1
|
Li Y, Badawi Y, Meriney SD. Age-Related Homeostatic Plasticity at Rodent Neuromuscular Junctions. Cells 2024; 13:1684. [PMID: 39451202 PMCID: PMC11506802 DOI: 10.3390/cells13201684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Motor ability decline remains a major threat to the quality of life of the elderly. Although the later stages of aging co-exist with degenerative pathologies, the long process of aging is more complicated than a simple and gradual degeneration. To combat senescence and the associated late-stage degeneration of the neuromuscular system, it is imperative to examine changes that occur during the long process of aging. Prior to late-stage degeneration, age-induced changes in the neuromuscular system trigger homeostatic plasticity. This unique phenomenon may be important for the maintenance of the neuromuscular system during the early stages of aging. In this review, we will focus on age-induced changes in neurotransmission at the neuromuscular junction, providing the potential mechanisms responsible for these changes. The goal is to highlight these key elements and their role in regulating neurotransmission, facilitating future research efforts to combat late-stage degeneration in the neuromuscular system by preserving the functional and structural integrity of these elements prior to the late stage of aging.
Collapse
Affiliation(s)
| | | | - Stephen D. Meriney
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA; (Y.L.); (Y.B.)
| |
Collapse
|
2
|
Balanyà-Segura M, Polishchuk A, Just-Borràs L, Cilleros-Mañé V, Silvera C, Ardévol A, Tomàs M, Lanuza MA, Hurtado E, Tomàs J. Molecular Adaptations of BDNF/NT-4 Neurotrophic and Muscarinic Pathways in Ageing Neuromuscular Synapses. Int J Mol Sci 2024; 25:8018. [PMID: 39125587 PMCID: PMC11311581 DOI: 10.3390/ijms25158018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 08/12/2024] Open
Abstract
Age-related conditions, such as sarcopenia, cause physical disabilities for an increasing section of society. At the neuromuscular junction, the postsynaptic-derived neurotrophic factors brain-derived neurotrophic factor (BDNF) and neurotrophin 4 (NT-4) have neuroprotective functions and contribute to the correct regulation of the exocytotic machinery. Similarly, presynaptic muscarinic signalling plays a fundamental modulatory function in this synapse. However, whether or not these signalling pathways are compromised in ageing neuromuscular system has not yet been analysed. The present study analyses, through Western blotting, the differences in expression and activation of the main key proteins of the BDNF/NT-4 and muscarinic pathways related to neurotransmission in young versus ageing Extensor digitorum longus (EDL) rat muscles. The main results show an imbalance in several sections of these pathways: (i) a change in the stoichiometry of BDNF/NT-4, (ii) an imbalance of Tropomyosin-related kinase B receptor (TrkB)-FL/TrkB-T1 and neurotrophic receptor p 75 (p75NTR), (iii) no changes in the cytosol/membrane distribution of phosphorylated downstream protein kinase C (PKC)βI and PKCε, (iv) a reduction in the M2-subtype muscarinic receptor and P/Q-subtype voltage-gated calcium channel, (v) an imbalance of phosphorylated mammalian uncoordinated-18-1 (Munc18-1) (S313) and synaptosomal-associated protein 25 (SNAP-25) (S187), and (vi) normal levels of molecules related to the management of acetylcholine (Ach). Based on this descriptive analysis, we hypothesise that these pathways can be adjusted to ensure neurotransmission rather than undergoing negative alterations caused by ageing. However, further studies are needed to assess this hypothetical suggestion. Our results contribute to the understanding of some previously described neuromuscular functional age-related impairments. Strategies to promote these signalling pathways could improve the neuromuscular physiology and quality of life of older people.
Collapse
Affiliation(s)
- Marta Balanyà-Segura
- Unitat d’Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Spain; (M.B.-S.); (A.P.); (L.J.-B.); (V.C.-M.); (C.S.); (M.T.); (J.T.)
| | - Aleksandra Polishchuk
- Unitat d’Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Spain; (M.B.-S.); (A.P.); (L.J.-B.); (V.C.-M.); (C.S.); (M.T.); (J.T.)
| | - Laia Just-Borràs
- Unitat d’Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Spain; (M.B.-S.); (A.P.); (L.J.-B.); (V.C.-M.); (C.S.); (M.T.); (J.T.)
| | - Víctor Cilleros-Mañé
- Unitat d’Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Spain; (M.B.-S.); (A.P.); (L.J.-B.); (V.C.-M.); (C.S.); (M.T.); (J.T.)
| | - Carolina Silvera
- Unitat d’Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Spain; (M.B.-S.); (A.P.); (L.J.-B.); (V.C.-M.); (C.S.); (M.T.); (J.T.)
| | - Anna Ardévol
- MoBioFood Research Group, Campus Sescelades, Universitat Rovira i Virgili, Marcel.lí Domingo 1, 43007 Tarragona, Spain;
| | - Marta Tomàs
- Unitat d’Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Spain; (M.B.-S.); (A.P.); (L.J.-B.); (V.C.-M.); (C.S.); (M.T.); (J.T.)
| | - Maria A. Lanuza
- Unitat d’Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Spain; (M.B.-S.); (A.P.); (L.J.-B.); (V.C.-M.); (C.S.); (M.T.); (J.T.)
| | - Erica Hurtado
- Unitat d’Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Spain; (M.B.-S.); (A.P.); (L.J.-B.); (V.C.-M.); (C.S.); (M.T.); (J.T.)
| | - Josep Tomàs
- Unitat d’Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Spain; (M.B.-S.); (A.P.); (L.J.-B.); (V.C.-M.); (C.S.); (M.T.); (J.T.)
| |
Collapse
|
3
|
Benítez-Temiño B, Hernández RG, de la Cruz RR, Pastor AM. BDNF Influence on Adult Terminal Axon Sprouting after Partial Deafferentation. Int J Mol Sci 2023; 24:10660. [PMID: 37445838 DOI: 10.3390/ijms241310660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
BDNF is a neurotrophin family member implicated in many different neuronal functions, from neuronal survival during development to synaptic plasticity associated with processes of learning and memory. Its presence in the oculomotor system has previously been demonstrated, as it regulates afferent composition of extraocular motoneurons and their firing pattern. Moreover, BDNF expression increases after extraocular motoneuron partial deafferentation, in parallel with terminal axon sprouting from the remaining axons. To elucidate whether BDNF could play an active role in this process, we performed partial deafferentation of the medial rectus motoneurons through transection of one of the two main afferents, that is, the ascending tract of Deiters, and injected BDNF into the motoneuron target muscle, the medial rectus. Furthermore, to check whether BDNF could stimulate axon sprouting without lesions, we performed the same experiment without any lesions. Axon terminal sprouting was assessed by calretinin immunostaining, which specifically labels the remaining afferent system on medial rectus motoneurons, the abducens internuclear neurons. The results presented herein show that exogenous BDNF stimulated terminal axon growth, allowing the total recovery of synaptic coverage around the motoneuron somata. Moreover, calretinin staining in the neuropil exceeded that present in the control situation. Thus, BDNF could also stimulate axonal sprouting in the neuropil of intact animals. These results point to an active role of BDNF in plastic adaptations that take place after partial deafferentation.
Collapse
Affiliation(s)
- Beatriz Benítez-Temiño
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - Rosendo G Hernández
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - Rosa R de la Cruz
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - Angel M Pastor
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| |
Collapse
|
4
|
Polishchuk A, Cilleros-Mañé V, Just-Borràs L, Balanyà-Segura M, Vandellòs Pont G, Silvera Simón C, Tomàs M, Garcia N, Tomàs J, Lanuza MA. Synaptic retrograde regulation of the PKA-induced SNAP-25 and Synapsin-1 phosphorylation. Cell Mol Biol Lett 2023; 28:17. [PMID: 36869288 PMCID: PMC9985302 DOI: 10.1186/s11658-023-00431-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/09/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND Bidirectional communication between presynaptic and postsynaptic components contribute to the homeostasis of the synapse. In the neuromuscular synapse, the arrival of the nerve impulse at the presynaptic terminal triggers the molecular mechanisms associated with ACh release, which can be retrogradely regulated by the resulting muscle contraction. This retrograde regulation, however, has been poorly studied. At the neuromuscular junction (NMJ), protein kinase A (PKA) enhances neurotransmitter release, and the phosphorylation of the molecules of the release machinery including synaptosomal associated protein of 25 kDa (SNAP-25) and Synapsin-1 could be involved. METHODS Accordingly, to study the effect of synaptic retrograde regulation of the PKA subunits and its activity, we stimulated the rat phrenic nerve (1 Hz, 30 min) resulting or not in contraction (abolished by µ-conotoxin GIIIB). Changes in protein levels and phosphorylation were detected by western blotting and cytosol/membrane translocation by subcellular fractionation. Synapsin-1 was localized in the levator auris longus (LAL) muscle by immunohistochemistry. RESULTS Here we show that synaptic PKA Cβ subunit regulated by RIIβ or RIIα subunits controls activity-dependent phosphorylation of SNAP-25 and Synapsin-1, respectively. Muscle contraction retrogradely downregulates presynaptic activity-induced pSynapsin-1 S9 while that enhances pSNAP-25 T138. Both actions could coordinately contribute to decreasing the neurotransmitter release at the NMJ. CONCLUSION This provides a molecular mechanism of the bidirectional communication between nerve terminals and muscle cells to balance the accurate process of ACh release, which could be important to characterize molecules as a therapy for neuromuscular diseases in which neuromuscular crosstalk is impaired.
Collapse
Affiliation(s)
- Aleksandra Polishchuk
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, c/ Sant Llorenç 21, 43201, Reus, Spain
| | - Víctor Cilleros-Mañé
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, c/ Sant Llorenç 21, 43201, Reus, Spain
| | - Laia Just-Borràs
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, c/ Sant Llorenç 21, 43201, Reus, Spain
| | - Marta Balanyà-Segura
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, c/ Sant Llorenç 21, 43201, Reus, Spain
| | - Genís Vandellòs Pont
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, c/ Sant Llorenç 21, 43201, Reus, Spain
| | - Carolina Silvera Simón
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, c/ Sant Llorenç 21, 43201, Reus, Spain
| | - Marta Tomàs
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, c/ Sant Llorenç 21, 43201, Reus, Spain
| | - Neus Garcia
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, c/ Sant Llorenç 21, 43201, Reus, Spain
| | - Josep Tomàs
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, c/ Sant Llorenç 21, 43201, Reus, Spain.
| | - Maria A Lanuza
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, c/ Sant Llorenç 21, 43201, Reus, Spain.
| |
Collapse
|
5
|
Muscarinic Receptors in Developmental Axonal Competition at the Neuromuscular Junction. Mol Neurobiol 2023; 60:1580-1593. [PMID: 36526930 PMCID: PMC9899176 DOI: 10.1007/s12035-022-03154-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022]
Abstract
In recent years, we have studied by immunohistochemistry, intracellular recording, and western blotting the role of the muscarinic acetylcholine receptors (mAChRs; M1, M2, and M4 subtypes) in the mammalian neuromuscular junction (NMJ) during development and in the adult. Here, we evaluate our published data to emphasize the mAChRs' relevance in developmental synaptic elimination and their crosstalk with other metabotropic receptors, downstream kinases, and voltage-gated calcium channels (VGCCs). The presence of mAChRs in the presynaptic membrane of motor nerve terminals allows an autocrine mechanism in which the secreted acetylcholine influences the cell itself in feedback. mAChR subtypes are coupled to different downstream pathways, so their feedback can move in a broad range between positive and negative. Moreover, mAChRs allow direct activity-dependent interaction through ACh release between the multiple competing axons during development. Additional regulation from pre- and postsynaptic sites (including neurotrophic retrograde control), the agonistic and antagonistic contributions of adenosine receptors (AR; A1 and A2A), and the tropomyosin-related kinase B receptor (TrkB) cooperate with mAChRs in the axonal competitive interactions which lead to supernumerary synapse elimination that achieves the optimized monoinnervation of musculoskeletal cells. The metabotropic receptor-driven balance between downstream PKA and PKC activities, coupled to developmentally regulated VGCC, explains much of how nerve terminals with different activities finally progress to their withdrawal or strengthening.
Collapse
|
6
|
Just-Borràs L, Cilleros-Mañé V, Polishchuk A, Balanyà-Segura M, Tomàs M, Garcia N, Tomàs J, Lanuza MA. TrkB signaling is correlated with muscular fatigue resistance and less vulnerability to neurodegeneration. Front Mol Neurosci 2022; 15:1069940. [PMID: 36618825 PMCID: PMC9813967 DOI: 10.3389/fnmol.2022.1069940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
At the neuromuscular junction (NMJ), motor neurons and myocytes maintain a bidirectional communication that guarantees adequate functionality. Thus, motor neurons' firing pattern, which is influenced by retrograde muscle-derived neurotrophic factors, modulates myocyte contractibility. Myocytes can be fast-twitch fibers and become easily fatigued or slow-twitch fibers and resistant to fatigue. Extraocular muscles (EOM) show mixed properties that guarantee fast contraction speed and resistance to fatigue and the degeneration caused by Amyotrophic lateral sclerosis (ALS) disease. The TrkB signaling is an activity-dependent pathway implicated in the NMJ well-functioning. Therefore, it could mediate the differences between fast and slow myocytes' resistance to fatigue. The present study elucidates a specific protein expression profile concerning the TrkB signaling that correlates with higher resistance to fatigue and better neuroprotective capacity through time. The results unveil that Extra-ocular muscles (EOM) express lower levels of NT-4 that extend TrkB signaling, differential PKC expression, and a higher abundance of phosphorylated synaptic proteins that correlate with continuous neurotransmission requirements. Furthermore, common molecular features between EOM and slow soleus muscles including higher neurotrophic consumption and classic and novel PKC isoforms balance correlate with better preservation of these two muscles in ALS. Altogether, higher resistance of Soleus and EOM to fatigue and ALS seems to be associated with specific protein levels concerning the TrkB neurotrophic signaling.
Collapse
|
7
|
Cilleros-Mañé V, Just-Borràs L, Polishchuk A, Durán M, Tomàs M, Garcia N, Tomàs JM, Lanuza MA. M 1 and M 2 mAChRs activate PDK1 and regulate PKC βI and ε and the exocytotic apparatus at the NMJ. FASEB J 2021; 35:e21724. [PMID: 34133802 DOI: 10.1096/fj.202002213r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 05/07/2021] [Accepted: 05/24/2021] [Indexed: 01/14/2023]
Abstract
Neuromuscular junctions (NMJ) regulate cholinergic exocytosis through the M1 and M2 muscarinic acetylcholine autoreceptors (mAChR), involving the crosstalk between receptors and downstream pathways. Protein kinase C (PKC) regulates neurotransmission but how it associates with the mAChRs remains unknown. Here, we investigate whether mAChRs recruit the classical PKCβI and the novel PKCε isoforms and modulate their priming by PDK1, translocation and activity on neurosecretion targets. We show that each M1 and M2 mAChR activates the master kinase PDK1 and promotes a particular priming of the presynaptic PKCβI and ε isoforms. M1 recruits both primed-PKCs to the membrane and promotes Munc18-1, SNAP-25, and MARCKS phosphorylation. In contrast, M2 downregulates PKCε through a PKA-dependent pathway, which inhibits Munc18-1 synthesis and PKC phosphorylation. In summary, our results discover a co-dependent balance between muscarinic autoreceptors which orchestrates the presynaptic PKC and their action on ACh release SNARE-SM mechanism. Altogether, this molecular signaling explains previous functional studies at the NMJ and guide toward potential therapeutic targets.
Collapse
Affiliation(s)
- V Cilleros-Mañé
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Departament de Ciències Mèdiques Bàsiques, Universitat Rovira i Virgili, Reus, Spain
| | - L Just-Borràs
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Departament de Ciències Mèdiques Bàsiques, Universitat Rovira i Virgili, Reus, Spain
| | - A Polishchuk
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Departament de Ciències Mèdiques Bàsiques, Universitat Rovira i Virgili, Reus, Spain
| | - M Durán
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Departament de Ciències Mèdiques Bàsiques, Universitat Rovira i Virgili, Reus, Spain
| | - M Tomàs
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Departament de Ciències Mèdiques Bàsiques, Universitat Rovira i Virgili, Reus, Spain
| | - N Garcia
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Departament de Ciències Mèdiques Bàsiques, Universitat Rovira i Virgili, Reus, Spain
| | - J M Tomàs
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Departament de Ciències Mèdiques Bàsiques, Universitat Rovira i Virgili, Reus, Spain
| | - M A Lanuza
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Departament de Ciències Mèdiques Bàsiques, Universitat Rovira i Virgili, Reus, Spain
| |
Collapse
|
8
|
Just-Borràs L, Cilleros-Mañé V, Hurtado E, Biondi O, Charbonnier F, Tomàs M, Garcia N, Tomàs J, Lanuza MA. Running and Swimming Differently Adapt the BDNF/TrkB Pathway to a Slow Molecular Pattern at the NMJ. Int J Mol Sci 2021; 22:4577. [PMID: 33925507 PMCID: PMC8123836 DOI: 10.3390/ijms22094577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/29/2022] Open
Abstract
Physical exercise improves motor control and related cognitive abilities and reinforces neuroprotective mechanisms in the nervous system. As peripheral nerves interact with skeletal muscles at the neuromuscular junction, modifications of this bidirectional communication by physical activity are positive to preserve this synapse as it increases quantal content and resistance to fatigue, acetylcholine receptors expansion, and myocytes' fast-to-slow functional transition. Here, we provide the intermediate step between physical activity and functional and morphological changes by analyzing the molecular adaptations in the skeletal muscle of the full BDNF/TrkB downstream signaling pathway, directly involved in acetylcholine release and synapse maintenance. After 45 days of training at different intensities, the BDNF/TrkB molecular phenotype of trained muscles from male B6SJLF1/J mice undergo a fast-to-slow transition without affecting motor neuron size. We provide further knowledge to understand how exercise induces muscle molecular adaptations towards a slower phenotype, resistant to prolonged trains of stimulation or activity that can be useful as therapeutic tools.
Collapse
Affiliation(s)
- Laia Just-Borràs
- Unitat d’Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, 43201 Reus, Spain; (L.J.-B.); (V.C.-M.); (E.H.); (M.T.); (N.G.)
| | - Víctor Cilleros-Mañé
- Unitat d’Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, 43201 Reus, Spain; (L.J.-B.); (V.C.-M.); (E.H.); (M.T.); (N.G.)
| | - Erica Hurtado
- Unitat d’Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, 43201 Reus, Spain; (L.J.-B.); (V.C.-M.); (E.H.); (M.T.); (N.G.)
| | - Olivier Biondi
- INSERM UMRS 1124, Université de Paris, CEDEX 06, F-75270 Paris, France; (O.B.); (F.C.)
| | - Frédéric Charbonnier
- INSERM UMRS 1124, Université de Paris, CEDEX 06, F-75270 Paris, France; (O.B.); (F.C.)
| | - Marta Tomàs
- Unitat d’Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, 43201 Reus, Spain; (L.J.-B.); (V.C.-M.); (E.H.); (M.T.); (N.G.)
| | - Neus Garcia
- Unitat d’Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, 43201 Reus, Spain; (L.J.-B.); (V.C.-M.); (E.H.); (M.T.); (N.G.)
| | - Josep Tomàs
- Unitat d’Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, 43201 Reus, Spain; (L.J.-B.); (V.C.-M.); (E.H.); (M.T.); (N.G.)
| | - Maria A. Lanuza
- Unitat d’Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, 43201 Reus, Spain; (L.J.-B.); (V.C.-M.); (E.H.); (M.T.); (N.G.)
| |
Collapse
|
9
|
Involvement of protein kinase C beta1-serotonin transporter system dysfunction in emotional behaviors in stressed mice. Neurochem Int 2020; 140:104826. [DOI: 10.1016/j.neuint.2020.104826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/27/2020] [Accepted: 08/07/2020] [Indexed: 12/17/2022]
|
10
|
Just-Borràs L, Hurtado E, Cilleros-Mañé V, Biondi O, Charbonnier F, Tomàs M, Garcia N, Tomàs J, Lanuza MA. Running and swimming prevent the deregulation of the BDNF/TrkB neurotrophic signalling at the neuromuscular junction in mice with amyotrophic lateral sclerosis. Cell Mol Life Sci 2020; 77:3027-3040. [PMID: 31646358 PMCID: PMC11104938 DOI: 10.1007/s00018-019-03337-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/30/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022]
Abstract
Nerve-induced muscle contraction regulates the BDNF/TrkB neurotrophic signalling to retrogradely modulate neurotransmission and protect the neuromuscular junctions and motoneurons. In muscles with amyotrophic lateral sclerosis, this pathway is strongly misbalanced and neuromuscular junctions are destabilized, which may directly cause the motoneuron degeneration and muscular atrophy observed in this disease. Here, we sought to demonstrate (1) that physical exercise, whose recommendation has been controversial in amyotrophic lateral sclerosis, would be a good option for its therapy, because it normalizes and improves the altered neurotrophin pathway and (2) a plausible molecular mechanism underlying its positive effect. SOD1-G93A mice were trained following either running or swimming-based protocols since the beginning of the symptomatic phase (day 70 of age) until day 115. Next, the full BDNF pathway, including receptors, downstream kinases and proteins related with neurotransmission, was characterized and motoneuron survival was analysed. The results establish that amyotrophic lateral sclerosis-induced damaging molecular changes in the BDNF/TrkB pathway are reduced, prevented or even overcompensated by precisely defined exercise protocols that modulate TrkB isoforms and neurotransmission regulatory proteins and reduce motoneuron death. Altogether, the maintenance of the BDNF/TrkB signalling and the downstream pathway, particularly after the swimming protocol, adds new molecular evidence of the benefits of physical exercise to reduce the impact of amyotrophic lateral sclerosis. These results are encouraging since they reveal an improvement even starting the therapy after the onset of the disease.
Collapse
Affiliation(s)
- Laia Just-Borràs
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili. Sant Llorenç 21, 43201, Reus, Spain
| | - Erica Hurtado
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili. Sant Llorenç 21, 43201, Reus, Spain
| | - Víctor Cilleros-Mañé
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili. Sant Llorenç 21, 43201, Reus, Spain
| | - Olivier Biondi
- UMR-S1124, INSERM, Faculté des Sciences Fondamentales et Biomédicales, Université Paris Descartes, 45 Rue des Saints-Pères, 75006, Paris, France
| | - Frédéric Charbonnier
- UMR-S1124, INSERM, Faculté des Sciences Fondamentales et Biomédicales, Université Paris Descartes, 45 Rue des Saints-Pères, 75006, Paris, France
| | - Marta Tomàs
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili. Sant Llorenç 21, 43201, Reus, Spain
| | - Neus Garcia
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili. Sant Llorenç 21, 43201, Reus, Spain
| | - Josep Tomàs
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili. Sant Llorenç 21, 43201, Reus, Spain.
| | - Maria A Lanuza
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili. Sant Llorenç 21, 43201, Reus, Spain.
| |
Collapse
|
11
|
Kolczynska K, Loza-Valdes A, Hawro I, Sumara G. Diacylglycerol-evoked activation of PKC and PKD isoforms in regulation of glucose and lipid metabolism: a review. Lipids Health Dis 2020; 19:113. [PMID: 32466765 PMCID: PMC7257441 DOI: 10.1186/s12944-020-01286-8] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022] Open
Abstract
Protein kinase C (PKC) and Protein kinase D (PKD) isoforms can sense diacylglycerol (DAG) generated in the different cellular compartments in various physiological processes. DAG accumulates in multiple organs of the obese subjects, which leads to the disruption of metabolic homeostasis and the development of diabetes as well as associated diseases. Multiple studies proved that aberrant activation of PKCs and PKDs contributes to the development of metabolic diseases. DAG-sensing PKC and PKD isoforms play a crucial role in the regulation of metabolic homeostasis and therefore might serve as targets for the treatment of metabolic disorders such as obesity and diabetes.
Collapse
Affiliation(s)
- Katarzyna Kolczynska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warszawa, Poland
| | - Angel Loza-Valdes
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warszawa, Poland
| | - Izabela Hawro
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warszawa, Poland
| | - Grzegorz Sumara
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warszawa, Poland.
| |
Collapse
|
12
|
The Impact of Kinases in Amyotrophic Lateral Sclerosis at the Neuromuscular Synapse: Insights into BDNF/TrkB and PKC Signaling. Cells 2019; 8:cells8121578. [PMID: 31817487 PMCID: PMC6953086 DOI: 10.3390/cells8121578] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/19/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) promotes neuron survival in adulthood in the central nervous system. In the peripheral nervous system, BDNF is a contraction-inducible protein that, through its binding to tropomyosin-related kinase B receptor (TrkB), contributes to the retrograde neuroprotective control done by muscles, which is necessary for motor neuron function. BDNF/TrkB triggers downstream presynaptic pathways, involving protein kinase C, essential for synaptic function and maintenance. Undeniably, this reciprocally regulated system exemplifies the tight communication between nerve terminals and myocytes to promote synaptic function and reveals a new view about the complementary and essential role of pre and postsynaptic interplay in keeping the synapse healthy and strong. This signaling at the neuromuscular junction (NMJ) could establish new intervention targets across neuromuscular diseases characterized by deficits in presynaptic activity and muscle contractility and by the interruption of the connection between nervous and muscular tissues, such as amyotrophic lateral sclerosis (ALS). Indeed, exercise and other therapies that modulate kinases are effective at delaying ALS progression, preserving NMJs and maintaining motor function to increase the life quality of patients. Altogether, we review synaptic activity modulation of the BDNF/TrkB/PKC signaling to sustain NMJ function, its and other kinases’ disturbances in ALS and physical and molecular mechanisms to delay disease progression.
Collapse
|
13
|
Just-Borràs L, Hurtado E, Cilleros-Mañé V, Biondi O, Charbonnier F, Tomàs M, Garcia N, Lanuza MA, Tomàs J. Overview of Impaired BDNF Signaling, Their Coupled Downstream Serine-Threonine Kinases and SNARE/SM Complex in the Neuromuscular Junction of the Amyotrophic Lateral Sclerosis Model SOD1-G93A Mice. Mol Neurobiol 2019; 56:6856-6872. [PMID: 30929165 DOI: 10.1007/s12035-019-1550-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/13/2019] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a chronic neurodegenerative disease characterized by progressive motor weakness. It is accepted that it is caused by motoneuron degeneration leading to a decrease in muscle stimulation. However, ALS is being redefined as a distal axonopathy, in that neuromuscular junction dysfunction precedes and may even influence motoneuron loss. In this synapse, several metabotropic receptor-mediated signaling pathways converge on effector kinases that phosphorylate targets that are crucial for synaptic stability and neurotransmission quality. We have previously shown that, in physiological conditions, nerve-induced muscle contraction regulates the brain-derived neurotrophic factor/tropomyosin-related kinase B (BDNF/TrkB) signaling to retrogradely modulate presynaptic protein kinases PKC and PKA, which are directly involved in the modulation of acetylcholine release. In ALS patients, the alteration of this signaling may significantly contribute to a motor impairment. Here, we investigate whether BDNF/TrkB signaling, the downstream PKC (cPKCβI, cPKCα, and nPKCε isoforms), and PKA (regulatory and catalytic subunits) and some SNARE/SM exocytotic machinery proteins (Munc18-1 and SNAP-25) are altered in the skeletal muscle of pre- and symptomatic SOD1-G93A mice. We found that this pathway is strongly affected in symptomatic ALS mice muscles including an unbalance between (I) BDNF and TrkB isoforms, (II) PKC isoforms and PKA subunits, and (III) Munc18-1 and SNAP-25 phosphorylation ratios. Changes in TrkB.T1 and cPKCβI are precociously observed in presymptomatic mice. Altogether, several of these molecular alterations can be partly associated with the known fast-to-slow motor unit transition during the disease process but others can be related with the initial disease pathogenesis.
Collapse
Affiliation(s)
- Laia Just-Borràs
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Carrer St Llorenç num 21, 43201, Reus, Spain
| | - Erica Hurtado
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Carrer St Llorenç num 21, 43201, Reus, Spain
| | - Víctor Cilleros-Mañé
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Carrer St Llorenç num 21, 43201, Reus, Spain
| | - Olivier Biondi
- INSERM UMRS 1124 and Université Paris Descartes, 45 rue des Saints-Pères, 75270, Paris Cedex 06, France
| | - Frédéric Charbonnier
- INSERM UMRS 1124 and Université Paris Descartes, 45 rue des Saints-Pères, 75270, Paris Cedex 06, France
| | - Marta Tomàs
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Carrer St Llorenç num 21, 43201, Reus, Spain
| | - Neus Garcia
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Carrer St Llorenç num 21, 43201, Reus, Spain
| | - Maria A Lanuza
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Carrer St Llorenç num 21, 43201, Reus, Spain.
| | - Josep Tomàs
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Carrer St Llorenç num 21, 43201, Reus, Spain.
| |
Collapse
|
14
|
Shen X, Niu C, Guo J, Xia M, Xia J, Hu Y, Zheng Y. Stra8 may inhibit apoptosis during mouse spermatogenesis via the AKT signaling pathway. Int J Mol Med 2018; 42:2819-2830. [PMID: 30106128 DOI: 10.3892/ijmm.2018.3825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 08/02/2018] [Indexed: 11/06/2022] Open
Abstract
Stimulated by retinoic acid 8 (Stra8), one of genes induced by retinoic acid (RA), is required for the meiotic initiation of male spermatogenesis. The present study found that Stra8 inhibited apoptosis in male Stra8‑knockout mice, and in mice with vitamin A deficiency and vitamin A recovery in vivo. This phenotype was also verified in GC1 spermatogonia (spg) cells overexpressing Stra8. In addition, microarray analysis identified that there were nine differentially expressed genes (DEGs) in the Stra8‑overexpressed GC1 spg cells compared with the control groups; the expression of these nine genes was verified via mRNA expression levels. The DEGs were as follows: Phosphatidylinositol‑dependent kinase 1 (PDK1), a key gene upstream of protein kinase B (AKT); angiopoietin 2, a B‑cell lymphoma 2 (Bcl‑2)‑inhibited gene; transcription factor 4, glutathione S‑transferase P91 and ubiquitin‑specific protease 33, mitogen‑activated protein kinase (MAPK)‑related genes; oxidative stress induced growth inhibitor 1, related to the P53 pathway; Bcl‑2, P53, ERK (MAPK1/3), c‑Jun N‑terminal kinase (MAPK8/9), and P38 (MAPK14), all of which are key genes involved in the AKT signaling pathway. Therefore, the present study further verified these genes and found that the mRNA and protein expression levels of PDK1, AKT, Bcl‑2 and ERK were increased. Although the mRNA expression level of P53 was decreased, there was no significant difference in the protein expression level in Stra8‑overexpressing GC1 spg cells compared with controls. In addition, Caspase 3, one of the executioner caspases, was decreased in Stra8‑overexpressing GC1 spg cells compared with the control groups. Therefore, it was suggested that Stra8 may directly or indirectly inhibit caspases through the AKT signaling pathway and ultimately exert an anti‑apoptotic effect in the male reproductive system.
Collapse
Affiliation(s)
- Xueyi Shen
- Department of Histology and Embryology, School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Changmin Niu
- Department of Histology and Embryology, School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Jiaqian Guo
- Department of Histology and Embryology, School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Mengmeng Xia
- Department of Histology and Embryology, School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Jing Xia
- Department of Histology and Embryology, School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Yanqiu Hu
- Center of Reproductive Medicine, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Ying Zheng
- Department of Histology and Embryology, School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| |
Collapse
|
15
|
Simó A, Just-Borràs L, Cilleros-Mañé V, Hurtado E, Nadal L, Tomàs M, Garcia N, Lanuza MA, Tomàs J. BDNF-TrkB Signaling Coupled to nPKCε and cPKCβI Modulate the Phosphorylation of the Exocytotic Protein Munc18-1 During Synaptic Activity at the Neuromuscular Junction. Front Mol Neurosci 2018; 11:207. [PMID: 29946239 PMCID: PMC6007318 DOI: 10.3389/fnmol.2018.00207] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/25/2018] [Indexed: 11/13/2022] Open
Abstract
Munc18-1, a neuron-specific member of the Sec1/Munc18 family, is involved in neurotransmitter release by binding tightly to syntaxin. Munc18-1 is phosphorylated by PKC on Ser-306 and Ser-313 in vitro which reduces the amount of Munc18-1 able to bind syntaxin. We have previously identified that PKC is involved in neurotransmitter release when continuous electrical stimulation imposes a moderate activity on the NMJ and that muscle contraction through TrkB has an important impact on presynaptic PKC isoforms levels, specifically cPKCβI and nPKCε. Therefore, the present study was designed to understand how Munc18-1 phosphorylation is affected by (1) synaptic activity at the neuromuscular junction, (2) nPKCε and cPKCβI isoforms activity, (3) muscle contraction per se, and (4) the BDNF/TrkB signaling in a neuromuscular activity-dependent manner. We performed immunohistochemistry and confocal techniques to evidence the presynaptic location of Munc18-1 in the rat diaphragm muscle. To study synaptic activity, we stimulated the phrenic nerve (1 Hz, 30 min) with or without contraction (abolished by μ-conotoxin GIIIB). Specific inhibitory reagents were used to block nPKCε and cPKCβI activity and to modulate the tropomyosin receptor kinase B (TrkB). Main results obtained from Western blot experiments showed that phosphorylation of Munc18-1 at Ser-313 increases in response to a signaling mechanism initiated by synaptic activity and directly mediated by nPKCε. Otherwise, cPKCβI and TrkB activities work together to prevent this synaptic activity-induced Munc18-1 phosphorylation by a negative regulation of cPKCβI over nPKCε. Therefore, a balance between the activities of these PKC isoforms could be a relevant cue in the regulation of the exocytotic apparatus. The results also demonstrate that muscle contraction prevents the synaptic activity-induced Munc18-1 phosphorylation through a mechanism that opposes the TrkB/cPKCβI/nPKCε signaling.
Collapse
Affiliation(s)
- Anna Simó
- Unitat d'Histologia i Neurobiologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain
| | - Laia Just-Borràs
- Unitat d'Histologia i Neurobiologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain
| | - Víctor Cilleros-Mañé
- Unitat d'Histologia i Neurobiologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain
| | - Erica Hurtado
- Unitat d'Histologia i Neurobiologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain
| | - Laura Nadal
- Unitat d'Histologia i Neurobiologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain
| | - Marta Tomàs
- Unitat d'Histologia i Neurobiologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain
| | - Neus Garcia
- Unitat d'Histologia i Neurobiologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain
| | - Maria A Lanuza
- Unitat d'Histologia i Neurobiologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain
| | - Josep Tomàs
- Unitat d'Histologia i Neurobiologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain
| |
Collapse
|
16
|
Tomàs J, Garcia N, Lanuza MA, Santafé MM, Tomàs M, Nadal L, Hurtado E, Simó-Ollé A, Cilleros-Mañé V, Just-Borràs L. Adenosine Receptors in Developing and Adult Mouse Neuromuscular Junctions and Functional Links With Other Metabotropic Receptor Pathways. Front Pharmacol 2018; 9:397. [PMID: 29740322 PMCID: PMC5928480 DOI: 10.3389/fphar.2018.00397] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 04/05/2018] [Indexed: 12/30/2022] Open
Abstract
In the last few years, we have studied the presence and involvement in synaptogenesis and mature transmitter release of the adenosine autoreceptors (AR) in the mammalian neuromuscular junction (NMJ). Here, we review and bring together the previously published data to emphasize the relevance of these receptors for developmental axonal competition, synaptic loss and mature NMJ functional modulation. However, in addition to AR, activity-dependent mediators originating from any of the three cells that make the synapse (nerve, muscle, and glial cells) cross the extracellular cleft to generate signals in target metabotropic receptors. Thus, the integrated interpretation of the complementary function of all these receptors is needed. We previously studied, in the NMJ, the links of AR with mAChR and the neurotrophin receptor TrkB in the control of synapse elimination and transmitter release. We conclude that AR cooperate with these receptors through synergistic and antagonistic effects in the developmental synapse elimination process. In the adult NMJ, this cooperation is manifested so as that the functional integrity of a given receptor group depends on the other receptors operating normally (i.e., the functional integrity of mAChR depends on AR operating normally). These observations underlie the relevance of AR in the NMJ function.
Collapse
Affiliation(s)
- Josep Tomàs
- *Correspondence: Josep Tomàs, Neus Garcia, Maria A. Lanuza,
| | - Neus Garcia
- *Correspondence: Josep Tomàs, Neus Garcia, Maria A. Lanuza,
| | | | | | | | | | | | | | | | | |
Collapse
|