1
|
Iram F, Shahid M, Ansari J, Ashraf GM, Hassan MI, Islam A. Navigating the Maze of Alzheimer's disease by exploring BACE1: Discovery, current scenario, and future prospects. Ageing Res Rev 2024; 98:102342. [PMID: 38762102 DOI: 10.1016/j.arr.2024.102342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Alzheimer's disease (AD) is a chronic neurological condition that has become a leading cause of cognitive decline in elder individuals. Hardly any effective medication has been developed to halt the progression of AD due to the disease's complexity. Several theories have been put forward to clarify the mechanisms underlying AD etiology. The identification of amyloid plaques as a hallmark of AD has sparked the development of numerous drugs targeting the players involved in the amyloidogenic pathway, such as the β-site of amyloid precursor protein cleavage enzyme 1 (BACE1) blockers. Over the last ten years, preclinical and early experimental research has led several pharmaceutical companies to prioritize producing BACE1 inhibitors. Despite all these efforts, earlier discovered inhibitors were discontinued in consideration of another second-generation small molecules and recent BACE1 antagonists failed in the final stages of clinical trials because of the complications associated either with toxicity or effectiveness. In addition to discussing the difficulties associated with development of BACE1 inhibitors, this review aims to provide an overview of BACE1 and offer perspectives on the causes behind the failure of five recent BACE1 inhibitors, that would be beneficial for choosing effective treatment approaches in the future.
Collapse
Affiliation(s)
- Faiza Iram
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Jaoud Ansari
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ghulam Md Ashraf
- University of Sharjah, College of Health Sciences, and Research Institute for Medical and Health Sciences, Department of Medical Laboratory Sciences, Sharjah 27272, United Arab Emirates
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
2
|
Li YZ, Zhu YB, Ge AN, Gao M, Wang KL, Zeng XR, Li J, Li Y, Xu JY, Bai HH, Wu SJ. Reduced expression of APLP2 in spinal GABAergic inhibitory neurons contributed to nerve injury-induced microglial activation and pain sensitization. Neuropharmacology 2023; 224:109334. [PMID: 36442651 DOI: 10.1016/j.neuropharm.2022.109334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/30/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022]
Abstract
The amyloid precursor protein (APP) is critical for the pathogenesis of Alzheimer's disease (AD). The AD patients usually have lower pain sensitivity in addition to cognitive impairments. However, considerably less is known as yet about the role of APP and its two mammalian homologues, amyloid precursor-like protein 1 and 2 (APLP1, APLP2), in spinal processing of nociceptive information. Here we found that all APP family members were present in spinal cord dorsal horn of adult male C57BL/6J mice. Peripheral nerve injury specifically reduced the expression of spinal APLP2 that correlated with neuropathic mechanical allodynia. The loss of APLP2 was confined to inhibitory GABAergic interneurons. Targeted knockdown of APLP2 in GABAergic interneurons of GAD2-Cre mice evoked pain hypersensitivity by means of microglia activation. Our data showed that GABAergic terminals expressed APLP2, a putative cell adhesion protein that interacted with microglia-specific integrin molecule CD11b. Knocking down APLP2 in GAD2-positive neurons to disrupt the trans-cellular interaction led to microglia-dependent pain sensitization. Our data thus revealed an important role of APLP2 for GABAergic interneurons to control microglial activity and pain sensitivity.
Collapse
Affiliation(s)
- Yu-Zhe Li
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Yue-Bin Zhu
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - An-Na Ge
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Min Gao
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Kang-Li Wang
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Xiang-Ru Zeng
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Jing Li
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Yuan Li
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Jia-Yu Xu
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Hu-Hu Bai
- School of Life Science, Lanzhou University, Gansu, 730000, PR China.
| | - Shu-Jin Wu
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| |
Collapse
|
3
|
Pragya SU, Pragya SC, Griswold AJ, Gu E, Mehta ND, Uddin P, Veeramachaneni P, Mehta N, Mehta D, Abomoelak B. Preksha Dhyāna Meditation Effect on the DNA Methylation Signature in College Students. JOURNAL OF INTEGRATIVE AND COMPLEMENTARY MEDICINE 2023; 29:224-233. [PMID: 36749149 DOI: 10.1089/jicm.2022.0713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: The stress and psychological factors affect the human transcriptomic and epigenomic landscapes. Preksha Dhyana meditation (PM) was found to be effective, in novice healthy college student meditators, at the cognitive skills and transcriptomic levels. Recently published data showed that PM induced alterations at the transcriptome level in healthy and novice college students. Methods: To decipher potential mechanisms underlying the PM effect at the cellular level, array-based methylation analyses in peripheral blood were performed at baseline and 8 weeks postintervention in 34 participants. Results: Overall, 470 CpG sites were nominally differentially methylated (p ≤ 0.05 and change magnitude from ≥3% to ≤ -3%) between baseline and 8 weeks postintervention with 180 sites hypermethylated and 290 sites hypomethylated. Pathway analysis of the genes linked to the differentially methylated sites revealed the enrichment of several molecular and cellular signaling pathways, especially metabolic and brain function signaling pathways. Conclusions: Besides its beneficial effects on cognitive skills and transcriptome alterations, the current data indicate that PM meditation also affects the DNA methylation profile of novice and healthy college students 8 weeks postintervention. Clinical Trial Registration number: NCT03779269.
Collapse
Affiliation(s)
- Samani U Pragya
- Department of Religions and Philosophies, University of London, London, United Kingdom
| | - Samani C Pragya
- Department of Biostatistics, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| | - Anthony J Griswold
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Esther Gu
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Neelam D Mehta
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Parvin Uddin
- College of Arts, Sciences and Education, Florida International University, Miami, FL, USA
| | | | - Naina Mehta
- Neurodevelopmental Pediatrician, Behavioral and Developmental Center, Orlando Health, Orlando, FL, USA
| | - Devendra Mehta
- Gastrointestinal Translational Laboratory, Arnold Palmer Hospital for Children, Orlando, FL, USA
| | - Bassam Abomoelak
- Gastrointestinal Translational Laboratory, Arnold Palmer Hospital for Children, Orlando, FL, USA
| |
Collapse
|
4
|
Erdinger S, Amrein I, Back M, Ludewig S, Korte M, von Engelhardt J, Wolfer DP, Müller UC. Lack of APLP1 leads to subtle alterations in neuronal morphology but does not affect learning and memory. Front Mol Neurosci 2022; 15:1028836. [DOI: 10.3389/fnmol.2022.1028836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022] Open
Abstract
The amyloid precursor protein APP plays a crucial role in Alzheimer pathogenesis. Its physiological functions, however, are only beginning to be unraveled. APP belongs to a small gene family, including besides APP the closely related amyloid precursor-like proteins APLP1 and APLP2, that all constitute synaptic adhesion proteins. While APP and APLP2 are ubiquitously expressed, APLP1 is specific for the nervous system. Previous genetic studies, including combined knockouts of several family members, pointed towards a unique role for APLP1, as only APP/APLP1 double knockouts were viable. We now examined brain and neuronal morphology in APLP1 single knockout (KO) animals, that have to date not been studied in detail. Here, we report that APLP1-KO mice show normal spine density in hippocampal CA1 pyramidal cells and subtle alterations in dendritic complexity. Extracellular field recordings revealed normal basal synaptic transmission and no alterations in synaptic plasticity (LTP). Further, behavioral studies revealed in APLP1-KO mice a small deficit in motor function and reduced diurnal locomotor activity, while learning and memory were not affected by the loss of APLP1. In summary, our study indicates that APP family members serve both distinct and overlapping functions that need to be considered for therapeutic treatments of Alzheimer’s disease.
Collapse
|
5
|
Hrabinova M, Pejchal J, Kucera T, Jun D, Schmidt M, Soukup O. Is It the Twilight of BACE1 Inhibitors? Curr Neuropharmacol 2021; 19:61-77. [PMID: 32359337 PMCID: PMC7903497 DOI: 10.2174/1570159x18666200503023323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/23/2020] [Accepted: 04/30/2020] [Indexed: 12/13/2022] Open
Abstract
β-secretase (BACE1) has been regarded as a prime target for the development of amyloid beta (Aβ) lowering drugs in the therapy of Alzheimer´s disease (AD). Although the enzyme was discovered in 1991 and helped to formulate the Aβ hypothesis as one of the very important features of AD etiopathogenesis, progress in AD treatment utilizing BACE1 inhibitors has remained limited. Moreover, in the last years, major pharmaceutical companies have discontinued clinical trials of five BACE1 inhibitors that had been strongly perceived as prospective. In our review, the Aβ hypothesis, the enzyme, its functions, and selected substrates are described. BACE1 inhibitors are classified into four generations. Those that underwent clinical trials displayed adverse effects, including weight loss, skin rashes, worsening of neuropsychiatric symptoms, etc. Some inhibitors could not establish a statistically significant risk-benefit ratio, or even scored worse than placebo. We still believe that drugs targeting BACE1 may still hide some potential, but a different approach to BACE1 inhibition or a shift of focus to modulation of its trafficking and/or post-translational modification should now be followed.
Collapse
Affiliation(s)
| | - Jaroslav Pejchal
- Address correspondence to this author at the Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence in Brno, Hradec Kralove, Czech Republic;E-mail:
| | | | | | | | | |
Collapse
|
6
|
DelBove CE, Deng XZ, Zhang Q. The Fate of Nascent APP in Hippocampal Neurons: A Live Cell Imaging Study. ACS Chem Neurosci 2018; 9:2225-2232. [PMID: 29869871 DOI: 10.1021/acschemneuro.8b00226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Amyloid precursor protein (APP) is closely associated with Alzheimer's disease (AD) because its proteolytic products form amyloid plaques and its mutations are linked to familial AD patients. As a membrane protein, APP is involved in neuronal development and plasticity. However, it remains unclear how nascent APP is distributed and transported to designated membrane compartments to execute its diverse functions. Here, we employed a dual-tagged APP fusion protein in combination with a synaptic vesicle marker to study the surface trafficking and cleavage of APP in hippocampal neurons immediately after its synthesis. Using long-term time-lapse imaging, we found that a considerable amount of nascent APP was directly transported to the somatodendritic surface, from which it propagates to distal neurites. Some APP in the plasma membrane was endocytosed and some was cleaved by α-secretase. Hence, we conclude that surface transportation of APP is a major step preceding its proteolytic processing and neuritic distribution.
Collapse
Affiliation(s)
- Claire E. DelBove
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6600, United States
| | - Xian-zhen Deng
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6600, United States
| | - Qi Zhang
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6600, United States
| |
Collapse
|