1
|
Peterson SK, Ahmad ST. A Brief Overview of Ethanol Tolerance and Its Potential Association with Circadian Rhythm in Drosophila. Int J Mol Sci 2024; 25:12605. [PMID: 39684317 PMCID: PMC11641815 DOI: 10.3390/ijms252312605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Alcohol consumption and addiction remain global health concerns, with significant loss of productivity, morbidity, and mortality. Drosophila melanogaster, a widely used model organism, offers valuable insights into the genetic and neuronal mechanisms underlying ethanol-induced behaviors (EIBs) such as sedation, recovery, and tolerance. This narrative review focuses on studies in the Drosophila model system suggesting an association between circadian rhythm genes as modulators of ethanol tolerance. Mutations in these genes disrupt both the circadian cycle and tolerance, underscoring the interplay between circadian rhythm and ethanol processing although the exact mechanisms remain largely unknown. Additionally, genes involved in stress response, gene expression regulation, neurotransmission, and synaptic activity were implicated in ethanol tolerance modulation. At the neuronal level, recent studies have highlighted the involvement of corazonin (CRZ) and neuropeptide F (NPF) neurons in modulating EIBs. Understanding the temporal dynamics of tolerance development is crucial for describing the molecular basis of ethanol tolerance. Ultimately, insights gained from Drosophila studies hold promise for elucidating the neurobiological underpinnings of alcohol use disorders and addiction, contributing to more effective interventions and treatments.
Collapse
Affiliation(s)
| | - S. Tariq Ahmad
- Department of Biology, Colby College, Waterville, ME 04901, USA;
| |
Collapse
|
2
|
Lipinski M, Niñerola S, Fuentes-Ramos M, Valor LM, Del Blanco B, López-Atalaya JP, Barco A. CBP Is Required for Establishing Adaptive Gene Programs in the Adult Mouse Brain. J Neurosci 2022; 42:7984-8001. [PMID: 36109165 PMCID: PMC9617619 DOI: 10.1523/jneurosci.0970-22.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/03/2022] [Accepted: 08/26/2022] [Indexed: 11/21/2022] Open
Abstract
Environmental factors and life experiences impinge on brain circuits triggering adaptive changes. Epigenetic regulators contribute to this neuroadaptation by enhancing or suppressing specific gene programs. The paralogous transcriptional coactivators and lysine acetyltransferases CREB binding protein (CBP) and p300 are involved in brain plasticity and stimulus-dependent transcription, but their specific roles in neuroadaptation are not fully understood. Here we investigated the impact of eliminating either CBP or p300 in excitatory neurons of the adult forebrain of mice from both sexes using inducible and cell type-restricted knock-out strains. The elimination of CBP, but not p300, reduced the expression and chromatin acetylation of plasticity genes, dampened activity-driven transcription, and caused memory deficits. The defects became more prominent in elderly mice and in paradigms that involved enduring changes in transcription, such as kindling and environmental enrichment, in which CBP loss interfered with the establishment of activity-induced transcriptional and epigenetic changes in response to stimulus or experience. These findings further strengthen the link between CBP deficiency in excitatory neurons and etiopathology in the nervous system.SIGNIFICANCE STATEMENT How environmental conditions and life experiences impinge on mature brain circuits to elicit adaptive responses that favor the survival of the organism remains an outstanding question in neurosciences. Epigenetic regulators are thought to contribute to neuroadaptation by initiating or enhancing adaptive gene programs. In this article, we examined the role of CREB binding protein (CBP) and p300, two paralogous transcriptional coactivators and histone acetyltransferases involved in cognitive processes and intellectual disability, in neuroadaptation in adult hippocampal circuits. Our experiments demonstrate that CBP, but not its paralog p300, plays a highly specific role in the epigenetic regulation of neuronal plasticity gene programs in response to stimulus and provide unprecedented insight into the molecular mechanisms underlying neuroadaptation.
Collapse
Affiliation(s)
- Michal Lipinski
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, Campus de Sant Joan, 03550 Alicante, Spain
| | - Sergio Niñerola
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, Campus de Sant Joan, 03550 Alicante, Spain
| | - Miguel Fuentes-Ramos
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, Campus de Sant Joan, 03550 Alicante, Spain
| | - Luis M Valor
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, Campus de Sant Joan, 03550 Alicante, Spain
| | - Beatriz Del Blanco
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, Campus de Sant Joan, 03550 Alicante, Spain
| | - Jose P López-Atalaya
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, Campus de Sant Joan, 03550 Alicante, Spain
| | - Angel Barco
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, Campus de Sant Joan, 03550 Alicante, Spain
| |
Collapse
|
3
|
Sleep Modulates Alcohol Toxicity in Drosophila. Int J Mol Sci 2022; 23:ijms232012091. [PMID: 36292943 PMCID: PMC9603330 DOI: 10.3390/ijms232012091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/19/2022] Open
Abstract
Alcohol abuse is a significant public health problem. While considerable research has shown that alcohol use affects sleep, little is known about the role of sleep deprivation in alcohol toxicity. We investigated sleep as a factor modulating alcohol toxicity using Drosophila melanogaster, a model for studies of sleep, alcohol, and aging. Following 24 h of sleep deprivation using a paradigm that similarly affects males and females and induces rebound sleep, flies were given binge-like alcohol exposures. Sleep deprivation increased mortality, with no sex-dependent differences. Sleep deprivation also abolished functional tolerance measured at 24 h after the initial alcohol exposure, although there was no effect on alcohol absorbance or clearance. We investigated the effect of chronic sleep deprivation using mutants with decreased sleep, insomniac and insulin-like peptide 2, finding increased alcohol mortality. Furthermore, we investigated whether pharmacologically inducing sleep prior to alcohol exposure using the GABAA-receptor agonist 4,5,6,7-tetrahydroisoxazolo(5,4-c)pyridin-3-ol (THIP) mitigated the effects of alcohol toxicity on middle-aged flies, flies with environmentally disrupted circadian clocks, and flies with short sleep. Pharmacologically increasing sleep prior to alcohol exposure decreased alcohol-induced mortality. Thus, sleep prior to binge-like alcohol exposure affects alcohol-induced mortality, even in vulnerable groups such as aging flies and those with circadian dysfunction.
Collapse
|
4
|
Sharma R, Parikh M, Mishra V, Soni A, Rubi S, Sahota P, Thakkar M. Antisense-induced downregulation of major circadian genes modulates the expression of histone deacetylase-2 (HDAC-2) and CREB-binding protein (CBP) in the medial shell region of nucleus accumbens of mice exposed to chronic excessive alcohol consumption. J Neurochem 2022; 161:8-19. [PMID: 34837399 DOI: 10.1111/jnc.15547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022]
Abstract
Circadian genes in the medial accumbal shell (mNAcSh) region regulate binge alcohol consumption. Here, we investigated if antisense-induced knockdown of major circadian genes (Per1, Per2, and NPAS2) in the mNAcSh of mice exposed to intermittent access two-bottle choice (IA2BC) paradigm modulates the expression of histone deacetylase-2 (HDAC-2) and CREB-binding protein (CBP), key epigenetic modifiers associated with withdrawal-associated behaviors such as anxiety. Adult male C57BL/6J mice (N = 28), surgically implanted with bilateral guide cannulas above the mNAcSh, were chronically (4 weeks) exposed to alcohol (20% v/v) or saccharin (0.03%) via IA2BC paradigm. In the fourth week, a mixture of antisense (AS-ODNs; N = 14/group) or nonsense (NS-ODNs; N = 14/group) oligodeoxynucleotides against circadian genes were bilaterally infused into the mNAcSh. Subsequently, alcohol/saccharin consumption and preference were measured followed by euthanization of animals and verification of microinjection sites by visual inspection and the expression of HDAC-2 and CBP by using RT-PCR along with the verification of antisense-induced downregulation of circadian genes in the mNAcSh. As compared with NS-ODNs, AS-ODNs infusion significantly attenuated the alcohol-induced increase in HDAC-2 and reduction in CBP expression in the mNAcSh along with a significant reduction in alcohol consumption and preference. No significant effect was observed on either saccharin consumption or preference. Our results suggest that circadian genes in the mNAcSh may have a causal to play in mediating epigenetic changes observed after chronic alcohol consumption.
Collapse
Affiliation(s)
- Rishi Sharma
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri-School of Medicine, Columbia, Missouri, USA
| | - Meet Parikh
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri-School of Medicine, Columbia, Missouri, USA
| | - Vaibhav Mishra
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri-School of Medicine, Columbia, Missouri, USA
| | - Anshul Soni
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri-School of Medicine, Columbia, Missouri, USA
| | - Sofia Rubi
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri-School of Medicine, Columbia, Missouri, USA
| | - Pradeep Sahota
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri-School of Medicine, Columbia, Missouri, USA
| | - Mahesh Thakkar
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri-School of Medicine, Columbia, Missouri, USA
| |
Collapse
|
5
|
Anqueira-González A, Acevedo-Gonzalez JP, Montes-Mercado A, Irizarry-Hernández C, Fuenzalida-Uribe NL, Ghezzi A. Transcriptional Correlates of Chronic Alcohol Neuroadaptation in Drosophila Larvae. Front Behav Neurosci 2021; 15:768694. [PMID: 34803626 PMCID: PMC8599819 DOI: 10.3389/fnbeh.2021.768694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/15/2021] [Indexed: 11/24/2022] Open
Abstract
When presented with the choice, Drosophila melanogaster females will often prefer to lay eggs on food containing a significant amount of alcohol. While, in some cases, this behavioral decision can provide a survival advantage to the developing larvae, it can also lead to developmental and cognitive problems. Alcohol consumption can affect executive functions, episodic memory, and other brain function capacities. However, in the fruit fly, the initial cognitive effects of alcohol consumption have been shown to reverse upon persistent exposure to alcohol. Using an olfactory conditioning assay where an odorant is implemented as a conditioned stimulus and paired with a heat shock as an unconditioned stimulus, a previous study has shown that when exposed to a short acute dose of alcohol, Drosophila larvae can no longer learn this association. Interestingly, upon prolonged chronic alcohol exposure, larvae seem to successfully avoid the conditioned stimulus just as well as control alcohol-naive larvae, suggestive of alcohol-induced neuroadaptations. However, the mechanisms by which Drosophila adapt to the presence of alcohol remains unknown. In this study, we explore the transcriptional correlates of neuroadaptation in Drosophila larvae exposed to chronic alcohol to understand the genetic and cellular components responsible for this adaptation. For this, we employed RNA sequencing technology to evaluate differences in gene expression in the brain of larvae chronically exposed to alcohol. Our results suggest that alcohol-induced neuroadaptations are modulated by a diverse array of synaptic genes within the larval brain through a series of epigenetic modulators.
Collapse
Affiliation(s)
- Amanda Anqueira-González
- Department of Biology, University of Puerto Rico-Río Piedras Campus, San Juan, PR, United States
| | - Jenny P Acevedo-Gonzalez
- Department of Biology, University of Puerto Rico-Río Piedras Campus, San Juan, PR, United States
| | - Airined Montes-Mercado
- Department of Biology, University of Puerto Rico-Río Piedras Campus, San Juan, PR, United States
| | | | | | - Alfredo Ghezzi
- Department of Biology, University of Puerto Rico-Río Piedras Campus, San Juan, PR, United States
| |
Collapse
|
6
|
Sharma R, Mishra V, Parikh M, Soni A, Sahota P, Thakkar M. Antisense-induced knockdown of cAMP response element-binding protein downregulates Per1 gene expression in the shell region of nucleus accumbens resulting in reduced alcohol consumption in mice. Alcohol Clin Exp Res 2021; 45:1940-1949. [PMID: 34424532 PMCID: PMC8602740 DOI: 10.1111/acer.14687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 11/30/2022]
Abstract
INTRODUCTION We recently showed that circadian genes expressed in the shell region of nucleus accumbens (NAcSh) play a key role in alcohol consumption, though, the molecular mechanism of those effects is unclear. Because CREB-binding protein (CBP) promotes Per1 gene expression, we hypothesized that alcohol consumption would increase CBP expression in the NAcSh and antisense-induced knockdown of CBP would reduce Per1 expression and result in a reduction in alcohol consumption. METHODS To test our hypothesis, we performed two experiments. The Drinking-in-the-dark (DID) paradigm was used to evaluate alcohol consumption in male C57BL/6J mice. In Experiment 1 we examined the effects of alcohol consumption on CBP gene expression in the NAcSh. Control animals were exposed to, sucrose [10% (w/v) taste and calorie] and water (consummatory behavior). In Experiment 2 examined the effects of CBP gene silencing on the expression of the Per1 gene in the NAcSh and alcohol consumption in mice exposed to alcohol using the DID paradigm. CBP gene silencing was achieved by local infusion of two doses of either CBP antisense oligodeoxynucleotides (AS-ODNs; Antisense group) or nonsense ODNs (NS-ODNs; Nonsense group) bilaterally microinjected into the NAcSh within 24 h before alcohol consumption on Day 4 of the DID paradigm. The microinfusion sites were verified by cresyl violet staining. RESULTS Compared to sucrose, alcohol consumption, under the DID paradigm, significantly increased the expression of CBP in the NAcSh. Compared to Controls, bilateral infusion of CBP AS-ODNs significantly reduced the expression of Per1 in the NAcSh and alcohol consumption without affecting the amount of sucrose consumed. CONCLUSIONS Our results suggest that CBP is an upstream regulator of Per1 expression in the NAcSh and may act via Per1 to modulate alcohol consumption.
Collapse
Affiliation(s)
- Rishi Sharma
- Department of Neurology, Harry S. Truman Memorial Veterans Hospital, University of Missouri, Columbia, Missouri, USA
| | - Vaibhav Mishra
- Department of Neurology, Harry S. Truman Memorial Veterans Hospital, University of Missouri, Columbia, Missouri, USA
| | - Meet Parikh
- Department of Neurology, Harry S. Truman Memorial Veterans Hospital, University of Missouri, Columbia, Missouri, USA
| | - Anshul Soni
- Department of Neurology, Harry S. Truman Memorial Veterans Hospital, University of Missouri, Columbia, Missouri, USA
| | - Pradeep Sahota
- Department of Neurology, Harry S. Truman Memorial Veterans Hospital, University of Missouri, Columbia, Missouri, USA
| | - Mahesh Thakkar
- Department of Neurology, Harry S. Truman Memorial Veterans Hospital, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
7
|
Bohnsack JP, Pandey SC. Histone modifications, DNA methylation, and the epigenetic code of alcohol use disorder. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 156:1-62. [PMID: 33461661 DOI: 10.1016/bs.irn.2020.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Alcohol use disorder (AUD) is a leading cause of morbidity and mortality. Despite AUD's substantial contributions to lost economic productivity and quality of life, there are only a limited number of approved drugs for treatment of AUD in the United States. This chapter will update progress made on the epigenetic basis of AUD, with particular focus on histone post-translational modifications and DNA methylation and how these two epigenetic mechanisms interact to contribute to neuroadaptive processes leading to initiation, maintenance and progression of AUD pathophysiology. We will also evaluate epigenetic therapeutic strategies that have arisen from preclinical models of AUD and epigenetic biomarkers that have been discovered in human populations with AUD.
Collapse
Affiliation(s)
- John Peyton Bohnsack
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States; Jesse Brown VA Medical Center, Chicago, IL, United States; Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
8
|
Mathies LD, Lindsay JH, Handal AP, Blackwell GG, Davies AG, Bettinger JC. SWI/SNF complexes act through CBP-1 histone acetyltransferase to regulate acute functional tolerance to alcohol. BMC Genomics 2020; 21:646. [PMID: 32957927 PMCID: PMC7507291 DOI: 10.1186/s12864-020-07059-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 09/10/2020] [Indexed: 01/19/2023] Open
Abstract
Background SWI/SNF chromatin remodeling genes are required for normal acute responses to alcohol in C. elegans and are associated with alcohol use disorder in two human populations. In an effort to discover the downstream genes that are mediating this effect, we identified SWI/SNF-regulated genes in C. elegans. Results To identify SWI/SNF-regulated genes in adults, we compared mRNA expression in wild type and swsn-1(os22ts) worms under conditions that produce inactive swsn-1 in mature cells. To identify SWI/SNF-regulated genes in neurons, we compared gene expression in swsn-9(ok1354) null mutant worms that harbor a neuronal rescue or a control construct. RNA sequencing was performed to an average depth of 25 million reads per sample using 50-base, paired-end reads. We found that 6813 transcripts were significantly differentially expressed between swsn-1(os22ts) mutants and wild-type worms and 2412 transcripts were significantly differentially expressed between swsn-9(ok1354) mutants and swsn-9(ok1354) mutants with neuronal rescue. We examined the intersection between these two datasets and identified 603 genes that were differentially expressed in the same direction in both comparisons; we defined these as SWI/SNF-regulated genes in neurons and in adults. Among the differentially expressed genes was cbp-1, a C. elegans homolog of the mammalian CBP/p300 family of histone acetyltransferases. CBP has been implicated in the epigenetic regulation in response to alcohol in animal models and a polymorphism in the human CBP gene, CREBBP, has been associated with alcohol-related phenotypes. We found that cbp-1 is required for the development of acute functional tolerance to alcohol in C. elegans. Conclusions We identified 603 transcripts that were regulated by two different SWI/SNF complex subunits in adults and in neurons. The SWI/SNF-regulated genes were highly enriched for genes involved in membrane rafts, suggesting an important role for this membrane microdomain in the acute alcohol response. Among the differentially expressed genes was cbp-1; CBP-1 homologs have been implicated in alcohol responses across phyla and we found that C. elegans cbp-1 was required for the acute alcohol response in worms.
Collapse
Affiliation(s)
- Laura D Mathies
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, PO Box 980613, Richmond, VA, 23298, USA.
| | - Jonathan H Lindsay
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, PO Box 980613, Richmond, VA, 23298, USA
| | - Amal P Handal
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, PO Box 980613, Richmond, VA, 23298, USA
| | - GinaMari G Blackwell
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, PO Box 980613, Richmond, VA, 23298, USA
| | - Andrew G Davies
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, PO Box 980613, Richmond, VA, 23298, USA
| | - Jill C Bettinger
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, PO Box 980613, Richmond, VA, 23298, USA
| |
Collapse
|
9
|
Lathen DR, Merrill CB, Rothenfluh A. Flying Together: Drosophila as a Tool to Understand the Genetics of Human Alcoholism. Int J Mol Sci 2020; 21:E6649. [PMID: 32932795 PMCID: PMC7555299 DOI: 10.3390/ijms21186649] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022] Open
Abstract
Alcohol use disorder (AUD) exacts an immense toll on individuals, families, and society. Genetic factors determine up to 60% of an individual's risk of developing problematic alcohol habits. Effective AUD prevention and treatment requires knowledge of the genes that predispose people to alcoholism, play a role in alcohol responses, and/or contribute to the development of addiction. As a highly tractable and translatable genetic and behavioral model organism, Drosophila melanogaster has proven valuable to uncover important genes and mechanistic pathways that have obvious orthologs in humans and that help explain the complexities of addiction. Vinegar flies exhibit remarkably strong face and mechanistic validity as a model for AUDs, permitting many advancements in the quest to understand human genetic involvement in this disease. These advancements occur via approaches that essentially fall into one of two categories: (1) discovering candidate genes via human genome-wide association studies (GWAS), transcriptomics on post-mortem tissue from AUD patients, or relevant physiological connections, then using reverse genetics in flies to validate candidate genes' roles and investigate their molecular function in the context of alcohol. (2) Utilizing flies to discover candidate genes through unbiased screens, GWAS, quantitative trait locus analyses, transcriptomics, or single-gene studies, then validating their translational role in human genetic surveys. In this review, we highlight the utility of Drosophila as a model for alcoholism by surveying recent advances in our understanding of human AUDs that resulted from these various approaches. We summarize the genes that are conserved in alcohol-related function between humans and flies. We also provide insight into some advantages and limitations of these approaches. Overall, this review demonstrates how Drosophila have and can be used to answer important genetic questions about alcohol addiction.
Collapse
Affiliation(s)
- Daniel R. Lathen
- Department of Psychiatry and Neuroscience Ph.D. Program, University of Utah, Salt Lake City, UT 84108, USA;
| | - Collin B. Merrill
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA;
| | - Adrian Rothenfluh
- Department of Psychiatry and Neuroscience Ph.D. Program, University of Utah, Salt Lake City, UT 84108, USA;
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA;
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132, USA
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
10
|
Anderson EM, Penrod RD, Barry SM, Hughes BW, Taniguchi M, Cowan CW. It is a complex issue: emerging connections between epigenetic regulators in drug addiction. Eur J Neurosci 2019; 50:2477-2491. [PMID: 30251397 DOI: 10.1111/ejn.14170] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 09/04/2018] [Accepted: 09/11/2018] [Indexed: 02/06/2023]
Abstract
Drug use leads to addiction in some individuals, but the underlying brain mechanisms that control the transition from casual drug use to an intractable substance use disorder (SUD) are not well understood. Gene x environment interactions such as the frequency of drug use and the type of substance used likely to promote maladaptive plastic changes in brain regions that are critical for controlling addiction-related behavior. Epigenetics encompasses a broad spectrum of mechanisms important for regulating gene transcription that are not dependent on changes in DNA base pair sequences. This review focuses on the proteins and complexes contributing to epigenetic modifications in the nucleus accumbens (NAc) following drug experience. We discuss in detail the three major mechanisms: histone acetylation and deacetylation, histone methylation, and DNA methylation. We discuss how drug use alters the regulation of the associated proteins regulating these processes and highlight how experimental manipulations of these proteins in the NAc can alter drug-related behaviors. Finally, we discuss the ways that histone modifications and DNA methylation coordinate actions by recruiting large epigenetic enzyme complexes to aid in transcriptional repression. Targeting these multiprotein epigenetic enzyme complexes - and the individual proteins that comprise them - might lead to effective therapeutics to reverse or treat SUDs in patients.
Collapse
Affiliation(s)
- Ethan M Anderson
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Medical University of South Carolina, 173 Ashley Ave, MSC 510, Charleston, SC, 29425-2030, USA
| | - Rachel D Penrod
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Medical University of South Carolina, 173 Ashley Ave, MSC 510, Charleston, SC, 29425-2030, USA
| | - Sarah M Barry
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Medical University of South Carolina, 173 Ashley Ave, MSC 510, Charleston, SC, 29425-2030, USA
| | - Brandon W Hughes
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Medical University of South Carolina, 173 Ashley Ave, MSC 510, Charleston, SC, 29425-2030, USA
| | - Makoto Taniguchi
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Medical University of South Carolina, 173 Ashley Ave, MSC 510, Charleston, SC, 29425-2030, USA
| | - Christopher W Cowan
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Medical University of South Carolina, 173 Ashley Ave, MSC 510, Charleston, SC, 29425-2030, USA
| |
Collapse
|
11
|
Petruccelli E, Kaun KR. Insights from intoxicated Drosophila. Alcohol 2019; 74:21-27. [PMID: 29980341 DOI: 10.1016/j.alcohol.2018.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/14/2018] [Accepted: 03/14/2018] [Indexed: 01/31/2023]
Abstract
Our understanding of alcohol use disorder (AUD), particularly alcohol's effects on the nervous system, has unquestionably benefited from the use of model systems such as Drosophila melanogaster. Here, we briefly introduce the use of flies in alcohol research, and highlight the genetic accessibility and neurobiological contribution that flies have made to our understanding of AUD. Future fly research offers unique opportunities for addressing unresolved questions in the alcohol field, such as the neuromolecular and circuit basis for cravings and alcohol-induced neuroimmune dysfunction. This review strongly advocates for interdisciplinary approaches and translational collaborations with the united goal of confronting the major health problems associated with alcohol abuse and addiction.
Collapse
|
12
|
Ramirez-Roman ME, Billini CE, Ghezzi A. Epigenetic Mechanisms of Alcohol Neuroadaptation: Insights from Drosophila. J Exp Neurosci 2018; 12:1179069518779809. [PMID: 29899666 PMCID: PMC5990879 DOI: 10.1177/1179069518779809] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 05/09/2018] [Indexed: 12/28/2022] Open
Abstract
Alcohol addiction is a serious condition perpetuated by enduring physiological and behavioral adaptations. An important component of these adaptations is the long-term rearrangement of neuronal gene expression in the brain of the addicted individual. Epigenetic histone modifications have recently surfaced as important modulators of the transcriptional adaptation to alcohol as these are thought to represent a form of transcriptional memory that is directly imprinted on the chromosome. Some histone modifications affect transcription by modulating the accessibility of the underlying DNA, whereas others have been proposed to serve as marks read by transcription factors as a "histone code" that helps to specify the expression level of a gene. Although the effects of some epigenetic modifications on the transcriptional activity of genes are well known, the mechanisms by which alcohol consumption produces this rearrangement and leads to lasting changes in behavior remain unresolved. Recent advances using the Drosophila model system have started to unravel the epigenetic modulators underlying functional alcohol neuroadaptations. In this review, we discuss the role of 3 different histone modification systems in Drosophila, which have a direct impact on key alcohol neuroadaptations associated with the addictive process. These systems involve the histone deacetylase Sirt1, the histone acetyltransferase CREB-binding protein (CBP), and a subset of the Drosophila JmjC-Domain histone demethylase family.
Collapse
Affiliation(s)
| | - Carlos E Billini
- Department of Biology, University of Puerto Rico–Rio Piedras, San Juan, PR, USA
| | - Alfredo Ghezzi
- Department of Biology, University of Puerto Rico–Rio Piedras, San Juan, PR, USA
| |
Collapse
|
13
|
Voltage-Sensitive Potassium Channels of the BK Type and Their Coding Genes Are Alcohol Targets in Neurons. Handb Exp Pharmacol 2017; 248:281-309. [PMID: 29204711 DOI: 10.1007/164_2017_78] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Among all members of the voltage-gated, TM6 ion channel superfamily, the proteins that constitute calcium- and voltage-gated potassium channels of large conductance (BK) and their coding genes are unique for their involvement in ethanol-induced disruption of normal physiology and behavior. Moreover, in vitro studies document that BK activity is modified by ethanol with an EC50~23 mM, which is near blood alcohol levels considered legal intoxication in most states of the USA (0.08 g/dL = 17.4 mM). Following a succinct introduction to our current understanding of BK structure and function in central neurons, with a focus on neural circuits that contribute to the neurobiology of alcohol use disorders (AUD), we review the modifications in organ physiology by alcohol exposure via BK and the different molecular elements that determine the ethanol response of BK in alcohol-naïve systems, including the role of an ethanol-recognizing site in the BK-forming slo1 protein, modulation of accessory BK subunits, and their coding genes. The participation of these and additional elements in determining the response of a system or an organism to protracted ethanol exposure is consequently analyzed, with insights obtained from invertebrate and vertebrate models. Particular emphasis is put on the role of BK and coding genes in different forms of tolerance to alcohol exposure. We finally discuss genetic results on BK obtained in invertebrate organisms and rodents in light of possible extrapolation to human AUD.
Collapse
|