1
|
Xiong Y, Xu S, Hao K, Chen F, Xu R, Wang S, Huang H, Liu Z, Wang G, Wang H. Hydroxychloroquine alleviates maternal separation-induced schizophrenia-like behaviors by preventing autophagic degradation of TRPV1. Behav Brain Res 2025; 487:115579. [PMID: 40228718 DOI: 10.1016/j.bbr.2025.115579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/26/2025] [Accepted: 04/08/2025] [Indexed: 04/16/2025]
Abstract
Previous studies have shown that schizophrenia is closely related to transient receptor potential vanilloid1 (TRPV1). It is reported that downregulation of TRPV1 occurs in animals undergoing maternal separation (MS) which can induce behaviors and pathology reminiscent of schizophrenia. In vitro, cortisol was found to degrade TRPV1 via autophagy induction. Hydroxychloroquine (HCQ), an autophagy inhibitor, is recognized as an effective treatment to lower the risk of central nervous system degenerative diseases. This study aimed to explore whether HCQ can alleviate schizophrenia-like behaviors by modulating TRPV1 in a MS induced schizophrenia model. HCQ was administered at a dose of 2 mg/kg to rats just before MS on postnatal day 9 (PND9). Behavioral tests and measurements of biological markers were undertaken on PND10 and in adulthood. Furthermore, autophagy and TRPV1 levels were detected in the HT22 cells model. The results showed that autophagy levels increased in the hippocampus and prefrontal cortex of PND10 in MS rats, accompanied by decreased TRPV1. MS rats in adulthood showed impaired autophagy function and neuronal apoptosis in the hippocampus and prefrontal cortex, accompanied by schizophrenia-like behaviors. Early treatment with HCQ reverses these changes in MS rats and alleviates behavioral abnormalities. Our findings in the HT22 cells model confirmed the link between TRPV1 and autophagy. In summary, our findings suggest that HCQ prevents TRPV1 degradation via autophagy, alleviating MS-induced neurobiological and behavioral alterations.
Collapse
Affiliation(s)
- Ying Xiong
- Department of Psychiatry, Central Laboratory, Renmin Hospital, Wuhan University, Wuhan, China
| | - Shilin Xu
- Department of Psychiatry, Central Laboratory, Renmin Hospital, Wuhan University, Wuhan, China
| | - Keke Hao
- Department of Psychiatry, Central Laboratory, Renmin Hospital, Wuhan University, Wuhan, China
| | - Fashuai Chen
- Department of Psychiatry, Central Laboratory, Renmin Hospital, Wuhan University, Wuhan, China
| | - Rui Xu
- Department of Psychiatry, Central Laboratory, Renmin Hospital, Wuhan University, Wuhan, China
| | - Shijing Wang
- Department of Psychiatry, Central Laboratory, Renmin Hospital, Wuhan University, Wuhan, China
| | - Huan Huang
- Department of Psychiatry, Central Laboratory, Renmin Hospital, Wuhan University, Wuhan, China
| | - Zhongchun Liu
- Department of Psychiatry, Central Laboratory, Renmin Hospital, Wuhan University, Wuhan, China; Hubei Provincial Clinical Research Center for Psychiatry, Wuhan, China
| | - Gaohua Wang
- Department of Psychiatry, Central Laboratory, Renmin Hospital, Wuhan University, Wuhan, China; Hubei Provincial Clinical Research Center for Psychiatry, Wuhan, China
| | - Huiling Wang
- Department of Psychiatry, Central Laboratory, Renmin Hospital, Wuhan University, Wuhan, China; Hubei Provincial Clinical Research Center for Psychiatry, Wuhan, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China.
| |
Collapse
|
2
|
Zhu CZ, Li GZ, Lyu HF, Lu YY, Li Y, Zhang XN. Modulation of autophagy by melatonin and its receptors: implications in brain disorders. Acta Pharmacol Sin 2025; 46:525-538. [PMID: 39448859 PMCID: PMC11845611 DOI: 10.1038/s41401-024-01398-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/17/2024] [Indexed: 10/26/2024]
Abstract
Autophagy plays a crucial role in maintaining neuronal homeostasis and function, and its disruption is linked to various brain diseases. Melatonin, an endogenous hormone that primarily acts through MT1 and MT2 receptors, regulates autophagy via multiple pathways. Growing evidence indicates that melatonin's ability to modulate autophagy provides therapeutic and preventive benefits in brain disorders, including neurodegenerative and affective diseases. In this review, we summarize the key mechanisms by which melatonin affects autophagy and explore its therapeutic potential in the treatment of brain disorders.
Collapse
Affiliation(s)
- Chen-Ze Zhu
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, 310058, China
| | - Gui-Zhi Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 311399, China
| | - Hai-Feng Lyu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 311399, China
| | - Yang-Yang Lu
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, 310058, China
| | - Yue Li
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, 310058, China
| | - Xiang-Nan Zhang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, 310058, China.
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China.
| |
Collapse
|
3
|
Peng YY, Tang C, Wang HY, Ding Y, Yang H, Ma XM, Gao J, Li S, Long ZY, Lu XM, Wang YT. p75NTR mediated chronic restraint stress-induced depression-like behaviors in mice via hippocampal mTOR pathway. Life Sci 2024; 358:123175. [PMID: 39477145 DOI: 10.1016/j.lfs.2024.123175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/01/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024]
Abstract
AIMS Major depressive disorder (MDD) is an enduring and severe mood disorder. Previous studies have indicated that p75NTR is involved in neuronal survival and death. However, the specific mechanism of p75NTR in depression remains unknown. The present study aimed to explore the role and mechanism of p75NTR in depression, and try to provide a new target for the treatment of MDD. MAIN METHODS The p75NTR knockout and overexpression mice were used to establish a mouse model of depression induced by chronic restraint stress (CRS), and the behavioral effects and potential mechanisms associated with p75NTR knockout/overexpression on CRS-induced depressive mice were investigated by animal behavior, histopathology, immunofluorescence and western blot, respectively. KEY FINDINGS The results demonstrate that p75NTR knockout/overexpression can ameliorate the depressive-like behaviors observed in CRS-induced depressive mice. Furthermore, p75NTR knockout/overexpression safeguards the tissue morphology of the hippocampus, inhibits the mTOR signaling pathway to restore autophagy, and modulates apoptosis-related proteins (Bcl-2 and Bax) to reestablish normal levels of autophagy and apoptosis in hippocampal neurons of depressed mice. Importantly, p75NTR knockout/overexpression can improve synaptic plasticity through protecting the dendritic structure and dendritic spines of hippocampal neurons, and upregulating the expression of hippocampal synaptic-related proteins (PSD95 and SYN1). SIGNIFICANCE These findings suggest that p75NTR knockout/overexpression can alleviate CRS-induced depression-like behaviors by reinstating autophagy and suppressing apoptosis in hippocampal neurons, and enhancing hippocampal synaptic plasticity via mTOR pathway. These insights may provide potential targets for clinical treatment of depression.
Collapse
MESH Headings
- Animals
- TOR Serine-Threonine Kinases/metabolism
- Mice
- Hippocampus/metabolism
- Hippocampus/pathology
- Stress, Psychological/complications
- Stress, Psychological/metabolism
- Depression/metabolism
- Depression/etiology
- Male
- Mice, Knockout
- Signal Transduction
- Restraint, Physical
- Receptors, Nerve Growth Factor/metabolism
- Receptors, Nerve Growth Factor/genetics
- Mice, Inbred C57BL
- Behavior, Animal
- Neuronal Plasticity
- Apoptosis
- Disease Models, Animal
- Nerve Tissue Proteins/metabolism
- Nerve Tissue Proteins/genetics
- Autophagy/physiology
- Depressive Disorder, Major/metabolism
- Neurons/metabolism
- Neurons/pathology
Collapse
Affiliation(s)
- Yu-Yuan Peng
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing 400042, China; College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Can Tang
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Hai-Yan Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Yang Ding
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Huan Yang
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Xin-Mei Ma
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Jie Gao
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Sen Li
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Zai-Yun Long
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Xiu-Min Lu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Yong-Tang Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing 400042, China.
| |
Collapse
|
4
|
Muhammad RN, Albahairy MA, Abd El Fattah MA, Ibrahim WW. Empagliflozin-activated AMPK elicits neuroprotective properties in reserpine-induced depression via regulating dynamics of hippocampal autophagy/inflammation and PKCζ-mediated neurogenesis. Psychopharmacology (Berl) 2024; 241:2565-2584. [PMID: 39158617 PMCID: PMC11569022 DOI: 10.1007/s00213-024-06663-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/29/2024] [Indexed: 08/20/2024]
Abstract
RATIONALE Major depression has been an area of extensive research during the last decades, for it represents a leading cause of disability and suicide. The stark rise of depression rates influenced by life stressors, economic threats, pandemic era, and resistance to classical treatments, has made the disorder rather challenging. Adult hippocampal neurogenesis and plasticity are particularly sensitive to the dynamic interplay between autophagy and inflammation. In fact, the intricate balance between the two processes contributes to neuronal homeostasis and survival. OBJECTIVES Having demonstrated promising potentials in AMPK activation, a major metabolic sensor and autophagy regulator, empagliflozin (Empa) was investigated for possible antidepressant properties in the reserpine rat model of depression. RESULTS While the reserpine protocol elicited behavioral, biochemical, and histopathological changes relevant to depression, Empa outstandingly hindered these pathological perturbations. Importantly, hippocampal autophagic response markedly declined with reserpine which disrupted the AMPK/mTOR/Beclin1/LC3B machinery and, conversely, neuro-inflammation prevailed under the influence of the NLRP3 inflammasome together with oxidative/nitrative stress. Consequently, AMPK-mediated neurotrophins secretion obviously deteriorated through PKCζ/NF-κB/BDNF/CREB signal restriction. Empa restored hippocampal monoamines and autophagy/inflammation balance, driven by AMPK activation. By promoting the atypical PKCζ phosphorylation (Thr403) which subsequently phosphorylates NF-κB at Ser311, AMPK successfully reinforced BDNF/CREB signal and hippocampal neuroplasticity. The latter finding was supported by hippocampal CA3 toluidine blue staining to reveal intact neurons. CONCLUSION The current study highlights an interesting role for Empa as a regulator of autophagic and inflammatory responses in the pathology of depression. The study also pinpoints an unusual contribution for NF-κB in neurotrophins secretion via AMPK/PKCζ/NF-κB/BDNF/CREB signal transduction. Accordingly, Empa can have special benefits in diabetic patients with depressive symptoms. LIMITATIONS The influence of p-NF-κB (Ser311) on NLRP3 inflammasome assembly and activation has not been investigated, which can represent an interesting point for further research.
Collapse
Affiliation(s)
- Radwa N Muhammad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Mohammed A Albahairy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Mai A Abd El Fattah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Weam W Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
5
|
Lv T, Xue D, Wang P, Gong W, Wang K. Vanillic Acid Protects PC12 Cells from Corticosterone-Induced Neurotoxicity via Regulating Immune and Metabolic Dysregulation Based on Computational Metabolomics. ACS OMEGA 2024; 9:40456-40467. [PMID: 39372012 PMCID: PMC11447713 DOI: 10.1021/acsomega.4c03050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 10/08/2024]
Abstract
Vanillic acid is widely used in the food industry and exhibits an excellent neuroprotective effect. Nevertheless, the mechanisms underlying them are largely unexplored, especially the interactions between the neuroprotection effects of vanillic acid and inflammation-immunity-metabolism. A cell metabolomics-based mathematics algorithm was reported to interpret the potential mechanism of vanillic acid on corticosterone-induced PC12 cells by regulating immune and metabolic dysregulation. Our results showed that vanillic acid markedly inhibited the level of inflammatory factors in corticosterone-induced PC12 cells. Cell metabolomics results suggested that vanillic acid regulated the abnormality of corticosterone-induced PC12 cell metabolic profiles and markedly regulated 11 differential metabolites. Our designed scoring model base entropy weight algorithm showed that the core targets (IL2RB, IFNA13, etc.) and metabolites (lactate, ethanolamine, etc.) regulate the immunity-metabolism of vanillic acid. Furthermore, we demonstrated that vanillic acid inhibited IL2RB expression and modulated the related pathway, JAK1/STAT3 signaling. The JAK inhibitor ABT-494 was further applied to validate the effect of vanillic acid on the JAK/STAT pathway. Results indicate that vanillic acid regulates the abnormal interactions of inflammation-immunity-metabolism by repressing the IL2RB-JAK1-STAT3 pathway. Methodologically, this study contributes to the decoding of vanillic acid's antidepressive effect from the metabolism perspective combined with computer algorithms and mathematics models.
Collapse
Affiliation(s)
- Tianxing Lv
- Institute
of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou 510440, China
| | - Daojin Xue
- The
Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Peng Wang
- School
of Pharmacy, Southern Medical University, Guangzhou 510515, China
| | - Wenxia Gong
- Modern
Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
| | - Kexin Wang
- Department
of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
6
|
Xu K, Wang M, Wang H, Zhao S, Tu D, Gong X, Li W, Liu X, Zhong L, Chen J, Xie P. HMGB1/STAT3/p65 axis drives microglial activation and autophagy exert a crucial role in chronic Stress-Induced major depressive disorder. J Adv Res 2024; 59:79-96. [PMID: 37321346 PMCID: PMC11081938 DOI: 10.1016/j.jare.2023.06.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 05/04/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023] Open
Abstract
INTRODUCTION Neuroinflammation and autophagy are implicated in stress-related major depressive disorder (MDD), but the underlying molecular mechanisms remain largely unknown. OBJECTIVES Here, we identified that MDD regulated by HMGB1/STAT3/p65 axis mediated microglial activation and autophagy for the first time. Further investigations were performed to uncover the effects of this axis on MDD in vivo and in vitro. METHODS Bioinformatics analyses were used to re-analysis the transcriptome data from the dorsolateral prefrontal cortex (dlPFC) of post-mortem male MDD patients. The expression level of HMGB1 and its correlation with depression symptoms were explored in MDD clinical patients and chronic social defeat stress (CSDS)-induced depression model mice. Specific adeno-associated virus and recombinant (r)HMGB1 injection into the medial PFC (mPFC) of mice, and pharmacological inhibitors with rHMGB1 in two microglial cell lines exposed to lipopolysaccharide were used to analyze the effects of HMGB1/STAT3/p65 axis on MDD. RESULTS The differential expression of genes from MDD patients implicated in microglial activation and autophagy regulated by HMGB1/STAT3/p65 axis. Serum HMGB1 level was elevated in MDD patients and positively correlated with symptom severity. CSDS not only induced depression-like states in mice, but also enhanced microglial reactivity, autophagy as well as activation of the HMGB1/STAT3/p65 axis in mPFC. The expression level of HMGB1 was mainly increased in the microglial cells of CSDS-susceptible mice, which also correlated with depressive-like behaviors. Specific HMGB1 knockdown produced a depression-resilient phenotype and suppressed the associated microglial activation and autophagy effects of CSDS-induced. The effects induced by CSDS were mimicked by exogenous administration of rHMGB1 or specific overexpression of HMGB1, while blocked by STAT3 inhibitor or p65 knockdown. In vitro, inhibition of HMGB1/STAT3/p65 axis prevented lipopolysaccharide-induced microglial activation and autophagy, while rHMGB1 reversed these changes. CONCLUSION Our study established the role of microglial HMGB1/STAT3/p65 axis in mPFC in mediating microglial activation and autophagy in MDD.
Collapse
Affiliation(s)
- Ke Xu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Mingyang Wang
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Haiyang Wang
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Key Laboratory of Psychoseomadsy, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Shuang Zhao
- Department of Pathophysiology, Chongqing Medical University, Chongqing 400016, China
| | - Dianji Tu
- Department of Clinical Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Xue Gong
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wenxia Li
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaolei Liu
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Lianmei Zhong
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China.
| | - Jianjun Chen
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China.
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
7
|
Gan H, Ma Q, Hao W, Yang N, Chen ZS, Deng L, Chen J. Targeting autophagy to counteract neuroinflammation: A novel antidepressant strategy. Pharmacol Res 2024; 202:107112. [PMID: 38403256 DOI: 10.1016/j.phrs.2024.107112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/01/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
Depression is a common disease that affects physical and mental health and imposes a considerable burden on afflicted individuals and their families worldwide. Depression is associated with a high rate of disability and suicide. It causes a severe decline in productivity and quality of life. Unfortunately, the pathophysiological mechanisms underlying depression have not been fully elucidated, and the risk of its treatment is still presented. Studies have shown that the expression of autophagic markers in the brain and peripheral inflammatory mediators are dysregulated in depression. Autophagy-related genes regulate the level of autophagy and change the inflammatory response in depression. Depression is related to several aspects of immunity. The regulation of the immune system and inflammation by autophagy may lead to the development or deterioration of mental disorders. This review highlights the role of autophagy and neuroinflammation in the pathophysiology of depression, sumaries the autophagy-targeting small moleculars, and discusses a novel therapeutic strategy based on anti-inflammatory mechanisms that target autophagy to treat the disease.
Collapse
Affiliation(s)
- Hua Gan
- Guangzhou Key Laboratory of Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Qingyu Ma
- Guangzhou Key Laboratory of Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Wenzhi Hao
- Guangzhou Key Laboratory of Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Nating Yang
- Guangzhou Key Laboratory of Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Lijuan Deng
- Guangzhou Key Laboratory of Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China.
| | - Jiaxu Chen
- Guangzhou Key Laboratory of Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China; School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
8
|
You Z, Wang C, Lan X, Li W, Shang D, Zhang F, Ye Y, Liu H, Zhou Y, Ning Y. The contribution of polyamine pathway to determinations of diagnosis for treatment-resistant depression: A metabolomic analysis. Prog Neuropsychopharmacol Biol Psychiatry 2024; 128:110849. [PMID: 37659714 DOI: 10.1016/j.pnpbp.2023.110849] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023]
Abstract
OBJECTIVES Approximately one-third of major depressive disorder (MDD) patients do not respond to standard antidepressants and develop treatment-resistant depression (TRD). We aimed to reveal metabolic differences and discover promising potential biomarkers in TRD. METHODS Our study recruited 108 participants including healthy controls (n = 40) and patients with TRD (n = 35) and first-episode drug-naive MDD (DN-MDD) (n = 33). Plasma samples were presented to ultra performance liquid chromatography-tandem mass spectrometry. Then, a machine-learning algorithm was conducted to facilitate the selection of potential biomarkers. RESULTS TRD appeared to be a distinct metabolic disorder from DN-MDD and healthy controls (HCs). Compared to HCs, 199 and 176 differentially expressed metabolites were identified in TRD and DN-MDD, respectively. Of all the metabolites that were identified, spermine, spermidine, and carnosine were considered the most promising biomarkers for diagnosing TRD and DN-MDD patients, with the resulting area under the ROC curve of 0.99, 0.99, and 0.93, respectively. Metabolic pathway analysis yielded compelling evidence of marked changes or imbalances in both polyamine metabolism and energy metabolism, which could potentially represent the primary altered pathways associated with MDD. Additionally, L-glutamine, Beta-alanine, and spermine were correlated with HAMD score. CONCLUSIONS A more disordered metabolism structure is found in TRD than in DN-MDD and HCs. Future investigations should prioritize the comprehensive analysis of potential roles played by these differential metabolites and disturbances in polyamine pathways in the pathophysiology of TRD and depression.
Collapse
Affiliation(s)
- Zerui You
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Chengyu Wang
- Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Xiaofeng Lan
- Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Weicheng Li
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Dewei Shang
- Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Fan Zhang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Yanxiang Ye
- Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Haiyan Liu
- Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Yanling Zhou
- Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China.
| | - Yuping Ning
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China.
| |
Collapse
|
9
|
Shao R, Tan X, Pan M, Huang J, Huang L, Bi B, Huang X, Wang J, Li X. Inulin alters gut microbiota to alleviate post-stroke depressive-like behavior associated with the IGF-1-mediated MAPK signaling pathway. Brain Behav 2024; 14:e3387. [PMID: 38376033 PMCID: PMC10794126 DOI: 10.1002/brb3.3387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 02/21/2024] Open
Abstract
INTRODUCTION Gut microbiota dysbiosis is a key factor of the pathogenesis of post-stroke depression (PSD). PSD is associated with increased hippocampal neuronal apoptosis and decreased synaptic connectivity. Inulin can be involved in hippocampal neuron protection through the microbiome-gut-brain axis. However, the neuroprotective effects of inulin in PSD are still to be further investigated. METHODS By utilizing the GEO public database, we identify differentially expressed genes in the hippocampus following inulin intake. This can help us discover key signaling pathways through functional enrichment analysis. Furthermore, we validate the expression levels of signaling molecules in a rat model of PSD and examine the effects of inulin on behavioral changes and body weight. Additionally, conducting a microbiome analysis to identify significantly different microbial populations and perform correlation analysis. RESULTS The intake of inulin significantly up-regulated mitogen-activated protein kinase signaling pathway in the hippocampus. Inulin changed in the gut microbiota structure, leading to an increase in the abundance of Lactobacillus and Clostridium_sensu_stricto_1 in the intestines of PSD rats, while decreasing the abundance of Ruminococcus UCG_005, Prevotella_9, Oscillospiraceae, and Clostridia UCG_014. Furthermore, the inulin diet elevated levels of insulin-like growth factor 1 in the serum, which showed a positive correlation with the abundance of Lactobacillus. Notably, the consumption of inulin-enriched diet increased activity levels and preference for sugar water in PSD rats, while also reducing body weight. CONCLUSION These findings highlight the potential therapeutic benefits of inulin in the management of depression and emphasize the importance of maintaining a healthy gut microbiota for PSD.
Collapse
Affiliation(s)
- Rong Shao
- School of Clinical MedicineYoujiang Medical University for NationalitiesBaiseGuangxiChina
| | - Xiongchang Tan
- School of Clinical MedicineYoujiang Medical University for NationalitiesBaiseGuangxiChina
| | - Minfu Pan
- School of Clinical MedicineYoujiang Medical University for NationalitiesBaiseGuangxiChina
| | - Jiawen Huang
- School of Clinical MedicineYoujiang Medical University for NationalitiesBaiseGuangxiChina
| | - Liu Huang
- School of Clinical MedicineYoujiang Medical University for NationalitiesBaiseGuangxiChina
| | - Binyu Bi
- School of Clinical MedicineYoujiang Medical University for NationalitiesBaiseGuangxiChina
| | - Xiaohua Huang
- Department of NeurologyThe Affiliated Hospital of Youjiang Medical University for NationalitiesBaiseGuangxiChina
| | - Jie Wang
- Department of NeurologyThe Affiliated Hospital of Youjiang Medical University for NationalitiesBaiseGuangxiChina
| | - Xuebin Li
- School of Clinical MedicineYoujiang Medical University for NationalitiesBaiseGuangxiChina
- Department of NeurologyThe Affiliated Hospital of Youjiang Medical University for NationalitiesBaiseGuangxiChina
- Biological Molecule LaboratoryGuangxi University Key Laboratory of High Incidence Prevention and Control Research in Western GuangxiBaiseGuangxiChina
| |
Collapse
|
10
|
Lv S, Zhang G, Huang Y, Li J, Yang N, Lu Y, Ma H, Ma Y, Teng J. Antidepressant pharmacological mechanisms: focusing on the regulation of autophagy. Front Pharmacol 2023; 14:1287234. [PMID: 38026940 PMCID: PMC10665873 DOI: 10.3389/fphar.2023.1287234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
The core symptoms of depression are anhedonia and persistent hopelessness. Selective serotonin reuptake inhibitors (SSRIs) and their related medications are commonly used for clinical treatment, despite their significant adverse effects. Traditional Chinese medicine with its multiple targets, channels, and compounds, exhibit immense potential in treating depression. Autophagy, a vital process in depression pathology, has emerged as a promising target for intervention. This review summarized the pharmacological mechanisms of antidepressants by regulating autophagy. We presented insights from recent studies, discussed current research limitations, and proposed new strategies for basic research and their clinical application in depression.
Collapse
Affiliation(s)
- Shimeng Lv
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guangheng Zhang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yufei Huang
- Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiamin Li
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ni Yang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yitong Lu
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haoteng Ma
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuexiang Ma
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing Teng
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
11
|
Liu J, Meng F, Wang W, Wu M, Zhang Y, Cui M, Qiu C, Hu F, Zhao D, Wang D, Liu C, Liu D, Xu Z, Wang Y, Li W, Li C. Medial prefrontal cortical PPM1F alters depression-related behaviors by modifying p300 activity via the AMPK signaling pathway. CNS Neurosci Ther 2023; 29:3624-3643. [PMID: 37309288 PMCID: PMC10580341 DOI: 10.1111/cns.14293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/14/2023] Open
Abstract
AIMS Protein phosphatase Mg2+/Mn2+-dependent 1F (PPM1F) is a serine/threonine phosphatase, and its dysfunction in depression in the hippocampal dentate gyrus has been previously identified. Nevertheless, its role in depression of another critical emotion-controlling brain region, the medial prefrontal cortex (mPFC), remains unclear. We explored the functional relevance of PPM1F in the pathogenesis of depression. METHODS The gene expression levels and colocalization of PPM1F in the mPFC of depressed mice were measured by real-time PCR, western blot and immunohistochemistry. An adeno-associated virus strategy was applied to determine the impact of knockdown or overexpression of PPM1F in the excitatory neurons on depression-related behaviors under basal and stress conditions in both male and female mice. The neuronal excitability, expression of p300 and AMPK phosphorylation levels in the mPFC after knockdown of PPM1F were measured by electrophysiological recordings, real-time PCR and western blot. The depression-related behavior induced by PPM1F knockdown after AMPKα2 knockout or the antidepressant activity of PPM1F overexpression after inhibiting acetylation activity of p300 was evaluated. RESULTS Our results indicate that the expression levels of PPM1F were largely decreased in the mPFC of mice exposed to chronic unpredictable stress (CUS). Behavioral alterations relevant to depression emerged with short hairpin RNA (shRNA)-mediated genetic knockdown of PPM1F in the mPFC, while overexpression of PPM1F produced antidepressant activity and ameliorated behavioral responses to stress in CUS-exposed mice. Molecularly, PPM1F knockdown decreased the excitability of pyramidal neurons in the mPFC, and restoring this low excitability decreased the depression-related behaviors induced by PPM1F knockdown. PPM1F knockdown reduced the expression of CREB-binding protein (CBP)/E1A-associated protein (p300), a histone acetyltransferase (HAT), and induced hyperphosphorylation of AMPK, resulting in microglial activation and upregulation of proinflammatory cytokines. Conditional knockout of AMPK revealed an antidepressant phenotype, which can also block depression-related behaviors induced by PPM1F knockdown. Furthermore, inhibiting the acetylase activity of p300 abolished the beneficial effects of PPM1F elevation on CUS-induced depressive behaviors. CONCLUSION Our findings demonstrate that PPM1F in the mPFC modulates depression-related behavioral responses by regulating the function of p300 via the AMPK signaling pathway.
Collapse
|
12
|
McCready RG, Gilley KR, Kusumo LE, Hall GM, Vichaya EG. Chronic Stress Exacerbates Hyperglycemia-Induced Affective Symptoms in Male Mice. Neuroimmunomodulation 2023; 30:302-314. [PMID: 37852199 PMCID: PMC10641805 DOI: 10.1159/000534669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/16/2023] [Indexed: 10/20/2023] Open
Abstract
INTRODUCTION Among chronically ill populations, affective disorders remain underdiagnosed and undertreated. A high degree of comorbidity exists between diabetes and affective disorders, particularly depression and anxiety. The mechanisms underlying stress-induced affective dysregulation are likely distinct from those induced by diabetes. A direct comparison between stress- and hyperglycemia-induced affective dysregulation could provide insight into distinct mechanistic targets for depression/anxiety associated with these different conditions. METHODS To this end, the present study used male C57BL/6J mice to compare the independent and combined behavioral and neuroinflammatory effects of two models: (1) unpredictable chronic mild stress and (2) pharmacologically induced hyperglycemia. RESULTS Streptozotocin-induced hyperglycemia was associated with a set of behavioral changes reflective of the neurovegetative symptoms of depression (i.e., reduced open field activity, reduced grooming, increased immobility in the forced swim task, and decreased marble burying), increased hippocampal Bdnf and Tnf expression, and elevations in frontal cortex Il1b expression. Our chronic stress protocol produced alterations in anxiety-like behavior and decreased frontal cortex Il1b expression. DISCUSSION While the combination of chronic stress and hyperglycemia produced limited additive effects, their combination exacerbated total symptom burden. Overall, the data indicate that stress and hyperglycemia induce different symptom profiles via distinct mechanisms.
Collapse
Affiliation(s)
- Riley G McCready
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
| | - Kayla R Gilley
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
| | - Laura E Kusumo
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
| | - Grace M Hall
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
| | - Elisabeth G Vichaya
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
| |
Collapse
|
13
|
Nelson ML, Pfeifer JA, Hickey JP, Collins AE, Kalisch BE. Exploring Rosiglitazone's Potential to Treat Alzheimer's Disease through the Modulation of Brain-Derived Neurotrophic Factor. BIOLOGY 2023; 12:1042. [PMID: 37508471 PMCID: PMC10376118 DOI: 10.3390/biology12071042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/24/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that debilitates over 55 million individuals worldwide. Currently, treatments manage and alleviate its symptoms; however, there is still a need to find a therapy that prevents or halts disease progression. Since AD has been labeled as "type 3 diabetes" due to its similarity in pathological hallmarks, molecular pathways, and comorbidity with type 2 diabetes mellitus (T2DM), there is growing interest in using anti-diabetic drugs for its treatment. Rosiglitazone (RSG) is a peroxisome proliferator-activated receptor-gamma agonist that reduces hyperglycemia and hyperinsulinemia and improves insulin signaling. In cellular and rodent models of T2DM-associated cognitive decline and AD, RSG has been reported to improve cognitive impairment and reverse AD-like pathology; however, results from human clinical trials remain consistently unsuccessful. RSG has also been reported to modulate the expression of brain-derived neurotrophic factor (BDNF), a protein that regulates neuroplasticity and energy homeostasis and is implicated in both AD and T2DM. The present review investigates RSG's limitations and potential therapeutic benefits in pre-clinical models of AD through its modulation of BDNF expression.
Collapse
Affiliation(s)
- Mackayla L Nelson
- Department of Biomedical Sciences and Collaborative Specialization in Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Julia A Pfeifer
- Department of Biomedical Sciences and Collaborative Specialization in Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jordan P Hickey
- Department of Biomedical Sciences and Collaborative Specialization in Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Andrila E Collins
- Department of Biomedical Sciences and Collaborative Specialization in Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Bettina E Kalisch
- Department of Biomedical Sciences and Collaborative Specialization in Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
14
|
Zaki ES, Sayed RH, Saad MA, El-Yamany MF. Roflumilast ameliorates ovariectomy-induced depressive-like behavior in rats via activation of AMPK/mTOR/ULK1-dependent autophagy pathway. Life Sci 2023:121806. [PMID: 37257579 DOI: 10.1016/j.lfs.2023.121806] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/14/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
AIMS Roflumilast, a well-known phosphodiesterase-4 (PDE-4) inhibitor, possess an anti-inflammatory activity with approved indications in chronic obstructive pulmonary disease. This study aimed to evaluate the neuroprotective role of roflumilast in ovariectomy (OVX)-induced depressive-like behavior in female rats and to shed light on a potential autophagy enhancing effect. MAIN METHODS Rats were randomly divided into four groups: sham, OVX, OVX + roflumilast (1 mg/kg, p.o), and OVX + roflumilast + chloroquine (CQ) (50 mg/kg, i.p). Drugs were administered for 4 weeks starting 2 weeks after OVX. KEY FINDINGS Roflumilast improved the depressive-like behaviors observed in OVX rats as evidenced by decreasing both forced swimming and open field immobility times while, increasing % sucrose preference and number of open field crossed squares. Histopathological analysis provides further evidence of roflumilast's beneficial effects, demonstrating that roflumilast ameliorated the neuronal damage caused by OVX. Roflumilast antidepressant potential was mediated via restoring hippocampal cAMP and BDNF levels as well as down-regulating PDE4 expression. Moreover, roflumilast revealed anti-inflammatory and anti-apoptotic effects via hindering TNF-α level and diminishing Bax/Bcl2 ratio. Roflumilast restored the autophagic function via up-regulation of p-AMPK, p-ULK1, Beclin-1 and LC3II/I expression, along with downregulation of P62 level and p-mTOR protein expression. The autophagy inhibitor CQ was used to demonstrate the suggested pathway. SIGNIFICANCE The present study revealed that roflumilast showed an anti-depressant activity in OVX female rats via turning on AMPK/mTOR/ULK1-dependent autophagy pathway; and neurotrophic, anti-inflammatory, and anti-apoptotic activities. Roflumilast could offer a more secure alternative to hormone replacement therapy for postmenopausal depression treatment.
Collapse
Affiliation(s)
- Eman S Zaki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Muhammed A Saad
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman, 4184, United Arab Emirates; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Muhammed F El-Yamany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
15
|
Tran KN, Nguyen NPK, Nguyen LTH, Shin HM, Yang IJ. Screening for Neuroprotective and Rapid Antidepressant-like Effects of 20 Essential Oils. Biomedicines 2023; 11:biomedicines11051248. [PMID: 37238920 DOI: 10.3390/biomedicines11051248] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Depression is a serious psychiatric disorder with high prevalence, and the delayed onset of antidepressant effects remains a limitation in the treatment of depression. This study aimed to screen essential oils that have the potential for rapid-acting antidepressant development. PC12 and BV2 cells were used to identify essential oils with neuroprotective effects at doses of 0.1 and 1 µg/mL. The resulting candidates were treated intranasally (25 mg/kg) to ICR mice, followed by a tail suspension test (TST) and an elevated plus maze (EPM) after 30 min. In each effective essential oil, five main compounds were computationally analyzed, targeting glutamate receptor subunits. As a result, 19 essential oils significantly abolished corticosterone (CORT)-induced cell death and lactate dehydrogenase (LDH) leakage, and 13 reduced lipopolysaccharide (LPS)-induced tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6). From in vivo experiments, six essential oils decreased the immobility time of mice in the TST, in which Chrysanthemum morifolium Ramat. and Myristica fragrans Houtt. also increased time and entries into the open arms of the EPM. Four compounds including atractylon, α-curcumene, α-farnesene, and selina-4(14),7(11)-dien-8-one had an affinity toward GluN1, GluN2B, and Glu2A receptor subunits surpassed that of the reference compound ketamine. Overall, Atractylodes lancea (Thunb.) DC and Chrysanthemum morifolium Ramat essential oils are worthy of further research for fast-acting antidepressants through interactions with glutamate receptors, and their main compounds (atractylon, α-curcumene, α-farnesene, and selina-4(14),7(11)-dien-8-one) are predicted to underlie the fast-acting effect.
Collapse
Affiliation(s)
- Khoa Nguyen Tran
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Nhi Phuc Khanh Nguyen
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Ly Thi Huong Nguyen
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Heung-Mook Shin
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - In-Jun Yang
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| |
Collapse
|
16
|
Alhaddad A, Radwan A, Mohamed NA, Mehanna ET, Mostafa YM, El-Sayed NM, Fattah SA. Rosiglitazone Mitigates Dexamethasone-Induced Depression in Mice via Modulating Brain Glucose Metabolism and AMPK/mTOR Signaling Pathway. Biomedicines 2023; 11:biomedicines11030860. [PMID: 36979839 PMCID: PMC10046017 DOI: 10.3390/biomedicines11030860] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Major depressive disorder (MDD) is a common, complex disease with poorly understood pathogenesis. Disruption of glucose metabolism is implicated in the pathogenesis of depression. AMP-activated protein kinase (AMPK) has been shown to regulate the activity of several kinases, including pAKT, p38MAPK, and mTOR, which are important signaling pathways in the treatment of depression. This study tested the hypothesis that rosiglitazone (RGZ) has an antidepressant impact on dexamethasone (DEXA)-induced depression by analyzing the function of the pAKT/p38MAPK/mTOR pathway and NGF through regulation of AMPK. MDD-like pathology was induced by subcutaneous administration of DEXA (20 mg/kg) for 21 days in all groups except in the normal control group, which received saline. To investigate the possible mechanism of RGZ, the protein expression of pAMPK, pAKT, p38MAPK, and 4EBP1 as well as the levels of hexokinase, pyruvate kinase, and NGF were assessed in prefrontal cortex and hippocampal samples. The activities of pAMPK and NGF increased after treatment with RGZ. The administration of RGZ also decreased the activity of mTOR as well as downregulating the downstream signaling pathways pAKT, p38MAPK, and 4EBP1. Here, we show that RGZ exerts a potent inhibitory effect on the pAKT/p38MAPK/mTOR/4EBP1 pathway and causes activation of NGF in brain cells. This study has provided sufficient evidence of the potential for RGZ to ameliorate DEXA-induced depression. A new insight has been introduced into the critical role of NGF activation in brain cells in depression. These results suggest that RGZ is a promising antidepressant for the treatment of MDD.
Collapse
Affiliation(s)
- Aisha Alhaddad
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah 30078, Saudi Arabia
| | - Asmaa Radwan
- Department of Pharmacology &Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Noha A. Mohamed
- Department of Forgery & Counterfeiting, Forensic Medicine, Ministry of Justice, Ismailia 41522, Egypt
| | - Eman T. Mehanna
- Department of Biochemistry & Molecular Biology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
- Correspondence: (E.T.M.); (N.M.E.-S.)
| | - Yasser M. Mostafa
- Department of Pharmacology &Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Badr University in Cairo, Badr 11829, Egypt
| | - Norhan M. El-Sayed
- Department of Pharmacology &Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
- Correspondence: (E.T.M.); (N.M.E.-S.)
| | - Shaimaa A. Fattah
- Department of Biochemistry & Molecular Biology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
17
|
Ye S, Fang L, Xie S, Hu Y, Chen S, Amin N, Fang M, Hu Z. Resveratrol alleviates postpartum depression-like behavior by activating autophagy via SIRT1 and inhibiting AKT/mTOR pathway. Behav Brain Res 2023; 438:114208. [PMID: 36356720 DOI: 10.1016/j.bbr.2022.114208] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/02/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Postpartum depression (PPD) causes maternal mortality, and has a high disability rate. In recent years, studies have suggested the Sirt1 gene to be involved in the pathogenesis of depression. Resveratrol (RSV), an activator of Sirt1, has been investigated in depressive behavior. However, its effect on PPD remains to be thoroughly elucidated. METHODS We employed a mice model with bilateral oophorectomy combined with hormone-simulated pregnancy to assess postpartum depression-like behavior. The behavioral tests were performed 2 days after the withdrawal of estradiol benzoate. RSV was administered subcutaneously to the PPD model mice. Several behavioral tests were executed, including the open field test, forced swimming test, and tail suspension test. Western blot analyses and immunofluorescence staining were used to evaluate protein expression levels of SIRT1, autophagy markers, and the AKT/mTOR. RESULTS Postpartum depressive-like behavior was triggered following the withdrawal of estradiol benzoate after hormone-stimulated-pregnancy. RSV improved postpartum depressive-like behavior of mice via its upregulation of the SIRT1 and autophagy markers, such as Beclin1, ATG5 and LC3B. Also, the downregulation of the p62 protein expression was observed. More importantly, we also detected the inhibition of phosphorylated AKT and mTOR in the hippocampus of postpartum depressive-like mice. CONCLUSION RSV could alleviate postpartum depression-like behavior in mice by stimulating the SIRT1, induce autophagy and inhibit the AKT/ mTOR signaling pathway.
Collapse
Affiliation(s)
- Shan Ye
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Li Fang
- Department of Obstetrics and Gynecology, Integrated Chinese and West Medicine Hospital Affiliated to Zhejiang Chinese Medicine University, Hangzhou, Zhejiang, China
| | - Shiyi Xie
- Department of Obstetrics and Gynecology, First people's Hospital of Linping District, Hangzhou, Zhejiang, China
| | - Yan Hu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Shijia Chen
- Institute of Neuroscience, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Nashwa Amin
- Institute of Neuroscience, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Marong Fang
- Institute of Neuroscience, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhiying Hu
- Department of Obstetrics and Gynecology, Integrated Chinese and West Medicine Hospital Affiliated to Zhejiang Chinese Medicine University, Hangzhou, Zhejiang, China.
| |
Collapse
|
18
|
Male Stressed Mice Having Behavioral Control Exhibit Escalations in Dorsal Dentate Adult-Born Neurons and Spatial Memory. Int J Mol Sci 2023; 24:ijms24031983. [PMID: 36768303 PMCID: PMC9916676 DOI: 10.3390/ijms24031983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
An escapable (ES)/inescapable stress (IS) paradigm was used to study whether behavioral control and repeated footshock stressors may affect adult neurogenesis and related cognitive function. Male stressed mice having behavioral control (ES) had a short-term escalation in dorsal dentate gyrus (DG) neurogenesis, while similarly stressed mice having no such control had unaltered neurogenesis as compared to control mice receiving no stressors. Paradoxically, ES and IS mice had comparable stress-induced corticosterone elevations throughout the stress regimen. Appetitive operant conditioning and forced running procedures were used to model learning and exercise effects in this escapable/inescapable paradigm. Further, conditioning and running procedures did not seem to affect the mice's corticosterone or short-term neurogenesis. ES and IS mice did not show noticeable long-term changes in their dorsal DG neurogenesis, gliogenesis, local neuronal density, apoptosis, autophagic flux, or heterotypic stress responses. ES mice were found to have a greater number of previously labeled and functionally integrated DG neurons as compared to IS and control mice 6 weeks after the conclusion of the stressor regimen. Likewise, ES mice outperformed IS and non-stressed control mice for the first two, but not the remaining two, trials in the object location task. Compared to non-stressed controls, temozolomide-treated ES and IS mice having a lower number of dorsal DG 6-week-old neurons display poor performance in their object location working memory. These results, taken together, prompt us to conclude that repeated stressors, albeit their corticosterone secretion-stimulating effect, do not necessary affect adult dorsal DG neurogenesis. Moreover, stressed animals having behavioral control may display adult neurogenesis escalation in the dorsal DG. Furthermore, the number of 6-week-old and functionally-integrated neurons in the dorsal DG seems to confer the quality of spatial location working memory. Finally, these 6-week-old, adult-born neurons seem to contribute spatial location memory in a use-dependent manner.
Collapse
|
19
|
Yang J, Shi X, Wang Y, Ma M, Liu H, Wang J, Xu Z. Multi-Target Neuroprotection of Thiazolidinediones on Alzheimer's Disease via Neuroinflammation and Ferroptosis. J Alzheimers Dis 2023; 96:927-945. [PMID: 37927258 PMCID: PMC10741341 DOI: 10.3233/jad-230593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2023] [Indexed: 11/07/2023]
Abstract
Alzheimer's disease (AD) is the main cause of dementia in older age. The prevalence of AD is growing worldwide, causing a tremendous burden to societies and families. Due to the complexity of its pathogenesis, the current treatment of AD is not satisfactory, and drugs acting on a single target may not prevent AD progression. This review summarizes the multi-target pharmacological effects of thiazolidinediones (TZDs) on AD. TZDs act as peroxisome proliferator-activated receptor gamma (PPARγ) agonists and long-chain acyl-CoA synthetase family member 4 (ACSL4) inhibitors. TZDs ameliorated neuroinflammation and ferroptosis in preclinical models of AD. Here, we discussed recent findings from clinical trials of pioglitazone in the treatment of AD, ischemic stroke, and atherosclerosis. We also dissected the major limitations in the clinical application of pioglitazone and explained the potential benefit of pioglitazone in AD. We recommend the use of pioglitazone to prevent cognitive decline and lower AD risk in a specific group of patients.
Collapse
Affiliation(s)
- Jiahui Yang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xiaohua Shi
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yingying Wang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ming Ma
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hongyu Liu
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jiaoqi Wang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhongxin Xu
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
20
|
Pei H, Zeng J, He Z, Zong Y, Zhao Y, Li J, Chen W, Du R. Palmatine ameliorates LPS-induced HT-22 cells and mouse models of depression by regulating apoptosis and oxidative stress. J Biochem Mol Toxicol 2023; 37:e23225. [PMID: 36169195 DOI: 10.1002/jbt.23225] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/13/2022] [Accepted: 09/16/2022] [Indexed: 01/18/2023]
Abstract
Depression is one of the most common neuropsychiatric disorders that is characterized by low mood, lack of motivation, slow thinking, and recurrent suicidal thoughts. The mechanism of action of palmatine in depression has been rarely reported and remains unclear. The present study examined the neuroprotective effects of palmatine on lipopolysaccharide (LPS)-induced oxidative stress, apoptosis, and depression-like behavior. In this study, cell apoptosis was evaluated by CCK-8, flow cytometry, and Hoechst 33258 staining in LPS-induced HT-22 cells. Meanwhile, reactive oxygen species (ROS) and mitochondrial membrane potential were detected in vitro. In vivo, we investigated depressive-like behaviors in mice by an open field test (OFT) and elevated plus-maze test (EPM). Additionally, the levels of superoxide dismutases (SOD), TNF-α, IL-1β, and IL-6 were detected by enzyme-linked immunosorbent assay. The hematoxylin-eosin staining and TUNEL staining were used to evaluate the pathology of the hippocampus. The expression of Nrf2/HO-1 and BAX/Bcl-2 pathways in the hippocampus were assessed by Western blot analysis. Palmatine could significantly reduce apoptosis and ROS levels, and improve mitochondrial damage. Moreover, palmatine significantly improves movement time and central square crossing time in OFT, and improves open arms and movement time in EMP. And the levels of SOD, TNF-α, IL-1β, and IL-6 were significantly decreased after palmatine treatment. More importantly, palmatine improved neuronal apoptosis in the hippocampus, and depression through BAX/Bcl-2 and Nrf2/HO-1 signaling pathways. We provide evidence that palmatine further alleviates the depressive-like behavior of LPS-induced by improving apoptosis and oxidative stress.
Collapse
Affiliation(s)
- Hongyan Pei
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Jianning Zeng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Zhongmei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Ying Zong
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Jianming Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Weijia Chen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Rui Du
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education of China, Changchun, China.,Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer of China, Changchun, China
| |
Collapse
|
21
|
Zuo C, Cao H, Song Y, Gu Z, Huang Y, Yang Y, Miao J, Zhu L, Chen J, Jiang Y, Wang F. Nrf2: An all-rounder in depression. Redox Biol 2022; 58:102522. [PMID: 36335763 PMCID: PMC9641011 DOI: 10.1016/j.redox.2022.102522] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/19/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022] Open
Abstract
The balance between oxidation and antioxidant is crucial for maintaining homeostasis. Once disrupted, it can lead to various pathological outcomes and diseases, such as depression. Oxidative stress can result in or aggravate a battery of pathological processes including mitochondrial dysfunction, neuroinflammation, autophagical disorder and ferroptosis, which have been found to be involved in the development of depression. Inhibition of oxidative stress and related pathological processes can help improve depression. In this regard, the nuclear factor erythroid 2-related factor 2 (Nrf2) in the antioxidant defense system may play a pivotal role. Nrf2 activation can not only regulate the expression of a series of antioxidant genes that reduce oxidative stress and its damages, but also directly regulate the genes related to the above pathological processes to combat the corresponding alterations. Therefore, targeting Nrf2 has great potential for the treatment of depression. Activation of Nrf2 has antidepressant effect, but the specific mechanism remains to be elucidated. This article reviews the key role of Nrf2 in depression, focusing on the possible mechanisms of Nrf2 regulating oxidative stress and related pathological processes in depression treatment. Meanwhile, we summarize some natural and synthetic compounds targeting Nrf2 in depression therapy. All the above may provide new insights into targeting Nrf2 for the treatment of depression and provide a broad basis for clinical transformation.
Collapse
|
22
|
Activating PPARβ/δ Protects against Endoplasmic Reticulum Stress-Induced Astrocytic Apoptosis via UCP2-Dependent Mitophagy in Depressive Model. Int J Mol Sci 2022; 23:ijms231810822. [PMID: 36142731 PMCID: PMC9500741 DOI: 10.3390/ijms231810822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
As energy metabolism regulation factor, peroxisome proliferator-activated receptor (PPAR) is thought to be a potential target for the treatment of depression. The present study was performed to evaluate the effects of activating PPARβ/δ, the most highly expressed subtype in the brain, in depressive in vivo and in vitro models. We observed that PPARβ/δ agonist GW0742 significantly alleviated depressive behaviors in mice and promoted the formation of autophagosomes around the damaged mitochondria in hippocampal astrocytes. Our in vitro experiments showed that GW0742 could reduce mitochondrial oxidative stress, and thereby attenuate endoplasmic reticulum (ER) stress-mediated apoptosis pathway via inhibiting IRE1α phosphorylation, subsequently protect against astrocytic apoptosis and loss. Furthermore, we found that PPARβ/δ agonist induces astrocytic mitophagy companied with the upregulated UCP2 expressions. Knocking down UCP2 in astrocytes could block the anti-apoptosis and pro-mitophagy effects of GW0742. In conclusion, our findings reveal PPARβ/δ activation protects against ER stress-induced astrocytic apoptosis via enhancing UCP2-mediated mitophagy, which contribute to the anti-depressive action. The present study provides a new insight for depression therapy.
Collapse
|
23
|
Liang L, Wang H, Hu Y, Bian H, Xiao L, Wang G. Oridonin relieves depressive-like behaviors by inhibiting neuroinflammation and autophagy impairment in rats subjected to chronic unpredictable mild stress. Phytother Res 2022; 36:3335-3351. [PMID: 35686337 DOI: 10.1002/ptr.7518] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/21/2022] [Accepted: 05/17/2022] [Indexed: 11/11/2022]
Abstract
Major depressive disorder (MDD) is a severe life-threatening disorder with increasing prevalence. However, the mechanistic interplay between depression, neuroinflammation, and autophagy is yet to be demonstrated. This study investigated the effect of Oridonin on CUMS-induced depression, neuroinflammation, and autophagy impairment. Male 4-week-old Sprague-Dawley rats were subjected to chronic unpredictable mild stress (CUMS), some of which were injected with Oridonin, fluoxetine (FLX), or their combination at different durations of CUMS. CUMS significantly increased the levels of cytokines (IL-1β, IL-18, and caspase-1), reduced autophagy-related protein levels (Beclin-1, p62, Atg5, and LC3B), and caused microglia cells activation. Oridonin prevented and reversed the depressive-like behavior. Furthermore, it has a stronger and longer-lasting antidepressant effect than FLX. And the antidepressant effect of Oridonin in combination with fluoxetine was greater than that of high-dose fluoxetine alone. In addition, Oridonin significantly normalized autophagy-related protein levels, and reduced levels of cytokines by blocking the interaction between NLRP3 and NEK7. Similarly, Oridonin abolished levels of cytokines and reversed autophagy impairment in LPS-activated BV2 cells. All these results supported our hypothesis that Oridonin possesses potent anti-depressive action, which might be mediated via inhibition of neuroinflammation and autophagy impairment by blocking the interaction between NLRP3 and NEK7.
Collapse
Affiliation(s)
- Liang Liang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Psychology, The Fourth Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Hui Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ying Hu
- Department of Psychology, The Fourth Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Hetao Bian
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ling Xiao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
24
|
Mokhtari T. Targeting autophagy and neuroinflammation pathways with plant-derived natural compounds as potential antidepressant agents. Phytother Res 2022; 36:3470-3489. [PMID: 35794794 DOI: 10.1002/ptr.7551] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 11/06/2022]
Abstract
Major depressive disorder (MDD) is a life-threatening disease that presents several characteristics. The pathogenesis of depression still remains poorly understood. Moreover, the mechanistic interactions of natural components in treating depression to target autophagy and neuroinflammation are yet to be evaluated. This study overviewed the effects of plant-derived natural components in regulating critical pathways, particularly neuroinflammation and autophagy, associated with depression. A list of natural components, including luteolin, apigenin, hyperforin, resveratrol, salvianolic acid b, isoliquiritin, nobiletin, andrographolide, and oridonin, have been investigated. All peer-reviewed journal articles were searched by Scopus, MEDLINE, PubMed, Web of Science, and Google Scholar using the appropriated keywords, including depression, neuroinflammation, autophagy, plant, natural components, etc. The neuroinflammation and autophagy dysfunction are critically associated with the pathophysiology of depression. Natural components with higher efficiency and lower complications can be used for targeting neuroinflammation and autophagy. These components with different doses showed the beneficial antidepressant properties in rodents. These can modulate autophagy markers, mainly AMPK, LC3II/LC3I ratio, Beclin-1. Moreover, they can regulate the NLRP3 inflammasome, resulting in the suppression of proinflammatory cytokines (e.g., IL-1β and IL-18). Future in vitro and in vivo studies are required to develop novel therapeutic approaches based on plant-derived active components to treat MDD.
Collapse
Affiliation(s)
- Tahmineh Mokhtari
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
25
|
The environmental enrichment ameliorates chronic unpredictable mild stress-induced depressive-like behaviors and cognitive decline by inducing autophagy-mediated inflammation inhibition. Brain Res Bull 2022; 187:98-110. [DOI: 10.1016/j.brainresbull.2022.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 12/12/2022]
|
26
|
Lysosomal dysfunction is associated with NLRP3 inflammasome activation in chronic unpredictable mild stress-induced depressive mice. Behav Brain Res 2022; 432:113987. [PMID: 35780959 DOI: 10.1016/j.bbr.2022.113987] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 04/29/2022] [Accepted: 06/28/2022] [Indexed: 01/12/2023]
Abstract
NLRP3 inflammasome pathway-mediated inflammatory response is closely associated with depression. Increasing attention has been recently paid to the links between autophagy and depression, however, the relationship between autophagy and NLRP3 inflammasome in depressive behavior remain poorly understood. In the present study, the potential roles of autophagy-lysosome pathway in NLRP3 inflammasome regulation were investigated both in vivo (chronic unpredictable mild stress (CUMS)-induced depressive mouse model) and in vitro (LPS-induced cellular model) model. It demonstrated that CUMS induces depressive-like behaviors in mice, accompanied by increased expression of NLRP3 inflammasome and inflammatory responses. Meanwhile, it promoted the autophagosome marker LC3 and autophagic adaptor protein p62 accumulation, accompanied by the decrease of lysosomal cathepsins B and D expression in the prefrontal cortex of mice. Notably, a significant colocalization of NLRP3 and LC3 in CUMS mice by immunofluorescence co-staining were observed. For the in vitro study, disrupting the lysosomal function with Baf A1 significantly increased the LPS-induced NLRP3 inflammasome accumulation and pro-inflammatory factors (IL-1β and IL-18) production in BV2 cells. Collectively, our results suggested that the autophagic process is related to NLRP3 inflammasome activation, and dysfunctional lysosome in autophagy-lysosomal pathway may retard NLRP3 inflammasome degradation, facilitating the production of pro-inflammatory factors, thereby contributing to depressive behavior in CUMS mice.
Collapse
|
27
|
Yang FR, Zhu XX, Kong MW, Zou XJ, Ma QY, Li XJ, Chen JX. Xiaoyaosan Exerts Antidepressant-Like Effect by Regulating Autophagy Involves the Expression of GLUT4 in the Mice Hypothalamic Neurons. Front Pharmacol 2022; 13:873646. [PMID: 35784760 PMCID: PMC9243304 DOI: 10.3389/fphar.2022.873646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/05/2022] [Indexed: 11/30/2022] Open
Abstract
Many studies have proven that autophagy plays a pivotal role in the development of depression and it also affects the expression of GLUT4 in the hypothalamus. Xiaoyaosan has been shown to exert antidepressant effects in a variety of ways, but its underlying mechanism by which Xiaoyaosan regulates autophagy as well as GLUT4 in the hypothalamus remains unclear. Thus, in this study, we established a mouse model of depression induced by chronic unpredictable mild stress (CUMS), and set up autophagy blockade as a control to explore whether Xiaoyaosan exerts antidepressant effect by affecting autophagy. We examined the effects of Xiaoyaosan on behaviors exhibited during the open field test, tail suspension test and sucrose preference test, and the changes in autophagy in hypothalamic neurons as well as changes in GLUT4 and the related indicators of glucose metabolism in CUMS-induced depressive mouse model. We found that CUMS- and 3-MA-induced mice exhibited depressive-like behavioral changes, with decreased LC3 expression and increased p62 expression, suggesting decreased levels of autophagy in the mouse hypothalamus. The expression of GLUT4 was also decreased, and it was closely related to the level of autophagy through Rab8 and Rab10. Nevertheless, after the intervention of Xiaoyaosan, the above changes were effectively reversed. These results show that Xiaoyaosan can regulate the autophagy in hypothalamic neurons and the expression of GLUT4 in depressed mice.
Collapse
Affiliation(s)
- Fu-Rong Yang
- School of Basic Medical Science, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, Hubei Minzu University, Enshi, China
| | - Xiao-Xu Zhu
- School of Basic Medical Science, Hubei University of Chinese Medicine, Wuhan, China
| | - Ming-Wang Kong
- School of Basic Medical Science, Hubei University of Chinese Medicine, Wuhan, China
| | - Xiao-Juan Zou
- School of Basic Medical Science, Hubei University of Chinese Medicine, Wuhan, China
| | - Qing-Yu Ma
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Xiao-Juan Li
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
- *Correspondence: Xiao-Juan Li, ; Jia-Xu Chen,
| | - Jia-Xu Chen
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Xiao-Juan Li, ; Jia-Xu Chen,
| |
Collapse
|
28
|
Xiao L, Loh YP. Neurotrophic Factor-α1/Carboxypeptidase E Functions in Neuroprotection and Alleviates Depression. Front Mol Neurosci 2022; 15:918852. [PMID: 35711734 PMCID: PMC9197069 DOI: 10.3389/fnmol.2022.918852] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Depression is a major psychiatric disease affecting all ages and is often co-morbid with neurodegeneration in the elderly. Depression and neurodegeneration are associated with decreased neurotrophic factors. In this mini-review the functions and potential therapeutic use of a newly discovered trophic factor, Neurotrophic factor-α1 (NF-α1), also known as Carboxypeptidase E (CPE), in depression and neuroprotection are discussed. NF-α1/CPE expression is enriched in CA3 neurons of the hippocampus. Families carrying null and homozygous non-sense mutations of the NF-α1/CPE gene share common clinical features including childhood onset obesity, type 2 diabetes, impaired intellectual abilities and hypogonadotrophic hypogonadism. Studies in animal models such as CPE knockout (KO) mice and CPEfat/fat mutant mice exhibit similar phenotypes. Analysis of CPE-KO mouse brain revealed that hippocampal CA3 was completely degenerated after weaning stress, along with deficits in hippocampal long-term potentiation. Carbamazepine effectively blocked weaning stress-induced hippocampal CA3 degeneration, suggesting the stress induced epileptic-like neuronal firing led to the degeneration. Analysis of possible mechanisms underlying NF-α1/CPE -mediated neuroprotection revealed that it interacts with the serotonin receptor, 5-HTR1E, and via β arrestin activation, subsequently upregulates ERK1/2 signaling and pro-survival protein, BCL2, levels. Furthermore, the NF-α1/CPE promoter contains a peroxisome proliferator-activated receptor (PPARγ) binding site which can be activated by rosiglitazone, a PPARγ agonist, to up-regulate expression of NF-α1/CPE and neurogenesis, resulting in anti-depression in animal models. Rosiglitazone, an anti-diabetic drug administered to diabetic patients resulted in decline of depression. Thus, NF-α1/CPE is a potential therapeutic agent or drug target for treating depression and neurodegenerative disorders.
Collapse
|
29
|
Vitamin D3 suppresses astrocyte activation and ameliorates coal dust-induced mood disorders in mice. J Affect Disord 2022; 303:138-147. [PMID: 35157949 DOI: 10.1016/j.jad.2022.02.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/22/2022]
Abstract
BACKGROUND Pneumoconiosis patients exhibit significantly more anxiety and depression than healthy individuals. However, the mechanism of coal dust-induced anxiety and depression remains unclear. METHODS A pneumoconiosis mouse model with anxiety- and depression-like behaviors were established after 28 days of exposure to coal dust. Vitamin D3 treatment (1200 IU/kg/week) was administered intraperitoneally for 3 months starting from the first coal exposure. Tail suspension test (TST), open field test (OFT), and elevated plus-maze (EPM) test were used to assess anxiety- and depression-like behaviors. Theserum concentration of 25(OH)D3 and fibrillary acid protein (GFAP) expression were determined. In addition, the morphology and distribution of GFAP and neurogenic differentiation factor1 expression (NeuroD1) in different cerebral hippocampus were observed. RESULTS In coal dust-exposed mice, immobility time decreased in OFT and increased in TST,and the frequency of entering the open arm decreased in the EPM compared with the control mice. Coal dust increased hippocampal GFAP expression and astrocyte activation and reduced neurogenic differentiation factor1 expression (NeuroD1). In addition, Vitamin D3 significantly alleviated anxiety- and depressive-like behaviors in TST and EPM test, decreased GFAP expression level, modified hippocampal astrocyte activation pattern, and advanced brain-derived neurotrophic factor (BDNF) distribution and expression in CA1 and CA3 of the hippocampus. CONCLUSIONS Taken together, our results suggest that, by inhibiting the over-activation of astrocytes and increasing BDNF and neuron protection, vitamin D treatment ameliorates coal-dust-induced depressive and anxiety-like behavior, which is the first evidence that vitamin D may be a new approach for treating mood disorders caused by particulate matter.
Collapse
|
30
|
Zhao Z, Zhang Y, Gao D, Zhang Y, Han W, Xu X, Song Q, Zhao C, Yang J. Inhibition of Histone H3 Lysine-27 Demethylase Activity Relieves Rheumatoid Arthritis Symptoms via Repression of IL6 Transcription in Macrophages. Front Immunol 2022; 13:818070. [PMID: 35371061 PMCID: PMC8965057 DOI: 10.3389/fimmu.2022.818070] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/24/2022] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) occurs in about 5 per 1,000 people and can lead to severe joint damage and disability. However, the knowledge of pathogenesis and treatment for RA remains limited. Here, we found that histone demethylase inhibitor GSK-J4 relieved collagen induced arthritis (CIA) symptom in experimental mice model, and the underlying mechanism is related to epigenetic transcriptional regulation in macrophages. The role of epigenetic regulation has been introduced in the process of macrophage polarization and the pathogenesis of inflammatory diseases. As a repressive epigenetic marker, tri-methylation of lysine 27 on histone H3 (H3K27me3) was shown to be important for transcriptional gene expression regulation. Here, we comprehensively analyzed H3K27me3 binding promoter and corresponding genes function by RNA sequencing in two differentially polarized macrophage populations. The results revealed that H3K27me3 binds on the promoter regions of multiple critical cytokine genes and suppressed their transcription, such as IL6, specifically in M-CSF derived macrophages but not GM-CSF derived counterparts. Our results may provide a new approach for the treatment of inflammatory and autoimmune disorders.
Collapse
Affiliation(s)
- Zhan Zhao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Yazhuo Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Danling Gao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Yidan Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Wenwei Han
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Ximing Xu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Innovation Platform of Marine Drug Screening & Evaluation, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qiaoling Song
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Innovation Platform of Marine Drug Screening & Evaluation, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Chenyang Zhao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Innovation Platform of Marine Drug Screening & Evaluation, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jinbo Yang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Innovation Platform of Marine Drug Screening & Evaluation, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
31
|
Rosiglitazone Ameliorates Spinal Cord Injury via Inhibiting Mitophagy and Inflammation of Neural Stem Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5583512. [PMID: 35028008 PMCID: PMC8752267 DOI: 10.1155/2022/5583512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 10/03/2021] [Accepted: 11/14/2021] [Indexed: 01/17/2023]
Abstract
BACKGROUND Neurodegenerative diseases, such as Alzheimer's disease, and traumatic brain and spinal cord injury (SCI) are prevalent in clinical practice. Inhibition of hyperactive inflammation and proliferation of endogenous neural stem cells (NSCs) is a promising treatment strategy for SCI. Our previous studies demonstrated the beneficial effects of rosiglitazone (Rosi) on SCI, but its roles in inflammation inhibition and proliferation of NSCs are unknown. METHODS SCI in a rat model was established, and the effects of Rosi on motor functions were assessed. The effects of Rosi on NSC proliferation and the underlying mechanisms were explored in details. RESULTS We showed that Rosi ameliorated impairment of moto functions in SCI rats, inhibited inflammation, and promoted proliferation of NSCs in vivo. Rosi increased ATP production through enhancing glycolysis but not oxidative phosphorylation. Rosi reduced mitophagy by downregulating PTEN-induced putative kinase 1 (PINK1) transcription to promote NSC proliferation, which was effectively reversed by an overexpression of PINK1 in vitro. Through KEGG analysis and experimental validations, we discovered that Rosi reduced the expression of forkhead box protein O1 (FOXO1) which was a critical transcription factor of PINK1. Three FOXO1 consensus sequences (FCSs) were found in the first intron of the PINK1 gene, which could be potentially binding to FOXO1. The proximal FCS (chr 5: 156680169-156680185) from the translation start site exerted a more significant influence on PINK1 transcription than the other two FCSs. The overexpression of FOXO1 entirely relieved the inhibition of PINK1 transcription in the presence of Rosi. CONCLUSIONS Besides inflammation inhibition, Rosi suppressed mitophagy by reducing FOXO1 to decrease the transcription of PINK1, which played a pivotal role in accelerating the NSC proliferation.
Collapse
|
32
|
Faghfouri AH, Khajebishak Y, Payahoo L, Faghfuri E, Alivand M. PPAR-gamma agonists: Potential modulators of autophagy in obesity. Eur J Pharmacol 2021; 912:174562. [PMID: 34655597 DOI: 10.1016/j.ejphar.2021.174562] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/21/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022]
Abstract
Autophagy pathways are involved in the pathogenesis of some obesity related health problems. As obesity is a nutrient sufficiency condition, autophagy process can be altered in obesity through AMP activated protein kinase (AMPK) inhibition. Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) as the main modulator of adipogenesis process can be effective in the regulation of obesity related phenotypes. As well, it has been revealed that PPAR-gamma and its agonists can regulate autophagy in different normal or cancer cells. However, their effects on autophagy modulation in obesity have been investigated in the limited number of studies. In the current comprehensive mechanistic review, we aimed to investigate the possible mechanisms of action of PPAR-gamma on the process of autophagy in obesity through narrating the effects of PPAR-gamma on autophagy in the non-obesity conditions. Moreover, mode of action of PPAR-gamma agonists on autophagy related implications comprehensively reviewed in the various studies. Understanding the different effects of PPAR-gamma agonists on autophagy in obesity can help to develop a new approach to management of obesity.
Collapse
Affiliation(s)
- Amir Hossein Faghfouri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Community Nutrition, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yaser Khajebishak
- Department of Nutrition, Maragheh University of Medical Sciences, Maragheh, I.R., Iran
| | - Laleh Payahoo
- Department of Nutrition, Maragheh University of Medical Sciences, Maragheh, I.R., Iran
| | - Elnaz Faghfuri
- Digestive Disease Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Mohammadreza Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
33
|
Zhu TT, Zhu CN, Qiu Y, Li QS, Yu X, Hao GJ, Song P, Xu J, Li P, Yin YL. Tertiary butylhydroquinone alleviated liver steatosis and increased cell survival via β-arrestin-2/PI3K/AKT pathway. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1428-1436. [PMID: 35096302 PMCID: PMC8769507 DOI: 10.22038/ijbms.2021.58156.12924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/17/2021] [Indexed: 12/05/2022]
Abstract
OBJECTIVES This study aimed to evaluate the effects and the underlying mechanisms of tertiary butylhydroquinone (TBHQ) on diabetic liver steatosis and cell survival. MATERIALS AND METHODS We performed streptozocin injection and used a high-sugar-high-fat diet for mice to develop an animal model of type 2 diabetes mellitus (T2DM). Bodyweight, blood glucose levels, and content of insulin were measured on all of the mice. The liver tissues were observed by hematoxylin-eosin staining. Protein levels of the liver were measured by Western blot analysis in mice. Primary hepatocytes were induced by hypochlorous acid (HClO) and insulin to form insulin resistance (IR). Primary hepatocyte apoptosis was observed by Hoechst staining. The PI3K/AKT signaling pathway and β-arrestin-2 factor were evaluated by Western blot assay. RESULTS TBHQ reduced the blood glucose level and content of insulin in serum, increased body weight, and effectively alleviated liver steatosis in diabetic mice. TBHQ significantly up-regulated the expression of p-PI3K, p-AKT, GLUT4, GSK3β, and β-arrestin-2 in the liver of diabetic mice. Cell experiments confirmed that TBHQ increased the survival ability of primary hepatocytes, and TBHQ improved the expression of p-PI3K, p-AKT, GLUT4, and GSK3β by activating β-arrestin-2 in primary hepatocytes. CONCLUSION TBHQ could alleviate liver steatosis and increase cell survival, and the mechanism is due in part to β-arrestin-2 activation.
Collapse
Affiliation(s)
- Tian-tian Zhu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Chao-nan Zhu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China, Department of Pharmacy, The first Affiliated Hospital of Xinxiang Medical University, Xinxiang, China, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China
| | - Yue Qiu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Qian-Shuai Li
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Xin Yu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Guo-Jie Hao
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Ping Song
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Jian Xu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Peng Li
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Ya-ling Yin
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China, 453003,Corresponding author: Yaling Yin. School of Basic Medical Sciences, Xinxiang Medical University, 601 Jinsui Road, Xinxiang 453003, Henan, China. Tel:13663737650; Fax: 0086-373-3029918;
| |
Collapse
|
34
|
Kornhuber J, Gulbins E. New Molecular Targets for Antidepressant Drugs. Pharmaceuticals (Basel) 2021; 14:894. [PMID: 34577594 PMCID: PMC8472072 DOI: 10.3390/ph14090894] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 12/27/2022] Open
Abstract
Major depressive disorder (MDD) is a common and severe mental disorder that is usually recurrent and has a high risk of suicide. This disorder manifests not only with psychological symptoms but also multiple changes throughout the body, including increased risks of obesity, diabetes, and cardiovascular disease. Peripheral markers of oxidative stress and inflammation are elevated. MDD is therefore best described as a multisystem whole-body disease. Pharmacological treatment with antidepressants usually requires several weeks before the desired effects manifest. Previous theories of depression, such as the monoamine or neurogenesis hypotheses, do not explain these characteristics well. In recent years, new mechanisms of action have been discovered for long-standing antidepressants that also shed new light on depression, including the sphingolipid system and the receptor for brain-derived neurotrophic factor (BDNF).
Collapse
Affiliation(s)
- Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, 45117 Essen, Germany;
- Department of Surgery, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
35
|
Sumitomo A, Tomoda T. Autophagy in neuronal physiology and disease. Curr Opin Pharmacol 2021; 60:133-140. [PMID: 34416525 DOI: 10.1016/j.coph.2021.07.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/04/2021] [Accepted: 07/13/2021] [Indexed: 12/21/2022]
Abstract
Neural circuit functions critically depend on homeostatic regulation and quality control of neuronal proteins and organelles. Emerging evidence shows that autophagy, cellular clearance machinery, selectively degrades or controls homeostasis of both pre- and post-synaptic components (e.g. synaptic proteins, organelles, neurotransmitters, and their receptors), thereby regulating synaptic remodeling, neurotransmission, and neuroplasticity. Along with its well-known role in supporting neuronal cell viability and neurodevelopment, autophagy is now implicated in a wide range of neuronal physiology throughout neuronal lifetime, including higher-order brain functions such as information processing, memory encoding, or cognitive functions. Here, we review recent literature on the roles of neuronal autophagy in homeostatic maintenance of synaptic functions and discuss how disruptions in these processes may contribute to the pathophysiology of neurodevelopmental and psychiatric disorders.
Collapse
Affiliation(s)
- Akiko Sumitomo
- Centre for Addiction and Mental Health, Toronto, Ontario M5T 1R8, Canada
| | - Toshifumi Tomoda
- Centre for Addiction and Mental Health, Toronto, Ontario M5T 1R8, Canada.
| |
Collapse
|
36
|
Guo W, Tang ZY, Cai ZY, Zhao WE, Yang J, Wang XP, Ji J, Huang XX, Sun XL. Iptakalim alleviates synaptic damages via targeting mitochondrial ATP-sensitive potassium channel in depression. FASEB J 2021; 35:e21581. [PMID: 33871072 DOI: 10.1096/fj.202100124rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/18/2021] [Accepted: 03/25/2021] [Indexed: 12/28/2022]
Abstract
Synaptic plasticity damages play a crucial role in the onset and development of depression, especially in the hippocampus, which is more susceptible to stress and the most frequently studied brain region in depression. And, mitochondria have a major function in executing the complex processes of neurotransmission and plasticity. We have previously demonstrated that Iptakalim (Ipt), a new ATP-sensitive potassium (K-ATP) channel opener, could improve the depressive-like behavior in mice. But the underlying mechanisms are not well understood. The present study demonstrated that Ipt reversed depressive-like phenotype in vivo (chronic mild stress-induced mice model of depression) and in vitro (corticosterone-induced cellular model). Further study showed that Ipt could upregulate the synaptic-related proteins postsynaptic density 95 (PSD 95) and synaptophysin (SYN), and alleviated the synaptic structure damage. Moreover, Ipt could reverse the abnormal mitochondrial fission and fusion, as well as the reduced mitochondrial ATP production and collapse of mitochondrial membrane potential in depressive models. Knocking down the mitochondrial ATP-sensitive potassium (Mito-KATP) channel subunit MitoK partly blocked the above effects of Ipt. Therefore, our results reveal that Ipt can alleviate the abnormal mitochondrial dynamics and function depending on MitoK, contributing to improve synaptic plasticity and exert antidepressive effects. These findings provide a candidate compound and a novel target for antidepressive therapy.
Collapse
Affiliation(s)
- Wei Guo
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Zi-Yang Tang
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Zhen-Yu Cai
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Wen-E Zhao
- Analysis Center, Nanjing Medical University, Nanjing, China
| | - Jin Yang
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Xi-Peng Wang
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Juan Ji
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Xin-Xin Huang
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Xiu-Lan Sun
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, China.,The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
37
|
Ghaffari-Nasab A, Badalzadeh R, Mohaddes G, Alipour MR. Young plasma administration mitigates depression-like behaviours in chronic mild stress-exposed aged rats by attenuating apoptosis in prefrontal cortex. Exp Physiol 2021; 106:1621-1630. [PMID: 34018261 DOI: 10.1113/ep089415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/17/2021] [Indexed: 12/26/2022]
Abstract
NEW FINDINGS What is the central question of this study? Young plasma contains several rejuvenating factors that exert beneficial effects in ageing and neurodegenerative diseases: can repeated transfusion of young plasma improve depressive behaviour in aged rats? What is the main finding and its importance? Following chronic transfusion of young plasma, depressive behaviour was improved in the depression model of aged rats, which was associated with reduced apoptosis process in the prefrontal cortex. ABSTRACT Brain ageing alters brain responses to stress, playing an essential role in the pathophysiology of late-life depression. Moreover, apoptotic activity is up-regulated in the prefrontal cortex in ageing and stress-related mood disorders. Considerable evidence suggests that factors in young blood could reverse age-related dysfunctions in organs, especially in the brain. Therefore, this study investigated the effect of young plasma administration on depressive behaviours in aged rats exposed to chronic unpredictable mild stress (CUMS), with a focus on the apoptosis process. Young (3 months old) and aged (22 months old) male rats were randomly assigned into four groups: young control (YC), aged control (AC), aged rats subjected to CUMS (A+CUMS) and aged rats subjected to CUMS and treated with young plasma (A+CUMS+YP). In the A+CUMS and A+CUMS+YP groups, CUMS was used to generate the depression rat model. Moreover, the A+CUMS+YP group received pooled plasma (1 ml, intravenously), collected from young rats, three times per week for 4 weeks. Young plasma administration significantly improved CUMS-induced depression-like behaviours, including decreased sucrose consumption ratio, reduced locomotor activity and prolonged immobility time. Importantly, young plasma reduced neuronal apoptosis in the prefrontal cortex that was associated with reduced TUNEL-positive cells and cleaved caspase-3 protein levels in the A+CUMS+YP compared with the A+CUMS group. Young plasma can partially improve the neuropathology of late-life depression through the apoptotic signalling pathways.
Collapse
Affiliation(s)
| | - Reza Badalzadeh
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gisou Mohaddes
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Alipour
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
38
|
Tang M, Liu T, Jiang P, Dang R. The interaction between autophagy and neuroinflammation in major depressive disorder: From pathophysiology to therapeutic implications. Pharmacol Res 2021; 168:105586. [PMID: 33812005 DOI: 10.1016/j.phrs.2021.105586] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 12/14/2022]
Abstract
The past decade has revealed neuroinflammation as an important mechanism of major depressive disorder (MDD). Nod-like receptors family pyrin domain containing 3 (NLRP3) inflammasome is the key regulator interleukin-1β (IL-1β) maturation, whose activation has been reported in MDD patients and various animal models. Function as a dominant driver of neuroinflammation, NLRP3 bridges the gap between immune activation with stress exposure, and further leads to subsequent occurrence of neuropsychiatric disorders such as MDD. Of note, autophagy is a tightly regulated cellular degradation pathway that removes damaged organelles and intracellular pathogens, and maintains cellular homeostasis from varying insults. Serving as a critical cellular monitoring system, normal functioned autophagy signaling prevents excessive NLRP3 inflammasome activation and subsequent release of IL-1 family cytokines. This review will describe the current understanding of how autophagy regulates NLRP3 inflammasome activity and discuss the implications of this regulation on the pathogenesis of MDD. The extensive crosstalk between autophagy pathway and NLRP3 inflammasome is further discussed, as it is critical for developing new therapeutic strategies for MDD aimed at modulating the neuroinflammatory responses.
Collapse
Affiliation(s)
- Mimi Tang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ting Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Pei Jiang
- Institute of Clinical Pharmacy, Jining First People's Hospital, Jining Medical University, Jining 272000, China.
| | - Ruili Dang
- Institute of Clinical Pharmacy, Jining First People's Hospital, Jining Medical University, Jining 272000, China.
| |
Collapse
|
39
|
Molecular Basis of Neuronal Autophagy in Ageing: Insights from Caenorhabditis elegans. Cells 2021; 10:cells10030694. [PMID: 33800981 PMCID: PMC8004021 DOI: 10.3390/cells10030694] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 01/19/2023] Open
Abstract
Autophagy is an evolutionarily conserved degradation process maintaining cell homeostasis. Induction of autophagy is triggered as a response to a broad range of cellular stress conditions, such as nutrient deprivation, protein aggregation, organelle damage and pathogen invasion. Macroautophagy involves the sequestration of cytoplasmic contents in a double-membrane organelle referred to as the autophagosome with subsequent degradation of its contents upon delivery to lysosomes. Autophagy plays critical roles in development, maintenance and survival of distinct cell populations including neurons. Consequently, age-dependent decline in autophagy predisposes animals for age-related diseases including neurodegeneration and compromises healthspan and longevity. In this review, we summarize recent advances in our understanding of the role of neuronal autophagy in ageing, focusing on studies in the nematode Caenorhabditis elegans.
Collapse
|
40
|
Agomelatine Softens Depressive-Like Behavior through the Regulation of Autophagy and Apoptosis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6664591. [PMID: 33791372 PMCID: PMC7994102 DOI: 10.1155/2021/6664591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/11/2021] [Accepted: 02/26/2021] [Indexed: 11/17/2022]
Abstract
Depression is a common and disabling mental disorder with high recurrence rate. Searching for more effective treatments for depression is a long-standing primary objective in neuroscience. Agomelatine (AGO) was reported as an antidepressant with unique pharmacological effects. However, its effects and the underlying mechanism are still unclear. In this study, we sought to evaluate the antidepressant effects of AGO on the chronic restraint stress (CRS) mouse model and preliminarily investigate its effects on the gut microbial metabolites. The CRS model mice were established in 28 days with AGO (60 mg/kg/day, by oral) or fluoxetine (15 mg/kg/day, by oral) administration. The number of behavioral tests was conducted to evaluate the effect of AGO on depression-like behavior alleviation. Meanwhile, the expression of the BDNF/TrkB/pERK signaling pathway, apoptosis, autophagy, and inflammatory protein markers were assessed using western blot and immunofluorescence. Our findings show that AGO can attenuate the depressive-like behavior that significantly appeared in both sucrose preference and forced swimming tests. Additionally, a noticeable upregulation of autophagy including Beclin1 and LC3II, microglial activity marker Iba-1, and BDNF/TrkB/pERK signaling pathways are indicated. An obvious decreased expression of NF-κB, iNOS, and nNOS as well as apoptosis including Bax is observed in AGO administration mice. On the other hand, we found that AGO impacted the rebalancing of short-chain fatty acids (SCFAs) in mouse feces. Altogether, these findings suggest that AGO can exert antidepressant effects in a different molecular mechanism.
Collapse
|
41
|
Du Preez A, Onorato D, Eiben I, Musaelyan K, Egeland M, Zunszain PA, Fernandes C, Thuret S, Pariante CM. Chronic stress followed by social isolation promotes depressive-like behaviour, alters microglial and astrocyte biology and reduces hippocampal neurogenesis in male mice. Brain Behav Immun 2021; 91:24-47. [PMID: 32755644 DOI: 10.1016/j.bbi.2020.07.015] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/29/2020] [Accepted: 07/11/2020] [Indexed: 12/11/2022] Open
Abstract
Unpredictable chronic mild stress (UCMS) is one of the most commonly used, robust and translatable models for studying the neurobiological basis of major depression. Although the model currently has multiple advantages, it does not entirely follow the trajectory of the disorder, whereby depressive symptomology can often present months after exposure to stress. Furthermore, patients with depression are more likely to withdraw in response to their stressful experience, or as a symptom of their depression, and, in turn, this withdrawal/isolation can further exacerbate the stressful experience and the depressive symptomology. Therefore, we investigated the effect(s) of 6 weeks of UCMS followed by another 6 weeks of social isolation (referred to as UCMSI), on behaviour, corticosterone stress responsivity, immune system functioning, and hippocampal neurogenesis, in young adult male mice. We found that UCMSI induced several behavioural changes resembling depression but did not induce peripheral inflammation. However, UCMSI animals showed increased microglial activation in the ventral dentate gyrus (DG) of the hippocampus and astrocyte activation in both the dorsal and ventral DG, with increased GFAP-positive cell immunoreactivity, GFAP-positive cell hypertrophy and process extension, and increased s100β-positive cell density. Moreover, UCMSI animals had significantly reduced neurogenesis in the DG and reduced levels of peripheral vascular endothelial growth factor (VEGF) - a trophic factor produced by astrocytes and that stimulates neurogenesis. Finally, UCMSI mice also had normal baseline corticosterone levels but a smaller increase in corticosterone following acute stress, that is, the Porsolt Swim Test. Our work gives clinically relevant insights into the role that microglial and astrocyte functioning, and hippocampal neurogenesis may play in the context of stress, social isolation and depression, offering a potentially new avenue for therapeutic target.
Collapse
Affiliation(s)
- Andrea Du Preez
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK.
| | - Diletta Onorato
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Inez Eiben
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Ksenia Musaelyan
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Martin Egeland
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Patricia A Zunszain
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Cathy Fernandes
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK; MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Sandrine Thuret
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Carmine M Pariante
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| |
Collapse
|
42
|
El-Marasy SA, El Awdan SA, Hassan A, Ahmed-Farid OA, Ogaly HA. Anti-depressant effect of cerebrolysin in reserpine-induced depression in rats: Behavioral, biochemical, molecular and immunohistochemical evidence. Chem Biol Interact 2020; 334:109329. [PMID: 33279466 DOI: 10.1016/j.cbi.2020.109329] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/07/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023]
Abstract
Depression is a major psychological disorder that contributes to global health problem. This study aimed to evaluate the anti-depressant effect of Cerebrolysin (CBL) in Reserpine-induced depressed rats, its effect on oxidative stress, inflammation, regulatory cyclic AMP-dependent response element binding protein (CREB)/brain derived neurotropic factor (BDNF) signaling pathways, brain monoamines and histopathological changes was assessed. Rats received either the vehicle or Reserpine (0.5 mg/kg, i.p.) for 14 days. The other three groups were pretreated with CBL (2.5, 5 ml/kg; i.p.) or fluoxetine (FLU) (5 mg/kg, p.o.), respectively for 14 days, 30 min before reserpine injection. Then analyses were conducted. CBL reversed Reserpine-induced reduction in latency to immobility and prolongation of immobility time in the forced swimming test (FST), reduced malondialdehyde (MDA), elevated reduced glutathione (GSH), reduced tumor necrosis factor-alpha (TNF-ɑ), and elevated BDNF cortical and hippocampal brain contents. CBL elevated protein kinase A (PKA) and nuclear factor kappa-B (NF-κB) cortical and hippocampal protein expressions. CBL also ameliorated alterations in mRNA expressions of protein kinase B (AKT), CREB and BDNF in the cortical and hippocampal tissues. CBL elevated nor-epinephrine (NE), serotonin (5-HT), and dopamine (DA) and reduced 5-Hydroxyindoleacetic acid (5-HTAA), 3,4-Dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA) cortical and hippocampal contents. CBL effects were in parallel to those observed with the standard anti-depressant drug, FLU. This study shows that CBL exerted anti-depressant effect evidenced by attenuation of oxidative stress and inflammation as well as enhancement of neurogenesis, amelioration of monoaminergic system and histopathological changes.
Collapse
Affiliation(s)
| | - Sally A El Awdan
- Department of Pharmacology, National Research Centre, Giza, Egypt
| | - Azza Hassan
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Omar A Ahmed-Farid
- Department of Physiology, National Organization for Drug Control and Research, Giza, Egypt
| | - Hanan A Ogaly
- Department of Chemistry, College of Sciences, King Khalid University, Abha, Saudi Arabia; Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
43
|
Xu L, Qu C, Qu C, Shen J, Song H, Li Y, Li T, Zheng J, Zhang J. Improvement of autophagy dysfunction as a potential mechanism for environmental enrichment to protect blood-brain barrier in rats with vascular cognitive impairment. Neurosci Lett 2020; 739:135437. [PMID: 33132180 DOI: 10.1016/j.neulet.2020.135437] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 10/15/2020] [Indexed: 12/23/2022]
Abstract
Vascular cognitive impairment (VCI) is the second most common cause of dementia after Alzheimer's disease, and the cognitive impairment is one of the common effects of VCI. Unfortunately, it lacks effective therapeutic treatments at present. In our previous study, environmental enrichment (EE), as an early intervention for lifestyle modification, can ameliorate cognitive impairment by attenuating hippocampal blood-brain barrier (BBB) injury in chronic cerebral hypoperfusion (CCH) rats. However, the underlying mechanism remains unclear. Here, we found CCH rats in the standard environment (SE) developed cognitive impairment and BBB damage, which were significantly alleviated with the EE intervention. Meantime, EE improved the autophagy dysfunction caused by CCH in the hippocampus of rats, suggesting that the effect of EE on cognitive function and BBB may be related to the improvement of autophagy pathway.
Collapse
Affiliation(s)
- Linling Xu
- Department of Neurology, Zhongnan Hospital, Wuhan University, No. 169, Donghu Road, Wuhan 430071, Hubei, China
| | - Changhua Qu
- Department of Neurology, Zhongnan Hospital, Wuhan University, No. 169, Donghu Road, Wuhan 430071, Hubei, China
| | - Chujie Qu
- Department of Neurology, Zhongnan Hospital, Wuhan University, No. 169, Donghu Road, Wuhan 430071, Hubei, China
| | - Jun Shen
- Department of Neurology, Zhongnan Hospital, Wuhan University, No. 169, Donghu Road, Wuhan 430071, Hubei, China
| | - Hao Song
- Department of Neurology, Zhongnan Hospital, Wuhan University, No. 169, Donghu Road, Wuhan 430071, Hubei, China
| | - Yaqing Li
- Department of Neurology, Zhongnan Hospital, Wuhan University, No. 169, Donghu Road, Wuhan 430071, Hubei, China
| | - Tian Li
- Department of Neurology, Zhongnan Hospital, Wuhan University, No. 169, Donghu Road, Wuhan 430071, Hubei, China
| | - Jiaxin Zheng
- Department of Neurology, Zhongnan Hospital, Wuhan University, No. 169, Donghu Road, Wuhan 430071, Hubei, China
| | - Junjian Zhang
- Department of Neurology, Zhongnan Hospital, Wuhan University, No. 169, Donghu Road, Wuhan 430071, Hubei, China.
| |
Collapse
|
44
|
Tian Q, Fan X, Ma J, Han Y, Li D, Jiang S, Zhang F, Guang H, Shan X, Chen R, Wang P, Wang Q, Yang J, Wang Y, Hu L, Shentu Y, Gong Y, Fan J. Resveratrol ameliorates lipopolysaccharide-induced anxiety-like behavior by attenuating YAP-mediated neuro-inflammation and promoting hippocampal autophagy in mice. Toxicol Appl Pharmacol 2020; 408:115261. [PMID: 33010263 DOI: 10.1016/j.taap.2020.115261] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022]
Abstract
Resveratrol, a type of natural polyphenol mainly extracted from the skin of grapes, has been reported to protect against inflammatory responses and exert anxiolytic effect. Yes-associated protein (YAP), a major downstream effector of the Hippo signaling pathway, plays a critical role in inflammation. The present study aimed to explore whether YAP pathway was involved in the anxiolytic effect of resveratrol in lipopolysaccharide (LPS)-treated C57BL/6J male mice. LPS treatment induced anxiety-like behavior and decreased sirtuin 1 while increased YAP expression in the hippocampus. Resveratrol attenuated LPS-induced anxiety-like behavior, which was blocked by EX-527 (a sirtuin 1 inhibitor). Mechanistically, the anxiolytic effects of resveratrol were accompanied by a marked decrease in YAP, interleukin-1β and ionized calcium binding adaptor molecule 1 (Iba-1) while a significant increase in autophagic protein expression in the hippocampus. Pharmacological study using XMU-MP-1, a YAP activator, showed that activating YAP could induce anxiety-like behavior and neuro-inflammation as well as decrease hippocampal autophagy. Moreover, activation of YAP by XMU-MP-1 treatment attenuated the ameliorative effects of resveratrol on LPS-induced anxiety-like behavior, while blockade of YAP activation with verteporfin, a YAP inhibitor, attenuated LPS-induced anxiety-like behavior and neuro-inflammation as well as hippocampal autophagy. Finally, rapamycin-mediated promotion of autophagy attenuated LPS-induced anxiety-like behavior and decreased interleukin-1β and Iba-1 expression in the hippocampus. Collectively, these results indicate that amelioration by resveratrol in LPS-induced anxiety-like behavior is through attenuating YAP-mediated neuro-inflammation and promoting hippocampal autophagy, and suggest that inhibition of YAP pathway could be a potential therapeutic target for anxiety-like behavior induced by neuro-inflammation.
Collapse
Affiliation(s)
- Qiuyun Tian
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaofang Fan
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jianshe Ma
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yujiao Han
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Dantong Li
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shan Jiang
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Fukun Zhang
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Hui Guang
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaoqiong Shan
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Ran Chen
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Ping Wang
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qing Wang
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jinge Yang
- Department of Medical Technology, Jiangxi Medical College, Shangrao, Jiangxi 334709, China
| | - Yongyu Wang
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lianggang Hu
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yangping Shentu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Yongsheng Gong
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Junming Fan
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
45
|
Pierone BC, Pereira CA, Garcez ML, Kaster MP. Stress and signaling pathways regulating autophagy: From behavioral models to psychiatric disorders. Exp Neurol 2020; 334:113485. [PMID: 32987001 DOI: 10.1016/j.expneurol.2020.113485] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/21/2020] [Accepted: 09/24/2020] [Indexed: 01/10/2023]
Abstract
Autophagy is a process of degradation and recycling of cytoplasmatic components by the lysosomes. In the central nervous system (CNS), autophagy is involved in cell surveillance, neuroinflammation, and neuroplasticity. Neuropsychiatric conditions are associated with functional disturbances at molecular and cellular levels, causing significant impairments in cell homeostasis. Additionally, emerging evidence supports that dysfunctions in autophagy contribute to the pathophysiology of neurological diseases. However, the studies on autophagy in psychiatric disorders are highly heterogeneous and have several limitations, mainly to assess causality and determine the autophagy flux in animals and human samples. Besides, the role of this mechanism in non-neuronal cells in the CNS is only recently being explored. Thus, this review summarizes and discusses the changes in the autophagy pathway in animal models of psychiatric disorders and the limitations underlying the significant findings. Moreover, we compared these findings with clinical studies. Understanding the involvement of autophagy in psychiatric conditions, and the limitation of our current models may contribute to the development of more effective research approaches and possibly pharmacological therapies.
Collapse
Affiliation(s)
- Bruna C Pierone
- Department of Biochemistry, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Caibe A Pereira
- Department of Biochemistry, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Michelle L Garcez
- Department of Biochemistry, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Manuella P Kaster
- Department of Biochemistry, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
46
|
Ali T, Rahman SU, Hao Q, Li W, Liu Z, Ali Shah F, Murtaza I, Zhang Z, Yang X, Liu G, Li S. Melatonin prevents neuroinflammation and relieves depression by attenuating autophagy impairment through FOXO3a regulation. J Pineal Res 2020; 69:e12667. [PMID: 32375205 DOI: 10.1111/jpi.12667] [Citation(s) in RCA: 221] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 04/16/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022]
Abstract
Major depressive disorder (MDD) is a life-threatening illness characterized by mood changes and high rates of suicide. Although the role of neuroinflammation in MMD has been studied, the mechanistic interplay between antidepressants, neuroinflammation, and autophagy is yet to be investigated. The present study investigated the effect of melatonin on LPS-induced neuroinflammation, depression, and autophagy impairment. Our results showed that in mice, lipopolysaccharide (LPS) treatment induced depressive-like behaviors and caused autophagy impairment by dysregulating ATG genes. Moreover, LPS treatment significantly increased the levels of cytokines (TNFα, IL-1β, IL-6), enhanced NF-ᴋB phosphorylation, caused glial (astrocytes and microglia) cell activation, dysregulated FOXO3a expression, increased the levels of redox signaling molecules such as ROS/TBARs, and altered expression of Nrf2, SOD2, and HO-1. Melatonin treatment significantly abolished the effects of LPS, as demonstrated by improved depressive-like behaviors, normalized autophagy-related gene expression, and reduced levels of cytokines. Further, we investigated the role of autophagy in LPS-induced depressive-like behavior and neuroinflammation using autophagy inhibitors 3-MA and Ly294002. Interestingly, inhibitor treatment significantly abolished and reversed the anti-depressive, pro-autophagy, and anti-inflammatory effects of melatonin. The present study concludes that the anti-depressive effects of melatonin in LPS-induced depression might be mediated via autophagy modulation through FOXO3a signaling.
Collapse
Affiliation(s)
- Tahir Ali
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Shafiq Ur Rahman
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
- Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal Dir, Pakistan
| | - Qiang Hao
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Weifen Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Zizhen Liu
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Fawad Ali Shah
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad., Islamabad, Pakistan
| | - Iram Murtaza
- Signal Transduction Lab, Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Zaijun Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University College of Pharmacy, Guangzhou, China
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Gongping Liu
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
47
|
Autophagy in Neuronal Development and Plasticity. Trends Neurosci 2020; 43:767-779. [PMID: 32800535 DOI: 10.1016/j.tins.2020.07.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/03/2020] [Accepted: 07/09/2020] [Indexed: 01/05/2023]
Abstract
Autophagy is a highly conserved intracellular clearance pathway in which cytoplasmic contents are trafficked to the lysosome for degradation. Within neurons, it helps to remove damaged organelles and misfolded or aggregated proteins and has therefore been the subject of intense research in relation to neurodegenerative disease. However, far less is understood about the role of autophagy in other aspects of neuronal physiology. Here we review the literature on the role of autophagy in maintaining neuronal stem cells and in neuronal plasticity in adult life and we discuss how these contribute to structural and functional deficits observed in a range of human disorders.
Collapse
|
48
|
Connexin 43: A novel ginsenoside Rg1-sensitive target in a rat model of depression. Neuropharmacology 2020; 170:108041. [DOI: 10.1016/j.neuropharm.2020.108041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 12/31/2022]
|
49
|
Dong Y, Wang X, Zhou Y, Zheng Q, Chen Z, Zhang H, Sun Z, Xu G, Hu G. Hypothalamus-pituitary-adrenal axis imbalance and inflammation contribute to sex differences in separation- and restraint-induced depression. Horm Behav 2020; 122:104741. [PMID: 32165183 DOI: 10.1016/j.yhbeh.2020.104741] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/06/2020] [Accepted: 03/08/2020] [Indexed: 02/07/2023]
Abstract
Whether social contact contributes to the underlying mechanisms of depression and the observed sex differences is unclear. In this study, we subjected young male and female mice to separation- and restraint-induced stress for 4 weeks and assessed behaviors, neurotransmitter levels, hormones, and inflammatory cytokines. Results showed that, compared with controls, male mice exposed to stress displayed significant decreases in body weight and sucrose preference after 1 week. In the fourth week, they exhibited a higher degree of anxiety (open field test) and depressive-like behavior (forced swim test). Moreover, the males showed significant decreases in monoamine neurotransmitters, including norepinephrine and dopamine in striatum, and an increase in pro-inflammatory cytokines, such as tumor necrosis factor α and interleukin 1β in serum. In contrast, females showed persistent loss of weight during stress and displayed significant decreases in sucrose preference after stress. Importantly, the females but not males showed activation of the hypothalamus-pituitary-adrenal (HPA) axis, with significantly higher levels adrenocorticotropic hormone. Additionally, mRNA level of c-fos and AVP showed there was significant interaction between stress and sex. Finally, we conclude that an imbalance of the HPA axis and inflammation might be important contributors to sex differences in separation/restraint-induced depressive behavior and that changes might be mediated by c-fos and AVP.
Collapse
Affiliation(s)
- Yinfeng Dong
- Department of Medical Care, School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Xuyang Wang
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated 6th People's Hospital, Shanghai 200233, China
| | - Yan Zhou
- Department of Medical Care, School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qiaomu Zheng
- Department of Medical Care, School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zheng Chen
- Department of Medical Care, School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hua Zhang
- Department of Medical Care, School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhiling Sun
- Department of Medical Care, School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Guihua Xu
- Department of Medical Care, School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Gang Hu
- Department of Pharmacology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
50
|
Guo XD, Ji J, Xue TF, Sun YQ, Guo RB, Cheng H, Sun XL. FTY720 Exerts Anti-Glioma Effects by Regulating the Glioma Microenvironment Through Increased CXCR4 Internalization by Glioma-Associated Microglia. Front Immunol 2020; 11:178. [PMID: 32194542 PMCID: PMC7065571 DOI: 10.3389/fimmu.2020.00178] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 01/23/2020] [Indexed: 01/24/2023] Open
Abstract
Background: Glioblastoma (GBM) is one of the most malignant and aggressive primary brain tumors. The incurability of glioblastoma is heavily influenced by the glioma microenvironment. FTY720, a potent immunosuppressant, has been reported to exert anti-tumor effects in glioblastoma. However, the impact of FTY720 on the glioma microenvironment remains unclear. Methods: We examined the effects of FTY720 on the distribution and polarization of glioma-associated microglia and macrophages (GAMs) in glioma-bearing rats using immunofluorescence staining. qRT-PCR and Western blotting were used to detect the expressions of CXCR4 and MAPK pathway-related signal molecules on microglia in the coculture system. The levels of inflammatory factors were tested via ELISA. Wound healing assay and Matrigel invasion assay were used to determine the migration and invasion of C6 glioma cells. Results: We discovered that FTY720 could inhibit the growth, migration, and invasion of glioma by targeting GAMs to impede their effect on glioma cells. Simultaneously, FTY720 could block the chemoattraction of GAMs by inhibiting MAPK-mediated secretion of IL-6 through increased internalization of CXCR4. Moreover, microglia and macrophages are polarized from pro-glioma to an anti-tumor phenotype. Conclusion: These results provide novel insights into the inhibitory effects of FTY720 on glioma by targeting GAMs-glioma interaction in the tumor microenvironment.
Collapse
Affiliation(s)
- Xu-Dong Guo
- Neuroprotective Drug Discovery Key Laboratory of Nanjing Medical University, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
- The First People's Hospital of Changzhou, Changzhou, China
| | - Juan Ji
- Neuroprotective Drug Discovery Key Laboratory of Nanjing Medical University, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Teng-Fei Xue
- Neuroprotective Drug Discovery Key Laboratory of Nanjing Medical University, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Yu-Qin Sun
- Neuroprotective Drug Discovery Key Laboratory of Nanjing Medical University, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Ruo-Bing Guo
- Neuroprotective Drug Discovery Key Laboratory of Nanjing Medical University, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Hong Cheng
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiu-Lan Sun
- Neuroprotective Drug Discovery Key Laboratory of Nanjing Medical University, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
- Collaborative Innovation Center for Personalized Cancer Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|