1
|
Araragi N, Petermann M, Suzuki M, Larkum M, Mosienko V, Bader M, Alenina N, Klempin F. Acute Optogenetic Stimulation of Serotonin Neurons Reduces Cell Proliferation in the Dentate Gyrus of Mice. ACS Chem Neurosci 2025; 16:781-789. [PMID: 39937171 PMCID: PMC11887043 DOI: 10.1021/acschemneuro.4c00771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/13/2025] Open
Abstract
The dentate gyrus of the hippocampus is targeted by axons from serotonin raphe neurons, where the neurotransmitter modulates adult neurogenesis and antidepressant action, and mediates the neurogenic effect of running. Whether running-induced cell proliferation is directly mediated by serotonin remains unknown. Here, we took advantage of Tph2-ChR2-YFP transgenic mice in which the light-sensitive protein channelrhodopsin-2 (ChR2) is specifically expressed in tryptophan hydroxylase 2 (TPH2)-expressing neurons. We selectively activated serotonin neurons via optogenetics and determined the effect on cell proliferation in the dentate gyrus. Our data reveal a significant reduction in the number of newly generated cells upon overnight raphe stimulation. The decrease in cell proliferation was absent when serotonin neurons were light-activated for six consecutive nights. However, we observed an interhemispheric difference in BrdU-positive cell numbers. We conclude that acute network dynamics occur between serotonin raphe neurons and the hippocampus, directly affecting precursor cell proliferation.
Collapse
Affiliation(s)
- Naozumi Araragi
- Max
Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße
10, 13125 Berlin, Germany
- Charité
University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Markus Petermann
- Max
Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße
10, 13125 Berlin, Germany
| | - Mototaka Suzuki
- Department
of Cognitive and Systems Neuroscience, Swammerdam Institute for Life
Sciences, Faculty of Science, University
of Amsterdam, 1098XH Amsterdam, The Netherlands
| | - Matthew Larkum
- Charité
University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
- NeuroCure
Cluster of Excellence, Department of Biology, Humboldt University, Charitéplatz 1, 10117 Berlin, Germany
| | - Valentina Mosienko
- Max
Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße
10, 13125 Berlin, Germany
| | - Michael Bader
- Max
Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße
10, 13125 Berlin, Germany
- Charité
University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
- German
Center for Cardiovascular Research (DZHK), Partner Site, 10785 Berlin, Germany
- Institute
for Biology, University of Lübeck, 23562 Lübeck, Germany
| | - Natalia Alenina
- Max
Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße
10, 13125 Berlin, Germany
- German
Center for Cardiovascular Research (DZHK), Partner Site, 10785 Berlin, Germany
| | - Friederike Klempin
- Max
Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße
10, 13125 Berlin, Germany
- Charité
University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
2
|
Gölöncsér F, Baranyi M, Tod P, Maácz F, Sperlágh B. P2X7 receptor inhibition alleviates mania-like behavior independently of interleukin-1β. iScience 2024; 27:109284. [PMID: 38444608 PMCID: PMC10914489 DOI: 10.1016/j.isci.2024.109284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/15/2023] [Accepted: 02/16/2024] [Indexed: 03/07/2024] Open
Abstract
Purinergic dysfunctions are associated with mania and depression pathogenesis. P2X7 receptor (P2X7R) mediates the IL-1β maturation via NLRP3 inflammasome activation. We tested in a mouse model of the subchronic amphetamine (AMPH)-induced hyperactivity whether P2X7R inhibition alleviated mania-like behavior through IL-1β. Treatment with JNJ-47965567, a P2X7R antagonist, abolished AMPH-induced hyperlocomotion in wild-type and IL-1α/β-knockout male mice. The NLRP3 inhibitor MCC950 failed to reduce AMPH-induced locomotion in WT mice, whereas the IL-1 receptor antagonist anakinra slightly increased it. AMPH increased IL-10, TNF-α, and TBARS levels, but did not influence BDNF levels, serotonin, dopamine, and noradrenaline content in brain tissues in either genotypes. JNJ-47965567 and P2rx7-gene deficiency, but not IL-1α/β-gene deficiency, attenuated AMPH-induced [3H]dopamine release from striatal slices. In wild-type and IL-1α/β-knockout female mice, JNJ-47965567 was also effective in attenuating AMPH-induced hyperlocomotion. This study suggests that AMPH-induced hyperactivity is modulated by P2X7Rs, but not through IL-1β.
Collapse
Affiliation(s)
- Flóra Gölöncsér
- Laboratory of Molecular Pharmacology, HUN-REN Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Mária Baranyi
- Laboratory of Molecular Pharmacology, HUN-REN Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Pál Tod
- Laboratory of Molecular Pharmacology, HUN-REN Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Fruzsina Maácz
- Laboratory of Molecular Pharmacology, HUN-REN Institute of Experimental Medicine, 1083 Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University School of Ph.D Studies, 1083 Budapest, Hungary
| | - Beáta Sperlágh
- Laboratory of Molecular Pharmacology, HUN-REN Institute of Experimental Medicine, 1083 Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University School of Ph.D Studies, 1083 Budapest, Hungary
| |
Collapse
|
3
|
Fukuyama K, Motomura E, Okada M. Age-Dependent Activation of Purinergic Transmission Contributes to the Development of Epileptogenesis in ADSHE Model Rats. Biomolecules 2024; 14:204. [PMID: 38397441 PMCID: PMC10886636 DOI: 10.3390/biom14020204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
To explore the developmental processes of epileptogenesis/ictogenesis, this study determined age-dependent functional abnormalities associated with purinergic transmission in a genetic rat model (S286L-TG) of autosomal-dominant sleep-related hypermotor epilepsy (ADSHE). The age-dependent fluctuations in the release of ATP and L-glutamate in the orbitofrontal cortex (OFC) were determined using microdialysis and ultra-high-performance liquid chromatography with mass spectrometry (UHPLC-MS). ATP release from cultured astrocytes was also determined using UHPLC-MS. The expressions of P2X7 receptor (P2X7R), connexin 43, phosphorylated-Akt and phosphorylated-Erk were determined using capillary immunoblotting. No functional abnormalities associated with purinergic transmission could be detected in the OFC of 4-week-old S286L-TG and cultured S286L-TG astrocytes. However, P2X7R expression, as well as basal and P2X7R agonist-induced ATP releases, was enhanced in S286L-TG OFC in the critical ADSHE seizure onset period (7-week-old). Long-term exposure to a modest level of P2X7R agonist, which could not increase astroglial ATP release, for 14 d increased the expressions of P2X7R and connexin 43 and the signaling of Akt and Erk in astrocytes, and it enhanced the sensitivity of P2X7R to its agonists. Akt but not Erk increased P2X7R expression, whereas both Akt and Erk increased connexin 43 expression. Functional abnormalities, enhanced ATP release and P2X7R expression were already seen before the onset of ADSHE seizure in S286L-TG. Additionally, long-term exposure to the P2X7R agonist mimicked the functional abnormalities associated with purinergic transmission in astrocytes, similar to those in S286L-TG OFC. Therefore, these results suggest that long-term modestly enhanced purinergic transmission and/or activated P2X7R are, at least partially, involved in the development of the epileptogenesis of ADSHE, rather than that of ictogenesis.
Collapse
Affiliation(s)
| | | | - Motohiro Okada
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan; (K.F.); (E.M.)
| |
Collapse
|
4
|
Wang K, Huang S, Fu D, Yang X, Ma L, Zhang T, Zhao W, Deng D, Ding Y, Zhang Y, Huang L, Chen X. The neurobiological mechanisms and therapeutic prospect of extracellular ATP in depression. CNS Neurosci Ther 2024; 30:e14536. [PMID: 38375982 PMCID: PMC10877668 DOI: 10.1111/cns.14536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 09/21/2023] [Accepted: 11/07/2023] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Depression is a prevalent psychiatric disorder with high long-term morbidities, recurrences, and mortalities. Despite extensive research efforts spanning decades, the cellular and molecular mechanisms of depression remain largely unknown. What's more, about one third of patients do not have effective anti-depressant therapies, so there is an urgent need to uncover more mechanisms to guide the development of novel therapeutic strategies. Adenosine triphosphate (ATP) plays an important role in maintaining ion gradients essential for neuronal activities, as well as in the transport and release of neurotransmitters. Additionally, ATP could also participate in signaling pathways following the activation of postsynaptic receptors. By searching the website PubMed for articles about "ATP and depression" especially focusing on the role of extracellular ATP (eATP) in depression in the last 5 years, we found that numerous studies have implied that the insufficient ATP release from astrocytes could lead to depression and exogenous supply of eATP or endogenously stimulating the release of ATP from astrocytes could alleviate depression, highlighting the potential therapeutic role of eATP in alleviating depression. AIM Currently, there are few reviews discussing the relationship between eATP and depression. Therefore, the aim of our review is to conclude the role of eATP in depression, especially focusing on the evidence and mechanisms of eATP in alleviating depression. CONCLUSION We will provide insights into the prospects of leveraging eATP as a novel avenue for the treatment of depression.
Collapse
Affiliation(s)
- Kaixin Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Shiqian Huang
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Daan Fu
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Xinxin Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Lulin Ma
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Tianhao Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Wenjing Zhao
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Daling Deng
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Yuanyuan Ding
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Yanyan Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Li Huang
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| |
Collapse
|
5
|
Qi W, Jin X, Guan W. Purinergic P2X7 receptor as a potential therapeutic target in depression. Biochem Pharmacol 2024; 219:115959. [PMID: 38052270 DOI: 10.1016/j.bcp.2023.115959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/07/2023]
Abstract
The elaborate mechanisms of depression have always been a research hotspot in recent years, and the pace of research has never ceased. The P2X7 receptor (P2X7R) belongs to one of the adenosine triphosphates (ATP)-gated cation channels that exist widely in brain tissues and play a prominent role in the regulation of depression-related pathology. To date, the role of purinergic P2X7R in the mechanisms underlying depression is not fully understood. In this review, we conclude that the purinergic receptor P2X7 is a potential therapeutic target for depression based on research results published over the past 5 years in Google Scholar and the National Library of Medicine (PubMed). Additionally, we introduced the functional characteristics of P2X7R and confirmed that excessive activation of P2X7R led to increased release of inflammatory cytokines, which eventually contributed to depression. Furthermore, the inhibition of P2X7R produced antidepressant-like effects in animal models of depression, further proving that P2X7R signalling mediates depression-like behaviours. Finally, we summarised related studies on drugs that exert antidepressant effects by regulating the expression of P2X7R. We hope that the conclusions of this review will provide information on the role of P2X7R in the neuropathophysiology of depression and novel therapeutic targets for the treatment of depression.
Collapse
Affiliation(s)
- Wang Qi
- Department of Pharmacology, The First People's Hospital of Yancheng, Yancheng 224000, Jiangsu, China
| | - Xiang Jin
- Department of Pharmacy, The Second People's Hospital of Nantong, Nantong 226002, Jiangsu, China
| | - Wei Guan
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
6
|
Mut-Arbona P, Sperlágh B. P2 receptor-mediated signaling in the physiological and pathological brain: From development to aging and disease. Neuropharmacology 2023; 233:109541. [PMID: 37062423 DOI: 10.1016/j.neuropharm.2023.109541] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/25/2023] [Accepted: 04/06/2023] [Indexed: 04/18/2023]
Abstract
The purinergic pathway mediates both pro-inflammatory and anti-inflammatory responses, whereas the breakdown of adenosine triphosphate (ATP) is in a critical equilibrium. Under physiological conditions, extracellular ATP is maintained at a nanomolar concentration. Whether released into the medium following tissue damage, inflammation, or hypoxia, ATP is considered a clear indicator of cell damage and a marker of pathological conditions. In this overview, we provide an update on the participation of P2 receptor-mediated purinergic signaling in normal and pathological brain development, with special emphasis on neurodevelopmental psychiatric disorders. Since purinergic signaling is ubiquitous, it is not surprising that it plays a prominent role in developmental processes and pathological alterations. The main aim of this review is to conceptualize the time-dependent dynamic changes in the participation of different players in the purinome in shaping the normal and aberrant developmental patterns and diseases of the central nervous system over one's lifespan.
Collapse
Affiliation(s)
- Paula Mut-Arbona
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary; János Szentágothai Doctoral School, Semmelweis University, Budapest, Hungary
| | - Beáta Sperlágh
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary; János Szentágothai Doctoral School, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
7
|
Varma M, Kaur A, Bhandari R, Kumar A, Kuhad A. Major depressive disorder (mdd): emerging immune targets at preclinical level. Expert Opin Ther Targets 2023; 27:479-501. [PMID: 37334668 DOI: 10.1080/14728222.2023.2225216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/11/2023] [Indexed: 06/20/2023]
Abstract
BACKGROUND Major depressive disorder is a mental health disorder that is characterized by a persistently low mood and loss of interest. MDD is affecting over 3.8% of the global population as a major health problem. Its etiology is complex, and involves the interaction between a number of factors, including genetic predisposition and the presence of environmental stresses. AREAS COVERED The role of the immune and inflammatory systems in depression has been gaining interest, with evidence suggesting the potential involvement of pro-inflammatory molecules like TNF, interleukins, prostaglandins, and other cytokines, among others, has been put forth. Along with this, the potential of agents, from NSAIDs to antibiotics, are being evaluated in therapy for depression. The current review will discuss emerging immune targets at the preclinical level. EXPERT OPINION With increasing evidence to show that immune and inflammatory mediators are implicated in MDD, increasing research toward their potential as drug targets is encouraged. At the same time, agents acting on these mediators and possessing anti-inflammatory potential are also being evaluated as future therapeutic options for MDD, and increasing focus toward non-conventional drugs which can act through these mechanisms is important as regards the future prospects of the use of anti-inflammatory agents in depression.
Collapse
Affiliation(s)
- Manasi Varma
- UGC-Centre of Advanced Study, University Institute of Pharmaceutical Sciences, Chandigarh, India
| | - Arshpreet Kaur
- UGC-Centre of Advanced Study, University Institute of Pharmaceutical Sciences, Chandigarh, India
| | - Ranjana Bhandari
- UGC-Centre of Advanced Study, University Institute of Pharmaceutical Sciences, Chandigarh, India
| | - Ashwani Kumar
- UGC-Centre of Advanced Study, University Institute of Pharmaceutical Sciences, Chandigarh, India
| | - Anurag Kuhad
- UGC-Centre of Advanced Study, University Institute of Pharmaceutical Sciences, Chandigarh, India
| |
Collapse
|
8
|
Therapeutic Potential of the Purinergic System in Major Depressive Disorder Associated with COVID-19. Cell Mol Neurobiol 2023; 43:621-637. [PMID: 35348977 PMCID: PMC8960668 DOI: 10.1007/s10571-022-01215-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 03/18/2022] [Indexed: 12/23/2022]
Abstract
Neuroinflammation is closely related to the development of depression, since the latter is caused, among other factors, by inflammatory processes, mainly related to the activation of microglia and expression of specific genes, which occurs during the neuroinflammatory process. Thus, COVID-19 is an important risk factor for the development of depression, since in addition to generating the feeling of stress, which also increases the activity of the immune system, it is also the cause of pathological processes and physiological ones that lead to the development of neuroinflammation, microglial activation, gene expression dysfunction and decreased concentration of available serotonin. That said, drugs are being used to combat COVID-19 to reduce the oxidative stress presented in the disease. Thus, tramadol and fluoxetine are highlighted as drugs used, however, although they present some positive results, such as the reduction of pro-inflammatory cytokines, they are also associated with negative effects such as dependence, pulmonary, cardiac and brain impairment. From this, the purinergic system is highlighted in the literature as a possible therapeutic target. This is because its mechanisms are related to the regulation of microglia, astrocytes and the physiology of important neurotransmitters and hormones. Added to this, there is a modulation of inflammatory activity, especially with regard to the P2X7 receptors of this system. The latter is an important target for the treatment of depression and COVID-19, since positive results were obtained through the genetic exclusion of this receptor and the use of selective antagonists.
Collapse
|
9
|
Wen L, Tang L, Zhang M, Wang C, Li S, Wen Y, Tu H, Tian H, Wei J, Liang P, Yang C, Li G, Gao Y. Gallic Acid Alleviates Visceral Pain and Depression via Inhibition of P2X7 Receptor. Int J Mol Sci 2022; 23:ijms23116159. [PMID: 35682841 PMCID: PMC9181225 DOI: 10.3390/ijms23116159] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic visceral pain can occur in many disorders, the most common of which is irritable bowel syndrome (IBS). Moreover, depression is a frequent comorbidity of chronic visceral pain. The P2X7 receptor is crucial in inflammatory processes and is closely connected to developing pain and depression. Gallic acid, a phenolic acid that can be extracted from traditional Chinese medicine, has been demonstrated to be anti-inflammatory and anti-depressive. In this study, we investigated whether gallic acid could alleviate comorbid visceral pain and depression by reducing the expression of the P2X7 receptor. To this end, the pain thresholds of rats with comorbid visceral pain and depression were gauged using the abdominal withdraw reflex score, whereas the depression level of each rat was quantified using the sucrose preference test, the forced swimming test, and the open field test. The expressions of the P2X7 receptor in the hippocampus, spinal cord, and dorsal root ganglion (DRG) were assessed by Western blotting and quantitative real-time PCR. Furthermore, the distributions of the P2X7 receptor and glial fibrillary acidic protein (GFAP) in the hippocampus and DRG were investigated in immunofluorescent experiments. The expressions of p-ERK1/2 and ERK1/2 were determined using Western blotting. The enzyme-linked immunosorbent assay was utilized to measure the concentrations of IL-1β, TNF-α, and IL-10 in the serum. Our results demonstrate that gallic acid was able to alleviate both pain and depression in the rats under study. Gallic acid also reduced the expressions of the P2X7 receptor and p-ERK1/2 in the hippocampi, spinal cords, and DRGs of these rats. Moreover, gallic acid treatment decreased the serum concentrations of IL-1β and TNF-α, while raising IL-10 levels in these rats. Thus, gallic acid may be an effective novel candidate for the treatment of comorbid visceral pain and depression by inhibiting the expressions of the P2X7 receptor in the hippocampus, spinal cord, and DRG.
Collapse
Affiliation(s)
- Lequan Wen
- Joint Program of Nanchang University and Queen Mary University of London, Nanchang University, 461 Bayi Avenue, Nanchang 330006, China; (L.W.); (L.T.); (H.T.); (C.Y.)
| | - Lirui Tang
- Joint Program of Nanchang University and Queen Mary University of London, Nanchang University, 461 Bayi Avenue, Nanchang 330006, China; (L.W.); (L.T.); (H.T.); (C.Y.)
| | - Mingming Zhang
- Department of Physiology, Basic Medical College, Nanchang University, 461 Bayi Avenue, Nanchang 330006, China; (M.Z.); (Y.W.); (G.L.)
| | - Congrui Wang
- Second Clinic Medical College, Nanchang University, 461 Bayi Avenue, Nanchang 330006, China; (C.W.); (S.L.); (P.L.)
| | - Shujuan Li
- Second Clinic Medical College, Nanchang University, 461 Bayi Avenue, Nanchang 330006, China; (C.W.); (S.L.); (P.L.)
| | - Yuqing Wen
- Department of Physiology, Basic Medical College, Nanchang University, 461 Bayi Avenue, Nanchang 330006, China; (M.Z.); (Y.W.); (G.L.)
| | - Hongcheng Tu
- Basic Medical College, Nanchang University, 461 Bayi Avenue, Nanchang 330006, China; (H.T.); (J.W.)
| | - Haokun Tian
- Joint Program of Nanchang University and Queen Mary University of London, Nanchang University, 461 Bayi Avenue, Nanchang 330006, China; (L.W.); (L.T.); (H.T.); (C.Y.)
| | - Jingyi Wei
- Basic Medical College, Nanchang University, 461 Bayi Avenue, Nanchang 330006, China; (H.T.); (J.W.)
| | - Peiwen Liang
- Second Clinic Medical College, Nanchang University, 461 Bayi Avenue, Nanchang 330006, China; (C.W.); (S.L.); (P.L.)
| | - Changsen Yang
- Joint Program of Nanchang University and Queen Mary University of London, Nanchang University, 461 Bayi Avenue, Nanchang 330006, China; (L.W.); (L.T.); (H.T.); (C.Y.)
| | - Guodong Li
- Department of Physiology, Basic Medical College, Nanchang University, 461 Bayi Avenue, Nanchang 330006, China; (M.Z.); (Y.W.); (G.L.)
| | - Yun Gao
- Department of Physiology, Basic Medical College, Nanchang University, 461 Bayi Avenue, Nanchang 330006, China; (M.Z.); (Y.W.); (G.L.)
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, 461 Bayi Avenue, Nanchang 330006, China
- Correspondence: ; Tel.: +86-791-86360586
| |
Collapse
|
10
|
Araragi N, Alenina N, Bader M. Carbon-mixed dental cement for fixing fiber optic ferrules prevents visually triggered locomotive enhancement in mice upon optogenetic stimulation. Heliyon 2022; 8:e08692. [PMID: 35024491 PMCID: PMC8732788 DOI: 10.1016/j.heliyon.2021.e08692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/29/2021] [Accepted: 12/27/2021] [Indexed: 11/07/2022] Open
Abstract
Optogenetics enables activation/silencing of specific neurons with unprecedented temporal and spatial resolution. The method, however, is prone to artefacts associated with biophysics of light used for illuminating opsin-expressing neurons. Here we employed Tph2-mhChR2-YFP transgenic mice, which express channelrhodopsin (ChR2) only in serotonergic neurons in the brain, to investigate behavioral effects of optogenetic stimulation of serotonergic neurons. Surprisingly, optogenetic stimulation enhanced locomotion even in ChR2-negative mice. Such unspecific effects are likely to be due to visual agitation caused by light leakage from the dental cement, which is commonly used to fixate optic fiber ferrules on the skull. When we employed black dental cement made by mixing carbons with dental cement powders, such unspecific effects were abolished in ChR2-negative mice, but not in ChR2-positive mice, confirming that enhanced locomotion resulted from serotonergic activation. The method allows extracting genuine behavioral effects of optogenetic stimulation without contamination from visual stimuli caused by light leakage. Dental cement for fixating optic fiber ferrules was shown to permit light leakage. Such light leakage was quantified as photon counts. Leaked light induced locomotive enhancement through visual stimuli. By adding carbon to the dental cement mixture, such light leakage can be prevented. The method enables behavioral experiments without confounding visual factors.
Collapse
Affiliation(s)
- Naozumi Araragi
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125 Berlin, Germany.,Charité - Berlin University of Medicine, Charitéplatz 1, 10117 Berlin, Germany
| | - Natalia Alenina
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125 Berlin, Germany.,Institute of Translational Biomedicine, St. Petersburg State University, University Embankment 7-9, 199034 St. Petersburg, Russia
| | - Michael Bader
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125 Berlin, Germany.,Charité - Berlin University of Medicine, Charitéplatz 1, 10117 Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany.,Institute for Biology, University of Lübeck, Germany
| |
Collapse
|
11
|
Eren-Koçak E, Dalkara T. Ion Channel Dysfunction and Neuroinflammation in Migraine and Depression. Front Pharmacol 2021; 12:777607. [PMID: 34858192 PMCID: PMC8631474 DOI: 10.3389/fphar.2021.777607] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/22/2021] [Indexed: 01/15/2023] Open
Abstract
Migraine and major depression are debilitating disorders with high lifetime prevalence rates. Interestingly these disorders are highly comorbid and show significant heritability, suggesting shared pathophysiological mechanisms. Non-homeostatic function of ion channels and neuroinflammation may be common mechanisms underlying both disorders: The excitation-inhibition balance of microcircuits and their modulation by monoaminergic systems, which depend on the expression and function of membrane located K+, Na+, and Ca+2 channels, have been reported to be disturbed in both depression and migraine. Ion channels and energy supply to synapses not only change excitability of neurons but can also mediate the induction and maintenance of inflammatory signaling implicated in the pathophysiology of both disorders. In this respect, Pannexin-1 and P2X7 large-pore ion channel receptors can induce inflammasome formation that triggers release of pro-inflammatory mediators from the cell. Here, the role of ion channels involved in the regulation of excitation-inhibition balance, synaptic energy homeostasis as well as inflammatory signaling in migraine and depression will be reviewed.
Collapse
Affiliation(s)
- Emine Eren-Koçak
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey.,Department of Psychiatry, Medical Faculty, Hacettepe University, Ankara, Turkey
| | - Turgay Dalkara
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
| |
Collapse
|
12
|
Fazekas CL, Bellardie M, Török B, Sipos E, Tóth B, Baranyi M, Sperlágh B, Dobos-Kovács M, Chaillou E, Zelena D. Pharmacogenetic excitation of the median raphe region affects social and depressive-like behavior and core body temperature in male mice. Life Sci 2021; 286:120037. [PMID: 34637795 DOI: 10.1016/j.lfs.2021.120037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 09/27/2021] [Accepted: 10/05/2021] [Indexed: 11/29/2022]
Abstract
AIMS Median raphe region (MRR) is an important bottom-up regulatory center for various behaviors as well as vegetative functions, but detailed descriptions and links between the two are still largely unexplored. METHODS Pharmacogenetics was used to study the role of MRR in social (sociability, social interaction, resident intruder test) and emotional behavior (forced swim test) parallel with some vegetative changes (biotelemetry: core body temperature). Additionally, to validate pharmacogenetics, the effect of clozapine-N-oxide (CNO), the ligand of the artificial receptor, was studied by measuring (i) serum and brainstem concentrations of CNO and clozapine; (ii) MRR stimulation induced neurotransmitter release in hippocampus; (iii) CNO induced changes in body temperature and locomotor activity. KEY FINDINGS MRR stimulation decreased locomotion, increased friendly social behavior in the resident intruder test and enhanced depressive-like behavior. The latter was accompanied by diminished decrease in core body temperature. Thirty minutes after CNO injection clozapine was predominant in the brainstem. Nonetheless, peripheral CNO injection was able to induce glutamate release in the hippocampus. CNO had no immediate (<30 min) or chronic (repeated injections) effect on the body temperature or locomotion. SIGNIFICANCE We confirmed the role of MRR in locomotion, social and depressive-like behavior. Most interestingly, only depressive-like behavior was accompanied by changed body temperature regulation, which was also observed in human depressive disorders previously. This indicates clinical relevance of our findings. Despite low penetration, CNO acts centrally, but does not influence the examined basic parameters, being suitable for repeated behavioral testing.
Collapse
Affiliation(s)
- Csilla Lea Fazekas
- Institute of Experimental Medicine, Budapest, Hungary; János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary.
| | - Manon Bellardie
- Institute of Experimental Medicine, Budapest, Hungary; INRAE Centre Val de Loire, CNRS, IFCE, Université de Tours, UMR 85 Physiologie de la Reproduction et des Comportements, France
| | - Bibiána Török
- Institute of Experimental Medicine, Budapest, Hungary; János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Eszter Sipos
- Institute of Experimental Medicine, Budapest, Hungary
| | - Blanka Tóth
- Budapest University of Technology and Economics, Faculty of Chemical Technology and Biotechnology, Department of Inorganic and Analytical Chemistry, Budapest, Hungary
| | - Mária Baranyi
- Institute of Experimental Medicine, Budapest, Hungary
| | | | | | - Elodie Chaillou
- INRAE Centre Val de Loire, CNRS, IFCE, Université de Tours, UMR 85 Physiologie de la Reproduction et des Comportements, France
| | - Dóra Zelena
- Institute of Experimental Medicine, Budapest, Hungary; Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
13
|
Kristof Z, Eszlari N, Sutori S, Gal Z, Torok D, Baksa D, Petschner P, Sperlagh B, Anderson IM, Deakin JFW, Juhasz G, Bagdy G, Gonda X. P2RX7 gene variation mediates the effect of childhood adversity and recent stress on the severity of depressive symptoms. PLoS One 2021; 16:e0252766. [PMID: 34111150 PMCID: PMC8191953 DOI: 10.1371/journal.pone.0252766] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/22/2021] [Indexed: 12/12/2022] Open
Abstract
The P2X purinoceptor 7 (P2RX7) mediates inflammatory microglial responses and is implicated in neuroimmune mechanisms of depression and neurodegenerative disorders. A number of studies suggest that psychosocial stress may precipitate depression through immune activation. Genetic association studies of P2RX7 variants with depression have been inconclusive. However, nearly all studies have focused on only one single-nucleotide polymorphism (SNP) and have not considered interaction with psychosocial stress. We investigated the effect of several variations in P2RX7 gene using a clumping method in interaction with early adversities and recent stress on depression severity. 1752 subjects provided information on childhood adversities, recent life events, and current depression severity. Participants were genotyped for 681 SNPs in the P2RX7 gene, 335 of them passed quality control and were entered into linear regression models followed by a clumping procedure for main effect and interactions. No significant main effect was observed. Rs74892325 emerged as a top SNP for interaction with childhood adversities and rs61953400 for interaction with recent life events. Our study is the first to investigate several variants in the P2RX7 gene and in interaction with two types of stress, extending our understanding of neuroinflammation in depression, and supporting that the majority of genes influence depression by enhancing sensitivity to stressors.
Collapse
Affiliation(s)
- Zsuliet Kristof
- Doctoral School of Mental Health Sciences, Semmelweis University, Budapest, Hungary
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Nora Eszlari
- Faculty of Pharmacy, Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary
- NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Sara Sutori
- Faculty of Pharmacy, Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary
- Faculty of Humanities and Social Sciences, Institute of Psychology, Pazmany Peter Catholic University, Budapest, Hungary
| | - Zsofia Gal
- Faculty of Pharmacy, Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary
| | - Dora Torok
- Faculty of Pharmacy, Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary
| | - Daniel Baksa
- Faculty of Pharmacy, Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary
- SE-NAP-2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Peter Petschner
- Faculty of Pharmacy, Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - Beata Sperlagh
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary
| | - Ian M. Anderson
- Faculty of Biological, Division of Neuroscience and Experimental Psychology, Neuroscience and Psychiatry Unit, School of Biological Sciences, Medical and Human Sciences, The University of Manchester and Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - John Francis William Deakin
- Faculty of Biological, Division of Neuroscience and Experimental Psychology, Neuroscience and Psychiatry Unit, School of Biological Sciences, Medical and Human Sciences, The University of Manchester and Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Gabriella Juhasz
- Faculty of Pharmacy, Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary
- SE-NAP-2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - Gyorgy Bagdy
- Faculty of Pharmacy, Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary
- NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - Xenia Gonda
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
- NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
- * E-mail:
| |
Collapse
|
14
|
Brain immune cells characterization in UCMS exposed P2X7 knock-out mouse. Brain Behav Immun 2021; 94:159-174. [PMID: 33609652 DOI: 10.1016/j.bbi.2021.02.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Several lines of evidence suggest that neuroinflammation might be a key neurobiological mechanism of depression. In particular, the P2X7 receptor (P2X7R), an ATP-gated ion channel involved in activation of the pro-inflammatory interleukin IL-1β, has been shown to be a potential new pharmacological target in depression. The aim of this study was to explore the impact of unpredictable chronic mild stress (UCMS) on behavioural changes, hippocampal neurogenesis, and cellular characterisation of brain immune cells, in P2X7R Knock-Out (KO) mice. METHODS P2X7R KO and wild-type (WT) mice were subjected to a 6-week UCMS protocol and received a conventional oral antidepressant (15 mg.kg-1 fluoxetine) or water per os. The mice then underwent behavioural tests consisting of the tail suspension test (TST), the elevated plus maze (EPM) test, the open field test, the splash test and the nest building test (week 7). Doublecortin immunostaining (DCX) of brain slices was used to assess neurogenesis in the dentate gyrus. Iba1 and TMEM119 immunostaining was used to characterise brain immune cells, Iba1 as a macrophage marker (including microglial cells) and TMEM119 as a potential specific resident microglial cells marker. RESULTS After a 6-week UCMS exposure, P2X7R KO mice exhibited less deterioration of their coat state, spent a significantly smaller amount of time immobile in the TST and spent a larger amount of time in the open arms of the EPM. As expected, adult ventral hippocampal neurogenesis was significantly decreased by UCMS in WT mice, while P2X7R KO mice maintained ventral hippocampal neurogenesis at similar levels in both control and UCMS conditions. In stress-related brain regions, P2X7R KO mice also exhibited less recruitment of Iba1+/TMEM119+ and Iba1+/TMEM119- cells in the brain. The ratio between these two staining patterns revealed that brain immune cells were mostly composed of Iba1+/TMEM119+ cells (87 to 99%), and this ratio was affected neither by P2X7R genetic depletion nor by antidepressant treatment. DISCUSSION Behavioural patterns, neurogenesis levels and density of brain immune cells in P2X7R KO mice after exposure to UCMS significantly differed from control conditions. Brain immune cells were mostly increased in brain regions known to be sensitive to UCMS exposure in WT but not in P2X7R KO mice. Considering Iba1+/TMEM119- staining might characterize peripheral immune cells, the ratio between Iba1+/TMEM119+ cells and IBA1+/TMEM119- cells, suggests that the rate of peripheral immune cells recruitment may not be modified neither by P2X7R gene expression nor by antidepressant treatment.
Collapse
|
15
|
Salient brain entities labelled in P2rx7-EGFP reporter mouse embryos include the septum, roof plate glial specializations and circumventricular ependymal organs. Brain Struct Funct 2021; 226:715-741. [PMID: 33427974 PMCID: PMC7981336 DOI: 10.1007/s00429-020-02204-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 12/16/2020] [Indexed: 02/08/2023]
Abstract
The purinergic system is one of the oldest cell-to-cell communication mechanisms and exhibits relevant functions in the regulation of the central nervous system (CNS) development. Amongst the components of the purinergic system, the ionotropic P2X7 receptor (P2X7R) stands out as a potential regulator of brain pathology and physiology. Thus, P2X7R is known to regulate crucial aspects of neuronal cell biology, including axonal elongation, path-finding, synapse formation and neuroprotection. Moreover, P2X7R modulates neuroinflammation and is posed as a therapeutic target in inflammatory, oncogenic and degenerative disorders. However, the lack of reliable technical and pharmacological approaches to detect this receptor represents a major hurdle in its study. Here, we took advantage of the P2rx7-EGFP reporter mouse, which expresses enhanced green fluorescence protein (EGFP) immediately downstream of the P2rx7 proximal promoter, to conduct a detailed study of its distribution. We performed a comprehensive analysis of the pattern of P2X7R expression in the brain of E18.5 mouse embryos revealing interesting areas within the CNS. Particularly, strong labelling was found in the septum, as well as along the entire neural roof plate zone of the brain, except chorioidal roof areas, but including specialized circumventricular roof formations, such as the subfornical and subcommissural organs (SFO; SCO). Moreover, our results reveal what seems a novel circumventricular organ, named by us postarcuate organ (PArcO). Furthermore, this study sheds light on the ongoing debate regarding the specific presence of P2X7R in neurons and may be of interest for the elucidation of additional roles of P2X7R in the idiosyncratic histologic development of the CNS and related systemic functions.
Collapse
|
16
|
P2X7 Receptor Signaling in Stress and Depression. Int J Mol Sci 2019; 20:ijms20112778. [PMID: 31174279 PMCID: PMC6600521 DOI: 10.3390/ijms20112778] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 12/31/2022] Open
Abstract
Stress exposure is considered to be the main environmental cause associated with the development of depression. Due to the limitations of currently available antidepressants, a search for new pharmacological targets for treatment of depression is required. Recent studies suggest that adenosine triphosphate (ATP)-mediated signaling through the P2X7 receptor (P2X7R) might play a prominent role in regulating depression-related pathology, such as synaptic plasticity, neuronal degeneration, as well as changes in cognitive and behavioral functions. P2X7R is an ATP-gated cation channel localized in different cell types in the central nervous system (CNS), playing a crucial role in neuron-glia signaling. P2X7R may modulate the release of several neurotransmitters, including monoamines, nitric oxide (NO) and glutamate. Moreover, P2X7R stimulation in microglia modulates the innate immune response by activating the NLR family pyrin domain containing 3 (NLRP3) inflammasome, consistent with the neuroimmune hypothesis of MDD. Importantly, blockade of P2X7R leads to antidepressant-like effects in different animal models, which corroborates the findings that the gene encoding for the P2X7R is located in a susceptibility locus of relevance to depression in humans. This review will discuss recent findings linked to the P2X7R involvement in stress and MDD neuropathophysiology, with special emphasis on neurochemical, neuroimmune, and neuroplastic mechanisms.
Collapse
|
17
|
Balázsfi D, Zelena D, Demeter K, Miskolczi C, Varga ZK, Nagyváradi Á, Nyíri G, Cserép C, Baranyi M, Sperlágh B, Haller J. Differential Roles of the Two Raphe Nuclei in Amiable Social Behavior and Aggression - An Optogenetic Study. Front Behav Neurosci 2018; 12:163. [PMID: 30116182 PMCID: PMC6082963 DOI: 10.3389/fnbeh.2018.00163] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 07/11/2018] [Indexed: 01/10/2023] Open
Abstract
Serotonergic mechanisms hosted by raphe nuclei have important roles in affiliative and agonistic behaviors but the separate roles of the two nuclei are poorly understood. Here we studied the roles of the dorsal (DR) and median raphe region (MRR) in aggression by optogenetically stimulating the two nuclei. Mice received three 3 min-long stimulations, which were separated by non-stimulation periods of 3 min. The stimulation of the MRR decreased aggression in a phasic-like manner. Effects were rapidly expressed during stimulations, and vanished similarly fast when stimulations were halted. No carryover effects were observed in the subsequent three trials performed at 2-day intervals. No effects on social behaviors were observed. By contrast, DR stimulation rapidly and tonically promoted social behaviors: effects were present during both the stimulation and non-stimulation periods of intermittent stimulations. Aggressive behaviors were marginally diminished by acute DR stimulations, but repeated stimulations administered over 8 days considerably decreased aggression even in the absence of concurrent stimulations, indicating the emergence of carryover effects. No such effects were observed in the case of social behaviors. We also investigated stimulation-induced neurotransmitter release in the prefrontal cortex, a major site of aggression control. MRR stimulation rapidly but transiently increased serotonin release, and induced a lasting increase in glutamate levels. DR stimulation had no effect on glutamate, but elicited a lasting increase of serotonin release. Prefrontal serotonin levels remained elevated for at least 2 h subsequent to DR stimulations. The stimulation of both nuclei increased GABA release rapidly and transiently. Thus, differential behavioral effects of the two raphe nuclei were associated with differences in their neurotransmission profiles. These findings reveal a surprisingly strong behavioral task division between the two raphe nuclei, which was associated with a nucleus-specific neurotransmitter release in the prefrontal cortex.
Collapse
Affiliation(s)
- Diána Balázsfi
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.,János Szentágothai School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Dóra Zelena
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Kornél Demeter
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Christina Miskolczi
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.,János Szentágothai School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Zoltán K Varga
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.,János Szentágothai School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Ádám Nagyváradi
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gábor Nyíri
- Laboratory of Cerebral Cortex Research, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Csaba Cserép
- János Szentágothai School of Neurosciences, Semmelweis University, Budapest, Hungary.,Laboratory of Cerebral Cortex Research, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Mária Baranyi
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Beáta Sperlágh
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - József Haller
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.,Institute of Behavioural Sciences and Law Enforcement, National University of Public Service, Budapest, Hungary
| |
Collapse
|