications, binding to other molecules, and trafficking to specific subcellular compartments. Some molecular functions of proteins in cellular pathways can be predicted from minimotif consensus sequences identified through experimentation. While a role for minimotifs in regulating signal transduction and gene regulation during disease pathogenesis (such as infectious diseases and cancer) is established, the therapeutic use of minimotif mimetic drugs is limited. In this review, we discuss a general theme identifying a pervasive role of minimotifs in the pathomechanism of neurodegenerative diseases. Beyond their longstanding history in the genetics of familial neurodegeneration, minimotifs are also major players in neurotoxic protein aggregation, aberrant protein trafficking, and epigenetic regulation. Generalizing the importance of minimotifs in neurodegenerative diseases offers a new perspective for the future study of neurodegenerative mechanisms and the investigation of new therapeutics.
Collapse
Affiliation(s)
- Surbhi Sharma
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- School of Life Sciences, Las Vegas, NV, USA
| | - Richard J. Young
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- School of Life Sciences, Las Vegas, NV, USA
| | - Jingchun Chen
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
| | - Xiangning Chen
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- Department of Psychology, Las Vegas, NV, USA
| | - Edwin C. Oh
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- School of Medicine, Las Vegas, NV, USA
| | - Martin R. Schiller
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- School of Life Sciences, Las Vegas, NV, USA
- School of Medicine, Las Vegas, NV, USA
| |
Collapse
|
20
|
Abstract
INTRODUCTION Nuclear factor TDP-43 is a ubiquitously expressed RNA binding protein that plays a key causative role in several neurodegenerative diseases, especially in the ALS/FTD spectrum. In addition, its aberrant aggregation and expression has been recently observed in other type of diseases, such as myopathies and Niemann-Pick C, a lysosomal storage disease. Areas covered: This review aims to specifically cover the post-translational modifications (PTMs) that can affect TDP-43 function and cellular status both in health and disease. To this date, these include phosphorylation, formation of C-terminal fragments, disulfide bridge formation, ubiquitination, acetylation, and sumoylation. Recently published articles on these subjects have been reviewed in this manuscript. Expert opinion: Targeting aberrant TDP-43 expression in neurodegenerative diseases is a very challenging task due to the fact that both its overexpression and downregulation are considerably toxic to cells. This characteristic makes it difficult to therapeutically target this protein in a generalized manner. An alternative approach could be the identification of specific aberrant PTMs that promote its aggregation or toxicity, and developing novel therapeutic approaches toward their selective modification.
Collapse
Affiliation(s)
- Emanuele Buratti
- a Department of Molecular Pathology , International Centre for Genetic Engineering and Biotechnology (ICGEB) , Trieste , Italy
| |
Collapse
|
21
|
Oberstadt M, Stieler J, Simpong DL, Römuß U, Urban N, Schaefer M, Arendt T, Holzer M. TDP-43 self-interaction is modulated by redox-active compounds Auranofin, Chelerythrine and Riluzole. Sci Rep 2018; 8:2248. [PMID: 29396541 PMCID: PMC5797228 DOI: 10.1038/s41598-018-20565-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 01/19/2018] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) represents a fatal neurodegenerative disease, which is characterized by a rapid loss of lower and upper motor neurons. As a major neuropathological hallmark, protein aggregates containing the Transactivating Response Region (TAR) DNA Binding Protein (TDP-43) are detectable in about 95% of sporadic ALS patients. TDP-43 interacts with itself physiologically to form liquid droplets, which may progress to pathological aggregates. In this study, we established the NanoBit luciferase complementation assay to measure TDP-43 self-interaction and found the fusion of the split luciferase subunits to the N-terminus of the protein as the strongest interacting partners. A screen of pharmacologically active compounds from the LOPAC®1280 library identified auranofin, chelerythrine and riluzole as dose-dependent inhibitors of TDP-43 self-interaction. Further analysis of drug action of the gold-containing thioredoxin reductase inhibitor auranofin revealed a redistribution from insoluble TDP-43 protein pool to PBS-soluble protein pool in N2a cells. In addition, auranofin treatment diminished reduced glutathione as a sign for oxidative modulation.
Collapse
Affiliation(s)
- Moritz Oberstadt
- Department of Neurology, University of Leipzig, Liebigstraße 20, 04103, Leipzig, Germany.
| | - Jens Stieler
- Department for Molecular and Cellular Mechanisms of Neurodegeneration, Paul Flechsig Institute for Brain Research, University of Leipzig, Liebigstraße 19, 04103, Leipzig, Germany
| | - David Larbi Simpong
- Department for Molecular and Cellular Mechanisms of Neurodegeneration, Paul Flechsig Institute for Brain Research, University of Leipzig, Liebigstraße 19, 04103, Leipzig, Germany
| | - Ute Römuß
- Department of Neurology, University of Leipzig, Liebigstraße 20, 04103, Leipzig, Germany
| | - Nicole Urban
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Härtelstraße 16-18, 04107, Leipzig, Germany
| | - Michael Schaefer
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Härtelstraße 16-18, 04107, Leipzig, Germany
| | - Thomas Arendt
- Department for Molecular and Cellular Mechanisms of Neurodegeneration, Paul Flechsig Institute for Brain Research, University of Leipzig, Liebigstraße 19, 04103, Leipzig, Germany
| | - Max Holzer
- Department for Molecular and Cellular Mechanisms of Neurodegeneration, Paul Flechsig Institute for Brain Research, University of Leipzig, Liebigstraße 19, 04103, Leipzig, Germany
| |
Collapse
|
22
|
Xu WC, Liang JZ, Li C, He ZX, Yuan HY, Huang BY, Liu XL, Tang B, Pang DW, Du HN, Yang Y, Chen J, Wang L, Zhang M, Liang Y. Pathological hydrogen peroxide triggers the fibrillization of wild-type SOD1 via sulfenic acid modification of Cys-111. Cell Death Dis 2018; 9:67. [PMID: 29358575 PMCID: PMC5833406 DOI: 10.1038/s41419-017-0106-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) involves the abnormal posttranslational modifications and fibrillization of copper, zinc superoxide dismutase (SOD1) and TDP-43. However, how SOD1-catalyzed reaction product hydrogen peroxide affects amyloid formation of SOD1 and TDP-43 remains elusory. 90% of ALS cases are sporadic and the remaining cases are familial ALS. In this paper, we demonstrate that H2O2 at pathological concentrations triggers the fibrillization of wild-type SOD1 both in vitro and in SH-SY5Y cells. Using an anti-dimedone antibody that detects sulfenic acid modification of proteins, we found that Cys-111 in wild-type SOD1 is oxidized to C-SOH by pathological concentration of H2O2, followed by the formation of sulfenic acid modified SOD1 oligomers. Furthermore, we show that such SOD1 oligomers propagate in a prion-like manner, and not only drive wild-type SOD1 to form fibrils in the cytoplasm but also induce cytoplasm mislocalization and the subsequent fibrillization of wild-type TDP-43, thereby inducing apoptosis of living cells. Thus, we propose that H2O2 at pathological concentrations triggers the fibrillization of wild-type SOD1 and subsequently induces SOD1 toxicity and TDP-43 toxicity in neuronal cells via sulfenic acid modification of Cys-111 in SOD1. Our Western blot and ELISA data demonstrate that sulfenic acid modified wild-type SOD1 level in cerebrospinal fluid of 15 sporadic ALS patients is significantly increased compared with 6 age-matched control patients. These findings can explain how H2O2 at pathologic concentrations regulates the misfolding and toxicity of SOD1 and TDP-43 associated with ALS, and suggest that sulfenic acid modification of wild-type SOD1 should play pivotal roles in the pathogenesis of sporadic ALS.
Collapse
Affiliation(s)
- Wen-Chang Xu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jin-Zhao Liang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhi-Xin He
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Han-Ye Yuan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ben-Yan Huang
- Department of Neurology Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao-Ling Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Bo Tang
- College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, Wuhan University, Wuhan, 430072, China
| | - Dai-Wen Pang
- College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, Wuhan University, Wuhan, 430072, China
| | - Hai-Ning Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yi Yang
- State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Jie Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Lei Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Zhang
- Department of Neurology Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yi Liang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
23
|
Abstract
Thiol groups can undergo numerous modifications, making cysteine a unique molecular switch. Cysteine plays structural and regulatory roles as part of proteins or glutathione, contributing to maintain redox homeostasis and regulate signaling within and amongst cells. Not surprisingly therefore, cysteines are associated with many hereditary and acquired diseases. Mutations in the primary protein sequence (gain or loss of a cysteine) are most frequent in membrane and secretory proteins, correlating with the key roles of disulfide bonds. On the contrary, in the cytosol and nucleus, aberrant post-translational oxidative modifications of thiol groups, reflecting redox changes in the surrounding environment, are a more frequent cause of dysregulation of protein function. This essay highlights the regulatory functions performed by protein cysteine residues and provides a framework for understanding how mutation and/or (in)activation of this key amino acid can cause disease.
Collapse
Affiliation(s)
- Annamaria Fra
- Department of Molecular and Translational Medicine, University of BresciaBrescia, Italy
| | - Edgar D Yoboue
- Division of Genetics and Cell Biology, Vita-Salute San Raffaele UniversityMilan, Italy.,Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific InstituteMilan, Italy
| | - Roberto Sitia
- Division of Genetics and Cell Biology, Vita-Salute San Raffaele UniversityMilan, Italy.,Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific InstituteMilan, Italy
| |
Collapse
|