1
|
Zhong W, Yang Q, Wang F, Lin X, Chen Z, Xue J, Zhao W, Liu X, Rao B, Zhang J. Cell-specific localization of β-synuclein in the mouse retina. Brain Struct Funct 2024; 229:1279-1298. [PMID: 38703218 DOI: 10.1007/s00429-024-02799-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/01/2024] [Indexed: 05/06/2024]
Abstract
β-synuclein, a member of the synuclein family, is frequently co-expressed with α-synuclein in the neural system, where it serves to inhibit abnormal aggregation of α-synuclein in neurodegenerative diseases. Beyond its role in pathological conditions, β-synuclein plays various functions independently of α-synuclein. In our investigation, we discovered a broader expression of β-synuclein in the mouse retina compared to α-synuclein. This widespread pattern implies its potential significance in the retina. Through detailed examination via light- and electron-microscopic immunocytochemistry, we identified β-synuclein expression from the inner segment (IS) and outer segment (OS) of photoreceptor cells to the ganglion cell layer (GCL). Our findings unveiled unique features, including β-synuclein immunoreactive IS and OS of cones, higher expression in cone pedicles than in rod spherules, absence in horizontal cells, limited expression in cone bipolar dendrites and somas, higher expression in cone bipolar terminals, presence in most amacrine cells, and expression in almost majority of somas in GCL with an absence in intrinsically photosensitive retinal ganglion cell (ipRGCs) processes. Notably, all cholinergic amacrine cells express high β- but not α-synuclein, while dopaminergic amacrine cells express α-synuclein exclusively. These distinctive expression patterns offer valuable insights for further exploration into the functions of β-synuclein and its potential role in synuclein pathology within the retina.
Collapse
Affiliation(s)
- Wenhui Zhong
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- Laboratory of Retinal Physiology and Disease, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| | - Qingwen Yang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Laboratory of Retinal Physiology and Disease, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Fenglan Wang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Laboratory of Retinal Physiology and Disease, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Xin Lin
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Laboratory of Retinal Physiology and Disease, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Zhongqun Chen
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Laboratory of Retinal Physiology and Disease, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jing Xue
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Laboratory of Retinal Physiology and Disease, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Wenna Zhao
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Laboratory of Retinal Physiology and Disease, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Xiaoqing Liu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Laboratory of Retinal Physiology and Disease, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Bilin Rao
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Laboratory of Retinal Physiology and Disease, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jun Zhang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- Laboratory of Retinal Physiology and Disease, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
2
|
Sirati N, Shen Z, Olrichs NK, Popova B, Verhoek IC, Lagerwaard IM, Braus GH, Kaloyanova DV, Helms JB. GAPR-1 Interferes with Condensate Formation of Beclin 1 in Saccharomyces cerevisiae. J Mol Biol 2023; 435:167935. [PMID: 36586462 DOI: 10.1016/j.jmb.2022.167935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
Golgi-Associated plant Pathogenesis Related protein 1 (GAPR-1) acts as a negative regulator of autophagy by interacting with Beclin 1 at Golgi membranes in mammalian cells. The molecular mechanism of this interaction is largely unknown. We recently showed that human GAPR-1 (hGAPR-1) has amyloidogenic properties resulting in the formation of protein condensates upon overexpression in Saccharomyces cerevisiae. Here we show that human Beclin 1 (hBeclin 1) has several predicted amyloidogenic regions and that overexpression of hBeclin 1-mCherry in yeast also results in the formation of fluorescent protein condensates. Surprisingly, co-expression of hGAPR-1-GFP and hBeclin 1-mCherry results in a strong reduction of hBeclin 1 condensates. Mutations of the known interaction site on the hGAPR-1 and hBeclin 1 surface abolished the effect on condensate formation during co-expression without affecting the condensate formation properties of the individual proteins. Similarly, a hBeclin 1-derived B18 peptide that is known to bind hGAPR-1 and to interfere with the interaction between hGAPR-1 and hBeclin 1, abolished the reduction of hBeclin 1 condensates by co-expression of hGAPR-1. These results indicate that the same type of protein-protein interactions interfere with condensate formation during co-expression of hGAPR-1 and hBeclin 1 as previously described for their interaction at Golgi membranes. The amyloidogenic properties of the B18 peptide were, however, important for the interaction with hGAPR-1, as mutant peptides with reduced amyloidogenic properties also showed reduced interaction with hGAPR-1 and reduced interference with hGAPR-1/hBeclin 1 condensate formation. We propose that amyloidogenic interactions take place between hGAPR-1 and hBeclin 1 prior to condensate formation.
Collapse
Affiliation(s)
- Nafiseh Sirati
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Ziying Shen
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Nick K Olrichs
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Blagovesta Popova
- Department of Molecular Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), Institute for Microbiology and Genetics, Universität Göttingen, Göttingen, Germany
| | - Iris C Verhoek
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Ilse M Lagerwaard
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), Institute for Microbiology and Genetics, Universität Göttingen, Göttingen, Germany
| | - Dora V Kaloyanova
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - J Bernd Helms
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
3
|
Goloborshcheva VV, Kucheryanu VG, Voronina NA, Teterina EV, Ustyugov AA, Morozov SG. Synuclein Proteins in MPTP-Induced Death of Substantia Nigra Pars Compacta Dopaminergic Neurons. Biomedicines 2022; 10:biomedicines10092278. [PMID: 36140378 PMCID: PMC9496024 DOI: 10.3390/biomedicines10092278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 11/24/2022] Open
Abstract
Parkinson’s disease (PD) is one of the key neurodegenerative disorders caused by a dopamine deficiency in the striatum due to the death of dopaminergic (DA) neurons of the substantia nigra pars compacta. The initially discovered A53T mutation in the alpha-synuclein gene was linked to the formation of cytotoxic aggregates: Lewy bodies in the DA neurons of PD patients. Further research has contributed to the discovery of beta- and gamma-synucleins, which presumably compensate for the functional loss of either member of the synuclein family. Here, we review research from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) toxicity models and various synuclein-knockout animals. We conclude that the differences in the sensitivity of the synuclein-knockout animals compared with the MPTP neurotoxin are due to the ontogenetic selection of early neurons followed by a compensatory effect of beta-synuclein, which optimizes dopamine capture in the synapses. Triple-knockout synuclein studies have confirmed the higher sensitivity of DA neurons to the toxic effects of MPTP. Nonetheless, beta-synuclein could modulate the alpha-synuclein function, preventing its aggregation and loss of function. Overall, the use of knockout animals has helped to solve the riddle of synuclein functions, and these proteins could be promising molecular targets for the development of therapies that are aimed at optimizing the synaptic function of dopaminergic neurons.
Collapse
Affiliation(s)
- Valeria V. Goloborshcheva
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
- Correspondence: ; Tel.: +7-(909)-644-92-31
| | | | | | - Ekaterina V. Teterina
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia
| | - Aleksey A. Ustyugov
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia
| | - Sergei G. Morozov
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
| |
Collapse
|
4
|
Hayashi J, Carver JA. β-Synuclein: An Enigmatic Protein with Diverse Functionality. Biomolecules 2022; 12:142. [PMID: 35053291 PMCID: PMC8773819 DOI: 10.3390/biom12010142] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/09/2022] [Accepted: 01/12/2022] [Indexed: 12/24/2022] Open
Abstract
α-Synuclein (αS) is a small, unstructured, presynaptic protein expressed in the brain. Its aggregated form is a major component of Lewy bodies, the large proteinaceous deposits in Parkinson's disease. The closely related protein, β-Synuclein (βS), is co-expressed with αS. In vitro, βS acts as a molecular chaperone to inhibit αS aggregation. As a result of this assignation, βS has been largely understudied in comparison to αS. However, recent reports suggest that βS promotes neurotoxicity, implying that βS is involved in other cellular pathways with functions independent of αS. Here, we review the current literature pertaining to human βS in order to understand better the role of βS in homeostasis and pathology. Firstly, the structure of βS is discussed. Secondly, the ability of βS to (i) act as a molecular chaperone; (ii) regulate synaptic function, lipid binding, and the nigrostriatal dopaminergic system; (iii) mediate apoptosis; (iv) participate in protein degradation pathways; (v) modulate intracellular metal levels; and (vi) promote cellular toxicity and protein aggregation is explored. Thirdly, the P123H and V70M mutations of βS, which are associated with dementia with Lewy bodies, are discussed. Finally, the importance of post-translational modifications on the structure and function of βS is reviewed. Overall, it is concluded that βS has both synergistic and antagonistic interactions with αS, but it may also possess important cellular functions independent of αS.
Collapse
Affiliation(s)
| | - John A. Carver
- Research School of Chemistry, The Australian National University, Acton, ACT 2601, Australia;
| |
Collapse
|
5
|
Sirati N, Popova B, Molenaar MR, Verhoek IC, Braus GH, Kaloyanova DV, Helms JB. Dynamic and Reversible Aggregation of the Human CAP Superfamily Member GAPR-1 in Protein Inclusions in Saccharomyces cerevisiae. J Mol Biol 2021; 433:167162. [PMID: 34298062 DOI: 10.1016/j.jmb.2021.167162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/14/2022]
Abstract
Many proteins that can assemble into higher order structures termed amyloids can also concentrate into cytoplasmic inclusions via liquid-liquid phase separation. Here, we study the assembly of human Golgi-Associated plant Pathogenesis Related protein 1 (GAPR-1), an amyloidogenic protein of the Cysteine-rich secretory proteins, Antigen 5, and Pathogenesis-related 1 proteins (CAP) protein superfamily, into cytosolic inclusions in Saccharomyces cerevisiae. Overexpression of GAPR-1-GFP results in the formation GAPR-1 oligomers and fluorescent inclusions in yeast cytosol. These cytosolic inclusions are dynamic and reversible organelles that gradually increase during time of overexpression and decrease after promoter shut-off. Inclusion formation is, however, a regulated process that is influenced by factors other than protein expression levels. We identified N-myristoylation of GAPR-1 as an important determinant at early stages of inclusion formation. In addition, mutations in the conserved metal-binding site (His54 and His103) enhanced inclusion formation, suggesting that these residues prevent uncontrolled protein sequestration. In agreement with this, we find that addition of Zn2+ metal ions enhances inclusion formation. Furthermore, Zn2+ reduces GAPR-1 protein degradation, which indicates stabilization of GAPR-1 in inclusions. We propose that the properties underlying both the amyloidogenic properties and the reversible sequestration of GAPR-1 into inclusions play a role in the biological function of GAPR-1 and other CAP family members.
Collapse
Affiliation(s)
- Nafiseh Sirati
- Division of Cell Biology, Metabolism and Cancer, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| | - Blagovesta Popova
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute for Microbiology and Genetics, Universität Göttingen, Göttingen, Germany
| | - Martijn R Molenaar
- Division of Cell Biology, Metabolism and Cancer, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Iris C Verhoek
- Division of Cell Biology, Metabolism and Cancer, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute for Microbiology and Genetics, Universität Göttingen, Göttingen, Germany
| | - Dora V Kaloyanova
- Division of Cell Biology, Metabolism and Cancer, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - J Bernd Helms
- Division of Cell Biology, Metabolism and Cancer, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
6
|
Popova B, Wang D, Rajavel A, Dhamotharan K, Lázaro DF, Gerke J, Uhrig JF, Hoppert M, Outeiro TF, Braus GH. Identification of Two Novel Peptides That Inhibit α-Synuclein Toxicity and Aggregation. Front Mol Neurosci 2021; 14:659926. [PMID: 33912013 PMCID: PMC8072481 DOI: 10.3389/fnmol.2021.659926] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/16/2021] [Indexed: 12/02/2022] Open
Abstract
Aggregation of α-synuclein (αSyn) into proteinaceous deposits is a pathological hallmark of a range of neurodegenerative diseases including Parkinson’s disease (PD). Numerous lines of evidence indicate that the accumulation of toxic oligomeric and prefibrillar αSyn species may underpin the cellular toxicity and spread of pathology between cells. Therefore, aggregation of αSyn is considered a priority target for drug development, as aggregation inhibitors are expected to reduce αSyn toxicity and serve as therapeutic agents. Here, we used the budding yeast S. cerevisiae as a platform for the identification of short peptides that inhibit αSyn aggregation and toxicity. A library consisting of approximately one million peptide variants was utilized in two high-throughput screening approaches for isolation of library representatives that reduce αSyn-associated toxicity and aggregation. Seven peptides were isolated that were able to suppress specifically αSyn toxicity and aggregation in living cells. Expression of the peptides in yeast reduced the accumulation of αSyn-induced reactive oxygen species and increased cell viability. Next, the peptides were chemically synthesized and probed for their ability to modulate αSyn aggregation in vitro. Two synthetic peptides, K84s and K102s, of 25 and 19 amino acids, respectively, significantly inhibited αSyn oligomerization and aggregation at sub-stoichiometric molar ratios. Importantly, K84s reduced αSyn aggregation in human cells. These peptides represent promising αSyn aggregation antagonists for the development of future therapeutic interventions.
Collapse
Affiliation(s)
- Blagovesta Popova
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, University of Goettingen, Göttingen, Germany
| | - Dan Wang
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, University of Goettingen, Göttingen, Germany
| | - Abirami Rajavel
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, University of Goettingen, Göttingen, Germany
| | - Karthikeyan Dhamotharan
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, University of Goettingen, Göttingen, Germany
| | - Diana F Lázaro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Göttingen, Germany
| | - Jennifer Gerke
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, University of Goettingen, Göttingen, Germany
| | - Joachim F Uhrig
- Department of Plant Molecular Biology and Physiology, University of Goettingen, Göttingen, Germany
| | - Michael Hoppert
- Department of General Microbiology, Institute of Microbiology and Genetics, University of Goettingen, Göttingen, Germany
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Göttingen, Germany.,Max Planck Institute for Experimental Medicine, Göttingen, Germany.,Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom.,Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, University of Goettingen, Göttingen, Germany
| |
Collapse
|
7
|
Integration of Fungus-Specific CandA-C1 into a Trimeric CandA Complex Allowed Splitting of the Gene for the Conserved Receptor Exchange Factor of CullinA E3 Ubiquitin Ligases in Aspergilli. mBio 2019; 10:mBio.01094-19. [PMID: 31213557 PMCID: PMC6581859 DOI: 10.1128/mbio.01094-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aspergillus species are important for biotechnological applications, like the production of citric acid or antibacterial agents. Aspergilli can cause food contamination or invasive aspergillosis to immunocompromised humans or animals. Specific treatment is difficult due to limited drug targets and emerging resistances. The CandA complex regulates, as a receptor exchange factor, the activity and substrate variability of the ubiquitin labeling machinery for 26S proteasome-mediated protein degradation. Only Aspergillus species encode at least two proteins that form a CandA complex. This study shows that Aspergillus species had to integrate a third component into the CandA receptor exchange factor complex that is unique to aspergilli and required for vegetative growth, sexual reproduction, and activation of the ubiquitin labeling machinery. These features have interesting implications for the evolution of protein complexes and could make CandA-C1 an interesting candidate for target-specific drug design to control fungal growth without affecting the human ubiquitin-proteasome system. E3 cullin-RING ubiquitin ligase (CRL) complexes recognize specific substrates and are activated by covalent modification with ubiquitin-like Nedd8. Deneddylation inactivates CRLs and allows Cand1/A to bind and exchange substrate recognition subunits. Human as well as most fungi possess a single gene for the receptor exchange factor Cand1, which is split and rearranged in aspergilli into two genes for separate proteins. Aspergillus nidulans CandA-N blocks the neddylation site, and CandA-C inhibits the interaction to the adaptor/substrate receptor subunits similar to the respective N-terminal and C-terminal parts of single Cand1. The pathogen Aspergillus fumigatus and related species express a CandA-C with a 190-amino-acid N-terminal extension domain encoded by an additional exon. This extension corresponds in most aspergilli, including A. nidulans, to a gene directly upstream of candA-C encoding a 20-kDa protein without human counterpart. This protein was named CandA-C1, because it is also required for the cellular deneddylation/neddylation cycle and can form a trimeric nuclear complex with CandA-C and CandA-N. CandA-C and CandA-N are required for asexual and sexual development and control a distinct secondary metabolism. CandA-C1 and the corresponding domain of A. fumigatus control spore germination, vegetative growth, and the repression of additional secondary metabolites. This suggests that the dissection of the conserved Cand1-encoding gene within the genome of aspergilli was possible because it allowed the integration of a fungus-specific protein required for growth into the CandA complex in two different gene set versions, which might provide an advantage in evolution.
Collapse
|
8
|
Williams JK, Yang X, Baum J. Interactions between the Intrinsically Disordered Proteins β-Synuclein and α-Synuclein. Proteomics 2018; 18:e1800109. [PMID: 30142698 PMCID: PMC6447293 DOI: 10.1002/pmic.201800109] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/18/2018] [Indexed: 12/31/2022]
Abstract
Several intrinsically disordered proteins have been implicated in the process of amyloid fibril formation in neurodegenerative disease, and developing approaches to inhibit the aggregation of these intrinsically disordered proteins is critical for establishing effective therapies against disease progression. The aggregation pathway of the intrinsically disordered protein alpha-synuclein, which is implicated in several neurodegenerative diseases known as synucleinopathies, has been extensively characterized. Less attention has been leveraged on beta-synuclein, a homologous intrinsically disordered protein that co-localizes with alpha-synuclein and is known to delay alpha-synuclein fibril formation. In this review, we focus on beta-synuclein and the molecular-level interactions between alpha-synuclein and beta-synuclein that underlie the delay of fibril formation. We highlight studies that begin to define alpha-synuclein and beta-synuclein interactions at the monomer, oligomer, and surface levels, and suggest that beta-synuclein plays a role in regulation of inhibition at many different stages of alpha-synuclein aggregation.
Collapse
Affiliation(s)
- Jonathan K Williams
- Department of Chemistry and Chemical Biology, Rutgers University, 08854, Piscataway, New Jersey, USA
| | - Xue Yang
- Department of Chemistry and Chemical Biology, Rutgers University, 08854, Piscataway, New Jersey, USA
| | - Jean Baum
- Department of Chemistry and Chemical Biology, Rutgers University, 08854, Piscataway, New Jersey, USA
| |
Collapse
|
9
|
Zhu LN, Qiao HH, Chen L, Sun LP, Hui JL, Lian YL, Xie WB, Ding JY, Meng YL, Zhu BF, Qiu PM. SUMOylation of Alpha-Synuclein Influences on Alpha-Synuclein Aggregation Induced by Methamphetamine. Front Cell Neurosci 2018; 12:262. [PMID: 30197588 PMCID: PMC6117395 DOI: 10.3389/fncel.2018.00262] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 07/31/2018] [Indexed: 12/13/2022] Open
Abstract
Methamphetamine (METH) is an illegal and widely abused psychoactive stimulant. METH abusers are at high risk of neurodegenerative disorders, including Parkinson’s disease (PD). Previous studies have demonstrated that METH causes alpha-synuclein (α-syn) aggregation in the both laboratory animal and human. In this study, exposure to high METH doses increased the expression of α-syn and the small ubiquitin-related modifier 1 (SUMO-1). Therefore, we hypothesized that SUMOylation of α-syn is involved in high-dose METH-induced α-syn aggregation. We measured the levels of α-syn SUMOylation and these enzymes involved in the SUMOylation cycle in SH-SY5Y human neuroblastoma cells (SH-SY5Y cells), in cultures of C57 BL/6 primary mouse neurons and in brain tissues of mice exposure to METH. We also demonstrated the effect of α-syn SUMOylation on α-syn aggregation after METH exposure by overexpressing the key enzyme of the SUMOylation cycle or silencing SUMO-1 expression in vitro. Then, we make introduced mutations in the major SUMOylation acceptor sites of α-syn by transfecting a lentivirus containing the sequence of WT α-syn or K96/102R α-syn into SH-SY5Y cells and injecting an adenovirus containing the sequence of WT α-syn or K96/102R α-syn into the mouse striatum. Levels of the ubiquitin-proteasome system (UPS)-related makers ubiquitin (Ub) and UbE1, as well as the autophagy-lysosome pathway (ALP)-related markers LC3, P62 and lysosomal associated membrane protein 2A (LAMP2A), were also measured in SH-SY5Y cells transfected with lentivirus and mice injected with adenovirus. The results showed that METH exposure decreases the SUMOylation level of α-syn, although the expression of α-syn and SUMO-1 are increased. One possible cause is the reduction of UBC9 level. The increase in α-syn SUMOylation by UBC9 overexpression relieves METH-induced α-syn overexpression and aggregation, whereas the decrease in α-syn SUMOylation by SUMO-1 silencing exacerbates the same pathology. Furthermore, mutations in the major SUMOylation acceptor sites of α-syn also aggravate α-syn overexpression and aggregation by impairing degradation through the UPS and the ALP in vitro and in vivo. These results suggest that SUMOylation of α-syn plays a fundamental part in α-syn overexpression and aggregation induced by METH and could be a suitable target for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Lin-Nan Zhu
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Hong-Hua Qiao
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Ling Chen
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Le-Ping Sun
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Jia-Liang Hui
- First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Yong-Ling Lian
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Wei-Bing Xie
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Jiu-Yang Ding
- School of Forensic Medicine, Southern Medical University, Guangzhou, China.,Department of Anatomy, Zunyi Medical College, Zunyi, China
| | - Yun-le Meng
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Bo-Feng Zhu
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Ping-Ming Qiu
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|