1
|
Wong FC, Merker SR, Bauer L, Han Y, Le VMH, Wenzel C, Böthig L, Heiduk M, Drobisch P, Rao VS, Malekian F, Mansourkiaei A, Sperling C, Polster H, Pecqueux M, Istvanffy R, Ye L, Kong B, Aust DE, Baretton G, Seifert L, Seifert AM, Weitz J, Demir IE, Kahlert C. Extracellular vesicles from pancreatic cancer and its tumour microenvironment promote increased Schwann cell migration. Br J Cancer 2025; 132:326-339. [PMID: 39863771 PMCID: PMC11832759 DOI: 10.1038/s41416-024-02915-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 10/27/2024] [Accepted: 11/19/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) exhibits a high frequency of neural invasion (NI). Schwann cells (SCs) have been shown to be reprogrammed to facilitate cancer cell migration and invasion into nerves. Since extracellular vesicles (EVs) affect the tumour microenvironment and promote metastasis, the present study analysed the involvement of EVs from pancreatic cancer cells and their microenvironment in altering SC phenotype as part of the early events in the process of NI. METHODS EVs were isolated from human/murine PDAC cells, pancreatic stellate cells (PSCs), human tissues and plasma to perform a novel 3D migration assay, qRT-PCR and western blot. Kaplan-Meier and Cox regression analyses were employed to evaluate the clinical potential of plasma EV-derived candidate from 165 PDAC patients. RESULTS The EVs from PDAC cells, PSCs derived from human tumour tissues, other cell types in the tumour microenvironment from tumour tissues and circulating plasma act as drivers of a pro-migratory phenotype of SCs by inducing dedifferentiation in SCs. Notably, p75NTR expression was upregulated in the plasma-derived EVs from patients with NI (Pn1) relative to those without NI (Pn0). High expression of plasma-derived EV p75NTR correlated with reduced overall survival and was identified as an independent prognostic factor. CONCLUSIONS These findings suggest that EV-mediated SC migration underlies the interactions contributing to PDAC-associated NI with implications for improved outcome and therapeutic strategy.
Collapse
Affiliation(s)
- Fang Cheng Wong
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| | - Sebastian R Merker
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Lisa Bauer
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Yi Han
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Van Manh Hung Le
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Carina Wenzel
- Institute for Pathology, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany
| | - Lukas Böthig
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Max Heiduk
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Pascal Drobisch
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Venkatesh Sadananda Rao
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Farzaneh Malekian
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Ana Mansourkiaei
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Christian Sperling
- Institute for Pathology, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany
| | - Heike Polster
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Mathieu Pecqueux
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rouzanna Istvanffy
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- CRC 1321 Modelling and Targeting Pancreatic Cancer, Munich, Germany
| | - Linhan Ye
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- CRC 1321 Modelling and Targeting Pancreatic Cancer, Munich, Germany
| | - Bo Kong
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Daniela E Aust
- Institute for Pathology, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany
- Tumour and Normal Tissue Bank of the University Cancer Center (UCC), University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Gustavo Baretton
- Institute for Pathology, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany
- Tumour and Normal Tissue Bank of the University Cancer Center (UCC), University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Lena Seifert
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Else Kröner Clinician Scientist Professor for "Translational Tumor Immunological Research", Dresden, Germany
| | - Adrian M Seifert
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jürgen Weitz
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ihsan Ekin Demir
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- CRC 1321 Modelling and Targeting Pancreatic Cancer, Munich, Germany
- Department of General Surgery, HPB-Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- Else Kröner Clinician Scientist Professor for "Translational Pancreatic Surgery", Munich, Germany
| | - Christoph Kahlert
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
- National Center for Tumor Diseases (NCT/UCC), Dresden, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
- Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany.
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany.
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
2
|
Zou Y, Zeng X, Wang K, Ye J, Zhao Y, Jin H, Zhang J, Cheng G, Nie X. CD271 regulates osteogenic differentiation of ectomesenchymal stem cells via the RhoA/ROCK signaling pathway. Int Immunopharmacol 2025; 148:114068. [PMID: 39826451 DOI: 10.1016/j.intimp.2025.114068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 12/28/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
The low-affinity neurotrophic receptor CD271 plays a crucial role in the osteogenic differentiation of ectomesenchyme stem cells (EMSCs), which is essential for the development and regeneration of jaw bones. This study aimed to investigate the influence of CD271 on EMSCs osteogenic differentiation and to uncover the underlying mechanisms. CD271-deficient mice exhibited delayed mandibular bone development, with a significantly reduction in the expression of osteogenic makers such as ALP, Col-1, OPN, and RUNX2. Single-cell sequencing further proved that the RhoA/ROCK signaling pathway was downregulated in CD271ExIII-/- EMSCs, highlighting the potential role of CD271 in regulating the osteogenic differentiation of EMSCs. After treatment with Pentanoic Acid or Y27632, the protein expression of Runx2 and Col-1 in EMSCs was either enhanced or reduced, respectively. These findings suggest that CD271 facilitates the osteogenic differentiation of EMSCs in vitro and contributes to mandibular alveolar bone formation in vivo through activation of the RhoA/ROCK signaling pathway.
Collapse
Affiliation(s)
- Yanhui Zou
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Xiaoke Zeng
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Keyu Wang
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Jiaqi Ye
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Yeke Zhao
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Haoyang Jin
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Jiajun Zhang
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Gu Cheng
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China.
| | - Xin Nie
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
3
|
Yang X, Tang C, Zhu D, Xia X, Du Q, Huang L, Liu J, Liu Y. Nonylphenol exposure increases the risk of Hirschsprung's disease by inducing macrophage M1 polarization. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117756. [PMID: 39837008 DOI: 10.1016/j.ecoenv.2025.117756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/23/2025]
Abstract
Nonylphenol (NP), a ubiquitous environmental contaminant used as a surfactant in industrial production and classified as an endocrine disruptor, could interfere hormone secretion and exhibit neurotoxicity in organisms. Hirschsprung's disease (HSCR), one of the most frequently observed congenital malformations of the digestive system, arises mainly due to the failure of enteric neural crest cells to migrate to the distal colon during embryonic development. However, the effects of NP exposure on HSCR are largely unknown. Herein, we identified the content of NP and expression of lncRNA LINC00294/Inhibin Subunit Beta E (INHBE) axis in clinical samples and evaluated the crucial role of lncRNA LINC00294/INHBE axis in the neurogenic potential of neurons and the neurotoxicity effects of NP in the SH-SY5Y cells and female specific pathogen-free (SPF) rat model. Our results showed that NP concentration and LINC00294 were significantly associated with HSCR occurrence and macrophage polarization in human HSCR specimens. Moreover, NP promoted macrophage M1 polarization. The proliferation and migration were weakened, and apoptosis was heightened by the conditioned medium of NP-treated macrophages in SH-SY5Y cells. Contrarily, LINC00294 overexpression and INHBE knockdown reversed the neurotoxicity effect of NP on SH-SY5Y cells. Furthermore, the neurotoxicity effect of NP was abolished by clodronate liposomes in the rat model. In conclusion, NP could induce macrophage M1 polarization via the LINC00294/INHBE axis and increase the risk of Hirschsprung's disease. Our findings would provide a foundation for the toxicity study and risk assessments of NP.
Collapse
Affiliation(s)
- Xuefeng Yang
- Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Pediatric Surgery, Guizhou Children Hospital, Zunyi, Guizhou 563000, China; Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Chengyan Tang
- Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Pediatric Surgery, Guizhou Children Hospital, Zunyi, Guizhou 563000, China
| | - Daiwei Zhu
- Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Pediatric Surgery, Guizhou Children Hospital, Zunyi, Guizhou 563000, China
| | - Xingrong Xia
- Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Pediatric Surgery, Guizhou Children Hospital, Zunyi, Guizhou 563000, China
| | - Qing Du
- Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Pediatric Surgery, Guizhou Children Hospital, Zunyi, Guizhou 563000, China
| | - Lu Huang
- Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Pediatric Surgery, Guizhou Children Hospital, Zunyi, Guizhou 563000, China
| | - Jianguo Liu
- Key Laboratory of Oral Disease Research, School of Stomatology, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| | - Yuanmei Liu
- Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Pediatric Surgery, Guizhou Children Hospital, Zunyi, Guizhou 563000, China.
| |
Collapse
|
4
|
Danelon V, Garret-Thomson SC, Almo SC, Lee FS, Hempstead BL. Immune activation of the p75 neurotrophin receptor: implications in neuroinflammation. Front Mol Neurosci 2023; 16:1305574. [PMID: 38106879 PMCID: PMC10722190 DOI: 10.3389/fnmol.2023.1305574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/10/2023] [Indexed: 12/19/2023] Open
Abstract
Despite structural similarity with other tumor necrosis factor receptor superfamily (TNFRSF) members, the p75 neurotrophin receptor (p75NTR, TNFR16) mediates pleiotropic biological functions not shared with other TNFRs. The high level of p75NTR expression in the nervous system instead of immune cells, its utilization of co-receptors, and its interaction with soluble dimeric, rather than soluble or cell-tethered trimeric ligands are all characteristics which distinguish it from most other TNFRs. Here, we compare these attributes to other members of the TNFR superfamily. In addition, we describe the recent evolutionary adaptation in B7-1 (CD80), an immunoglobulin (Ig) superfamily member, which allows engagement to neuronally-expressed p75NTR. B7-1-mediated binding to p75NTR occurs in humans and other primates, but not lower mammals due to specific sequence changes that evolved recently in primate B7-1. This discovery highlights an additional mechanism by which p75NTR can respond to inflammatory cues and trigger synaptic elimination in the brain through engagement of B7-1, which was considered to be immune-restricted. These observations suggest p75NTR does share commonality with other immune co-modulatory TNFR family members, by responding to immunoregulatory cues. The evolution of primate B7-1 to bind and elicit p75NTR-mediated effects on neuronal morphology and function are discussed in relationship to immune-driven modulation of synaptic actions during injury or inflammation.
Collapse
Affiliation(s)
- Victor Danelon
- Department of Medicine, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, United States
| | | | - Steven C. Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Francis S. Lee
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, United States
| | - Barbara L. Hempstead
- Department of Medicine, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
5
|
Bardag Gorce F, Al Dahan M, Narwani K, Terrazas J, Ferrini M, Calhoun CC, Uyanne J, Royce-Flores J, Crum E, Niihara Y. Human Oral Mucosa as a Potentially Effective Source of Neural Crest Stem Cells for Clinical Practice. Cells 2023; 12:2216. [PMID: 37759439 PMCID: PMC10526281 DOI: 10.3390/cells12182216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
We report in this study on the isolation and expansion of neural crest stem cells (NCSCs) from the epithelium of oral mucosa (OM) using reagents that are GMP-certified and FDA-approved for clinical use. Characterization analysis showed that the levels of keratins K2, K6C, K4, K13, K31, and K15-specific to OM epithelial cells-were significantly lower in the experimental NCSCs. While SOX10 was decreased with no statistically significant difference, the earliest neural crest specifier genes SNAI1/2, Ap2a, Ap2c, SOX9, SOX30, Pax3, and Twist1 showed a trend in increased expression in NCSCs. In addition, proteins of Oct4, Nestin and Noth1 were found to be greatly expressed, confirming NCSC multipotency. In conclusion, our study showed that the epithelium of OM contains NCSCs that can be isolated and expanded with clinical-grade reagents to supply the demand for multipotent cells required for clinical applications in regenerative medicine. Supported by Emmaus Medical Inc.
Collapse
Affiliation(s)
- Fawzia Bardag Gorce
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA (Y.N.)
- Division of Oral & Maxillofacial Surgery and Hospital Dentistry, Department of Surgery Harbor UCLA Medical Center, Torrance, CA 90502, USA
- Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Mais Al Dahan
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA (Y.N.)
- Division of Oral & Maxillofacial Surgery and Hospital Dentistry, Department of Surgery Harbor UCLA Medical Center, Torrance, CA 90502, USA
| | - Kavita Narwani
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA (Y.N.)
| | - Jesus Terrazas
- Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Monica Ferrini
- Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Colonya C. Calhoun
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA (Y.N.)
- Department of Surgery, UCLA, David Geffen School of Medicine, Los Angeles, CA 90095, USA
- UCLA School of Dentistry, Los Angeles, CA 90095, USA
- Department of Oral & Maxillofacial Surgery and Hospital Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Jettie Uyanne
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA (Y.N.)
- Division of Oral & Maxillofacial Surgery and Hospital Dentistry, Department of Surgery Harbor UCLA Medical Center, Torrance, CA 90502, USA
- Herman Ostrow School of Dentistry of USC, Los Angeles, CA 90089, USA
| | - Jun Royce-Flores
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA (Y.N.)
- Division of Oral & Maxillofacial Surgery and Hospital Dentistry, Department of Surgery Harbor UCLA Medical Center, Torrance, CA 90502, USA
- UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Eric Crum
- Division of Oral & Maxillofacial Surgery and Hospital Dentistry, Department of Surgery Harbor UCLA Medical Center, Torrance, CA 90502, USA
- Department of Surgery, UCLA, David Geffen School of Medicine, Los Angeles, CA 90095, USA
- UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Yutaka Niihara
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA (Y.N.)
- Emmaus Medical, Inc., Torrance, CA 90503, USA
| |
Collapse
|
6
|
Serrano Nájera G, Kin K. Unusual occurrence of domestication syndrome amongst African mole-rats: Is the naked mole-rat a domestic animal? Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.987177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The Naked mole-rat (NMR) is becoming a prominent model organism due to its peculiar traits, such as eusociality, extreme longevity, cancer resistance, and reduced pain sensitivity. It belongs to the African mole-rats (AMR), a family of subterranean rodents that includes solitary, cooperative breeding and eusocial species. We identified and quantified the domestication syndrome (DS) across AMR, a set of morphological and behavioural traits significantly more common and pronounced amongst domesticated animals than in their wild counterparts. Surprisingly, the NMR shows apparent DS traits when compared to the solitary AMR. Animals can self-domesticate when a reduction of the fear response is naturally selected, such as in islands with no predators, or to improve the group’s harmony in cooperative breeding species. The DS may be caused by alterations in the physiology of the neural crest cells (NCC), a transient population of cells that generate a full range of tissues during development. The NCC contribute to organs responsible for transmitting the fear response and various other tissues, including craniofacial bones. Therefore, mutations affecting the NCC can manifest as behavioural and morphological alterations in many structures across the body, as seen in neurocristopathies. We observed that all social AMRs are chisel-tooth diggers, an adaption to hard soils that requires the flattening of the skull. We hypothesise that chisel-tooth digging could impose a selective pressure on the NCC that triggered the DS’s appearance, possibly facilitating the evolution of sociality. Finally, we discuss how DS traits are neutral or beneficial for the subterranean niche, strategies to test this hypothesis and report well-studied mutations in the NMR that are associated with the NCC physiology or with the control of the fear response. In conclusion, we argue that many of the NMR’s unconventional traits are compatible with the DS and provide a hypothesis about its origins. Our model proposes a novel avenue to enhance the understanding of the extraordinary biology of the NMR.
Collapse
|
7
|
Alfonsetti M, d’Angelo M, Castelli V. Neurotrophic factor-based pharmacological approaches in neurological disorders. Neural Regen Res 2022; 18:1220-1228. [PMID: 36453397 PMCID: PMC9838155 DOI: 10.4103/1673-5374.358619] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aging is a physiological event dependent on multiple pathways that are linked to lifespan and processes leading to cognitive decline. This process represents the major risk factor for aging-related diseases such as Alzheimer's disease, Parkinson's disease, and ischemic stroke. The incidence of all these pathologies increases exponentially with age. Research on aging biology has currently focused on elucidating molecular mechanisms leading to the development of those pathologies. Cognitive deficit and neurodegeneration, common features of aging-related pathologies, are related to the alteration of the activity and levels of neurotrophic factors, such as brain-derived neurotrophic factor, nerve growth factor, and glial cell-derived neurotrophic factor. For this reason, treatments that modulate neurotrophin levels have acquired a great deal of interest in preventing neurodegeneration and promoting neural regeneration in several neurological diseases. Those treatments include both the direct administration of neurotrophic factors and the induced expression with viral vectors, neurotrophins' binding with biomaterials or other molecules to increase their bioavailability but also cell-based therapies. Considering neurotrophins' crucial role in aging pathologies, here we discuss the involvement of several neurotrophic factors in the most common brain aging-related diseases and the most recent therapeutic approaches that provide direct and sustained neurotrophic support.
Collapse
Affiliation(s)
- Margherita Alfonsetti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Michele d’Angelo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy,Correspondence to: Vanessa Castelli, .
| |
Collapse
|
8
|
Hedgehog Morphogens Act as Growth Factors Critical to Pre- and Postnatal Cardiac Development and Maturation: How Primary Cilia Mediate Their Signal Transduction. Cells 2022; 11:cells11121879. [PMID: 35741008 PMCID: PMC9221318 DOI: 10.3390/cells11121879] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 02/06/2023] Open
Abstract
Primary cilia are crucial for normal cardiac organogenesis via the formation of cyto-architectural, anatomical, and physiological boundaries in the developing heart and outflow tract. These tiny, plasma membrane-bound organelles function in a sensory-integrative capacity, interpreting both the intra- and extra-cellular environments and directing changes in gene expression responses to promote, prevent, and modify cellular proliferation and differentiation. One distinct feature of this organelle is its involvement in the propagation of a variety of signaling cascades, most notably, the Hedgehog cascade. Three ligands, Sonic, Indian, and Desert hedgehog, function as growth factors that are most commonly dependent on the presence of intact primary cilia, where the Hedgehog receptors Patched-1 and Smoothened localize directly within or at the base of the ciliary axoneme. Hedgehog signaling functions to mediate many cell behaviors that are critical for normal embryonic tissue/organ development. However, inappropriate activation and/or upregulation of Hedgehog signaling in postnatal and adult tissue is known to initiate oncogenesis, as well as the pathogenesis of other diseases. The focus of this review is to provide an overview describing the role of Hedgehog signaling and its dependence upon the primary cilium in the cell types that are most essential for mammalian heart development. We outline the breadth of developmental defects and the consequential pathologies resulting from inappropriate changes to Hedgehog signaling, as it pertains to congenital heart disease and general cardiac pathophysiology.
Collapse
|
9
|
Jin H, Wu Z, Tan B, Liu Z, Zu Z, Wu X, Bi Y, Hu X. Ibuprofen promotes p75 neurotrophin receptor expression through modifying promoter methylation and N6-methyladenosine-RNA-methylation in human gastric cancer cells. Bioengineered 2022; 13:14595-14604. [PMID: 35758042 PMCID: PMC9342148 DOI: 10.1080/21655979.2022.2092674] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
It is acknowledged that nonsteroidal anti-inflammatory drugs (NSAIDs) can participate in various signaling pathways, while information about their epigenetic effects are limited. p75NTR (p75 neurotrophin receptor) can inhibit tumor growth by inducing cell cycle arrest and regulating cell cycle arrest and apoptotic cell death. The expression of p75NTR is influenced by epigenetic roles. We explored the effects of ibuprofen on p75NTR expression and investigated whether promoter methylation and N6-methyladenosine (m6A) RNA methylation regulates this process in human gastric cancer cells (SGC7901 and MKN45). Cell lines were treated with ibuprofen 0, 2.5, 5, 10, 20 µM, and then DNA, RNA, and protein were isolated 24 h later. Expression and promoter methylation of p75NTR were detected by RT-qPCR and Western blot. The levels of m6A-p75NTR were measured by RNA immunoprecipitation. We also used RT-qPCR to determine the levels of m6A-related regulators, METTL3, METTL14, ALKBH5, FTO, YTHDC2, and YTHDF1-3. Ibuprofen attenuated p75NTR promoter methylation (p < 0.01) and increased p75NTR level (p < 0.001). Ibuprofen increased m6A-p53 expression (p < 0.01) by promoting the expression of METTL3 (p < 0.01) and METTL14 (p < 0.05); and increased levels of YTHDF1 (p < 0.001), YTHDF3 (p < 0.001), and YTHDC2 (p < 0.01) that finally reinforced p53 translation (p < 0.01). Therefore, our results present that ibuprofen epigenetically increased p75NTR expression by downregulating promoter methylation and upregulating m6A-RNA-methylation in SGC7901 and MKN45 cells. Our study unveils a novel mechanism for p75NTR regulation by NSAIDs and helps the design of treatment targets.
Collapse
Affiliation(s)
- Haifeng Jin
- Department of Gastroenterology, The 980th Hospital of the PLA Joint Logistics Support Force (Primary Bethune International Peace Hospital of PLA), Shijiazhuang, Hebei, China
| | - Zheng Wu
- Department of Tumor Immunology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Bibo Tan
- Department of General Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhen Liu
- Department of Gastroenterology, The 980th Hospital of the PLA Joint Logistics Support Force (Primary Bethune International Peace Hospital of PLA), Shijiazhuang, Hebei, China
| | - Zhanfei Zu
- Department of Gastroenterology, The 980th Hospital of the PLA Joint Logistics Support Force (Primary Bethune International Peace Hospital of PLA), Shijiazhuang, Hebei, China
| | - Xiaoyun Wu
- Department of Gastroenterology, The 980th Hospital of the PLA Joint Logistics Support Force (Primary Bethune International Peace Hospital of PLA), Shijiazhuang, Hebei, China
| | - Yuwang Bi
- Information Section, The 980th Hospital of the PLA Joint Logistics Support Force (Primary Bethune International Peace Hospital of PLA)
| | - Xingmao Hu
- Medical Management Office of the Medical Service Bureau of the Joint Logistics Support Force
| |
Collapse
|
10
|
Xu J, Li Z, Tower RJ, Negri S, Wang Y, Meyers CA, Sono T, Qin Q, Lu A, Xing X, McCarthy EF, Clemens TL, James AW. NGF-p75 signaling coordinates skeletal cell migration during bone repair. SCIENCE ADVANCES 2022; 8:eabl5716. [PMID: 35302859 PMCID: PMC8932666 DOI: 10.1126/sciadv.abl5716] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/26/2022] [Indexed: 05/26/2023]
Abstract
Bone regeneration following injury is initiated by inflammatory signals and occurs in association with infiltration by sensory nerve fibers. Together, these events are believed to coordinate angiogenesis and tissue reprogramming, but the mechanism of coupling immune signals to reinnervation and osteogenesis is unknown. Here, we found that nerve growth factor (NGF) is expressed following cranial bone injury and signals via p75 in resident mesenchymal osteogenic precursors to affect their migration into the damaged tissue. Mice lacking Ngf in myeloid cells demonstrated reduced migration of osteogenic precursors to the injury site with consequently delayed bone healing. These features were phenocopied by mice lacking p75 in Pdgfra+ osteoblast precursors. Single-cell transcriptomics identified mesenchymal subpopulations with potential roles in cell migration and immune response, altered in the context of p75 deletion. Together, these results identify the role of p75 signaling pathway in coordinating skeletal cell migration during early bone repair.
Collapse
Affiliation(s)
- Jiajia Xu
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Zhao Li
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Robert J. Tower
- Department of Orthopaedics, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Stefano Negri
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Orthopaedics and Traumatology, University of Verona, Verona 37129, Italy
| | - Yiyun Wang
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Carolyn A. Meyers
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Takashi Sono
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Qizhi Qin
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Amy Lu
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Xin Xing
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Edward F. McCarthy
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Thomas L. Clemens
- Department of Orthopaedics, Johns Hopkins University, Baltimore, MD 21205, USA
- Baltimore Veterans Administration Medical Center, Baltimore, MD 21201, USA
| | - Aaron W. James
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
11
|
Garrido MP, Vallejos C, Girardi S, Gabler F, Selman A, López F, Vega M, Romero C. NGF/TRKA Promotes ADAM17-Dependent Cleavage of P75 in Ovarian Cells: Elucidating a Pro-Tumoral Mechanism. Int J Mol Sci 2022; 23:ijms23042124. [PMID: 35216240 PMCID: PMC8877415 DOI: 10.3390/ijms23042124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/03/2022] [Accepted: 01/13/2022] [Indexed: 02/08/2023] Open
Abstract
Nerve growth factor (NGF) and its high-affinity receptor TRKA are overexpressed in epithelial ovarian cancer (EOC) displaying a crucial role in the disease progression. Otherwise, NGF interacts with its low-affinity receptor P75, activating pro-apoptotic pathways. In neurons, P75 could be cleaved by metalloproteinases (α and γ-secretases), leading to a decrease in P75 signaling. Therefore, this study aimed to evaluate whether the shedding of P75 occurs in EOC cells and whether NGF/TRKA could promote the cleavage of the P75 receptor. The immunodetection of the α-secretase, ADAM17, TRKA, P75, and P75 fragments was assessed by immunohisto/cytochemistry and Western blot in biopsies and ovarian cell lines. The TRKA and secretases' inhibition was performed using specific inhibitors. The results show that P75 immunodetection decreased during EOC progression and was negatively correlated with the presence of TRKA in EOC biopsies. NGF/TRKA increases ADAM17 levels and the fragments of P75 in ovarian cells. This effect is abolished when cells are previously treated with ADAM17, γ-secretase, and TRKA inhibitors. These results indicate that NGF/TRKA promotes the shedding of P75, involving the activation of secretases such as ADAM17. Since ADAM17 has been proposed as a screening marker for early detection of EOC, our results contribute to understanding better the role of ADAM17 and NGF/TRKA in EOC pathogenesis, which includes the NGF/TRKA-mediated cleavage of P75.
Collapse
Affiliation(s)
- Maritza P. Garrido
- Laboratorio de Endocrinología y Biología de la Reproducción, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (M.P.G.); (C.V.); (S.G.); (F.L.); (M.V.)
- Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile;
| | - Christopher Vallejos
- Laboratorio de Endocrinología y Biología de la Reproducción, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (M.P.G.); (C.V.); (S.G.); (F.L.); (M.V.)
| | - Silvanna Girardi
- Laboratorio de Endocrinología y Biología de la Reproducción, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (M.P.G.); (C.V.); (S.G.); (F.L.); (M.V.)
| | - Fernando Gabler
- Departamento de Patología, Escuela de Medicina, Hospital San Borja Arriarán, Universidad de Chile, Santiago 8360160, Chile;
| | - Alberto Selman
- Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile;
- Instituto Nacional del Cáncer, Santiago 8380455, Chile
| | - Fernanda López
- Laboratorio de Endocrinología y Biología de la Reproducción, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (M.P.G.); (C.V.); (S.G.); (F.L.); (M.V.)
| | - Margarita Vega
- Laboratorio de Endocrinología y Biología de la Reproducción, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (M.P.G.); (C.V.); (S.G.); (F.L.); (M.V.)
- Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile;
| | - Carmen Romero
- Laboratorio de Endocrinología y Biología de la Reproducción, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (M.P.G.); (C.V.); (S.G.); (F.L.); (M.V.)
- Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile;
- Correspondence:
| |
Collapse
|
12
|
Hernaez-Estrada B, Gonzalez-Pujana A, Cuevas A, Izeta A, Spiller KL, Igartua M, Santos-Vizcaino E, Hernandez RM. Human Hair Follicle-Derived Mesenchymal Stromal Cells from the Lower Dermal Sheath as a Competitive Alternative for Immunomodulation. Biomedicines 2022; 10:biomedicines10020253. [PMID: 35203464 PMCID: PMC8868584 DOI: 10.3390/biomedicines10020253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/01/2022] [Accepted: 01/14/2022] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) have unique immunomodulatory capacities. We investigated hair follicle-derived MSCs (HF-MSCs) from the dermal sheath, which are advantageous as an alternative source because of their relatively painless and minimally risky extraction procedure. These cells expressed neural markers upon isolation and maintained stemness for a minimum of 10 passages. Furthermore, HF-MSCs showed responsiveness to pro-inflammatory environments by expressing type-II major histocompatibility complex antigens (MHC)-II to a lesser extent than adipose tissue-derived MSCs (AT-MSCs). HF-MSCs effectively inhibited the proliferation of peripheral blood mononuclear cells equivalently to AT-MSCs. Additionally, HF-MSCs promoted the induction of CD4+CD25+FOXP3+ regulatory T cells to the same extent as AT-MSCs. Finally, HF-MSCs, more so than AT-MSCs, skewed M0 and M1 macrophages towards M2 phenotypes, with upregulation of typical M2 markers CD163 and CD206 and downregulation of M1 markers such as CD64, CD86, and MHC-II. Thus, we conclude that HF-MSCs are a promising source for immunomodulation.
Collapse
Affiliation(s)
- Beatriz Hernaez-Estrada
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA; (B.H.-E.); (K.L.S.)
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.G.-P.); (M.I.)
| | - Ainhoa Gonzalez-Pujana
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.G.-P.); (M.I.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
| | | | - Ander Izeta
- Tissue Engineering Group, Biodonostia Health Research Institute, 20014 Donostia-San Sebastián, Spain;
- Department of Biomedical Engineering and Sciences, School of Engineering, Tecnun-University of Navarra, 20009 Donostia-San Sebastián, Spain
| | - Kara L. Spiller
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA; (B.H.-E.); (K.L.S.)
| | - Manoli Igartua
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.G.-P.); (M.I.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.G.-P.); (M.I.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
- Correspondence: (E.S.-V.); (R.M.H.); Tel.: +34-945-01-3093 (E.S.-V.); +34-945-01-3095 (R.M.H.)
| | - Rosa Maria Hernandez
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.G.-P.); (M.I.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
- Correspondence: (E.S.-V.); (R.M.H.); Tel.: +34-945-01-3093 (E.S.-V.); +34-945-01-3095 (R.M.H.)
| |
Collapse
|
13
|
Morrison JA, McLennan R, Teddy JM, Scott AR, Kasemeier-Kulesa JC, Gogol MM, Kulesa PM. Single-cell reconstruction with spatial context of migrating neural crest cells and their microenvironments during vertebrate head and neck formation. Development 2021; 148:273452. [PMID: 35020873 DOI: 10.1242/dev.199468] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 10/15/2021] [Indexed: 12/20/2022]
Abstract
The dynamics of multipotent neural crest cell differentiation and invasion as cells travel throughout the vertebrate embryo remain unclear. Here, we preserve spatial information to derive the transcriptional states of migrating neural crest cells and the cellular landscape of the first four chick cranial to cardiac branchial arches (BA1-4) using label-free, unsorted single-cell RNA sequencing. The faithful capture of branchial arch-specific genes led to identification of novel markers of migrating neural crest cells and 266 invasion genes common to all BA1-4 streams. Perturbation analysis of a small subset of invasion genes and time-lapse imaging identified their functional role to regulate neural crest cell behaviors. Comparison of the neural crest invasion signature to other cell invasion phenomena revealed a shared set of 45 genes, a subset of which showed direct relevance to human neuroblastoma cell lines analyzed after exposure to the in vivo chick embryonic neural crest microenvironment. Our data define an important spatio-temporal reference resource to address patterning of the vertebrate head and neck, and previously unidentified cell invasion genes with the potential for broad impact.
Collapse
Affiliation(s)
- Jason A Morrison
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Rebecca McLennan
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Jessica M Teddy
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Allison R Scott
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | | | - Paul M Kulesa
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.,Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS 66160, USA
| |
Collapse
|
14
|
Farina AR, Cappabianca LA, Zelli V, Sebastiano M, Mackay AR. Mechanisms involved in selecting and maintaining neuroblastoma cancer stem cell populations, and perspectives for therapeutic targeting. World J Stem Cells 2021; 13:685-736. [PMID: 34367474 PMCID: PMC8316860 DOI: 10.4252/wjsc.v13.i7.685] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/09/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
Pediatric neuroblastomas (NBs) are heterogeneous, aggressive, therapy-resistant embryonal tumours that originate from cells of neural crest (NC) origin and in particular neuroblasts committed to the sympathoadrenal progenitor cell lineage. Therapeutic resistance, post-therapeutic relapse and subsequent metastatic NB progression are driven primarily by cancer stem cell (CSC)-like subpopulations, which through their self-renewing capacity, intermittent and slow cell cycles, drug-resistant and reversibly adaptive plastic phenotypes, represent the most important obstacle to improving therapeutic outcomes in unfavourable NBs. In this review, dedicated to NB CSCs and the prospects for their therapeutic eradication, we initiate with brief descriptions of the unique transient vertebrate embryonic NC structure and salient molecular protagonists involved NC induction, specification, epithelial to mesenchymal transition and migratory behaviour, in order to familiarise the reader with the embryonic cellular and molecular origins and background to NB. We follow this by introducing NB and the potential NC-derived stem/progenitor cell origins of NBs, before providing a comprehensive review of the salient molecules, signalling pathways, mechanisms, tumour microenvironmental and therapeutic conditions involved in promoting, selecting and maintaining NB CSC subpopulations, and that underpin their therapy-resistant, self-renewing metastatic behaviour. Finally, we review potential therapeutic strategies and future prospects for targeting and eradication of these bastions of NB therapeutic resistance, post-therapeutic relapse and metastatic progression.
Collapse
Affiliation(s)
- Antonietta Rosella Farina
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila 67100, AQ, Italy
| | - Lucia Annamaria Cappabianca
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila 67100, AQ, Italy
| | - Veronica Zelli
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila 67100, AQ, Italy
| | - Michela Sebastiano
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila 67100, AQ, Italy
| | - Andrew Reay Mackay
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila 67100, AQ, Italy.
| |
Collapse
|
15
|
Goten C, Usui S, Takashima SI, Inoue O, Okada H, Shimojima M, Sakata K, Kawashiri M, Kaneko S, Takamura M. Circulating nerve growth factor receptor positive cells are associated with severity and prognosis of pulmonary arterial hypertension. Pulm Circ 2021; 11:2045894021990525. [PMID: 33767850 PMCID: PMC7953227 DOI: 10.1177/2045894021990525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) remains a disease with a poor prognosis, so
early detection and treatment are very important. Sensitive and non-invasive
markers for PAH are urgently required. This study was performed to identify
sensitive markers of the clinical severity and prognosis of PAH. Patients
diagnosed with PAH (n = 30) and control participants (n = 15) were enrolled in
this observational study. Major EPC and MSC markers (including CD34, CD133,
VEGFR2, CD90, PDGFRα, and NGFR) in peripheral blood mononuclear cells (PBMNCs)
were assessed by flow cytometry. Associations of these markers with hemodynamic
parameters (e.g. mean pulmonary arterial pressure, pulmonary vascular
resistance, and cardiac index) were assessed. Patients with PAH were followed up
for 12 months to assess the incidence of major adverse events, defined as death
or lung transplantation. Levels of circulating EPC and MSC markers in PBMNCs
were higher in patients with PAH than in control participants. Among the studied
markers, nerve growth factor receptor (NGFR) was significantly positively
correlated with hemodynamic parameters. During the 12-month follow-up period,
major-event-free survival was significantly higher in patients with PAH who had
relatively low frequencies of NGFR positive cells than patients who had higher
frequencies. These results suggested that the presence of circulating NGFR
positive cells among PBMNCs may be a novel biomarker for the severity and
prognosis of PAH.
Collapse
Affiliation(s)
- Chiaki Goten
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.,Department of System Biology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Soichiro Usui
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Shin-Ichiro Takashima
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Oto Inoue
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Hirofumi Okada
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Masaya Shimojima
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Kenji Sakata
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Masaaki Kawashiri
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Shuichi Kaneko
- Department of System Biology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Masayuki Takamura
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
16
|
Vidal A, Redmer T. Decoding the Role of CD271 in Melanoma. Cancers (Basel) 2020; 12:cancers12092460. [PMID: 32878000 PMCID: PMC7564075 DOI: 10.3390/cancers12092460] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/10/2020] [Accepted: 08/25/2020] [Indexed: 11/26/2022] Open
Abstract
The evolution of melanoma, the most aggressive type of skin cancer, is triggered by driver mutations that are acquired in the coding regions of particularly BRAF (rat fibrosarcoma serine/threonine kinase, isoform B) or NRAS (neuroblastoma-type ras sarcoma virus) in melanocytes. Although driver mutations strongly determine tumor progression, additional factors are likely required and prerequisite for melanoma formation. Melanocytes are formed during vertebrate development in a well-controlled differentiation process of multipotent neural crest stem cells (NCSCs). However, mechanisms determining the properties of melanocytes and melanoma cells are still not well understood. The nerve growth factor receptor CD271 is likewise expressed in melanocytes, melanoma cells and NCSCs and programs the maintenance of a stem-like and migratory phenotype via a comprehensive network of associated genes. Moreover, CD271 regulates phenotype switching, a process that enables the rapid and reversible conversion of proliferative into invasive or non-stem-like states into stem-like states by yet largely unknown mechanisms. Here, we summarize current findings about CD271-associated mechanisms in melanoma cells and illustrate the role of CD271 for melanoma cell migration and metastasis, phenotype-switching, resistance to therapeutic interventions, and the maintenance of an NCSC-like state.
Collapse
|
17
|
Méndez-Maldonado K, Vega-López GA, Aybar MJ, Velasco I. Neurogenesis From Neural Crest Cells: Molecular Mechanisms in the Formation of Cranial Nerves and Ganglia. Front Cell Dev Biol 2020; 8:635. [PMID: 32850790 PMCID: PMC7427511 DOI: 10.3389/fcell.2020.00635] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/24/2020] [Indexed: 12/15/2022] Open
Abstract
The neural crest (NC) is a transient multipotent cell population that originates in the dorsal neural tube. Cells of the NC are highly migratory, as they travel considerable distances through the body to reach their final sites. Derivatives of the NC are neurons and glia of the peripheral nervous system (PNS) and the enteric nervous system as well as non-neural cells. Different signaling pathways triggered by Bone Morphogenetic Proteins (BMPs), Fibroblast Growth Factors (FGFs), Wnt proteins, Notch ligands, retinoic acid (RA), and Receptor Tyrosine Kinases (RTKs) participate in the processes of induction, specification, cell migration and neural differentiation of the NC. A specific set of signaling pathways and transcription factors are initially expressed in the neural plate border and then in the NC cell precursors to the formation of cranial nerves. The molecular mechanisms of control during embryonic development have been gradually elucidated, pointing to an important role of transcriptional regulators when neural differentiation occurs. However, some of these proteins have an important participation in malformations of the cranial portion and their mutation results in aberrant neurogenesis. This review aims to give an overview of the role of cell signaling and of the function of transcription factors involved in the specification of ganglia precursors and neurogenesis to form the NC-derived cranial nerves during organogenesis.
Collapse
Affiliation(s)
- Karla Méndez-Maldonado
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Guillermo A Vega-López
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), San Miguel de Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| | - Manuel J Aybar
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), San Miguel de Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| | - Iván Velasco
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Ciudad de México, Mexico
| |
Collapse
|
18
|
Zhang C, Zhang B, Yuan B, Chen C, Zhou Y, Zhang Y, Sheng Z, Sun N, Wu X. RNA-Seq profiling of circular RNAs in human small cell lung cancer. Epigenomics 2020; 12:685-700. [PMID: 32079426 DOI: 10.2217/epi-2019-0382] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: We aimed to explore the circular RNA (circRNA) profile of small-cell lung cancer (SCLC). Materials & methods: Total RNA was extracted from six paired SCLC tumors and adjacent noncancerous tissues. Next-generation sequencing was performed to identify the circRNA expression profile of SCLC. Results: We found that five circRNAs were significantly upregulated and 30 circRNAs were significantly downregulated in the SCLC tissues. We confirmed the five upregulated and four randomly selected downregulated circRNAs using real-time quantitative PCR. Notably, circ-STXBP5L was selectively upregulated in SCLC samples, but undetectable in the normal control tissues. Bioinformatics analysis demonstrated that circ-STXBP5L may participate in SCLC carcinogenesis by regulating numerous cancer-related pathways. Conclusion: This study may provide new insights into the early diagnosis and development of targeted therapies for SCLC.
Collapse
Affiliation(s)
- Chenxi Zhang
- Central Laboratory, Nanjing Chest Hospital, Medical School of Southeast University, Nanjing, PR China.,Central Laboratory, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, PR China
| | - Bin Zhang
- Central Laboratory, Nanjing Chest Hospital, Medical School of Southeast University, Nanjing, PR China.,Central Laboratory, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, PR China
| | - Baiyin Yuan
- Biomedical Research Institute, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, PR China
| | - Caiping Chen
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR China
| | - Ying Zhou
- Central Laboratory, Nanjing Chest Hospital, Medical School of Southeast University, Nanjing, PR China.,Central Laboratory, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, PR China
| | - Yu Zhang
- Department of Respiratory Medicine, Nanjing Chest Hospital, Medical School of Southeast University, Nanjing, PR China.,Department of Respiratory Medicine, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, PR China
| | - Zhihong Sheng
- Central Laboratory, Nanjing Chest Hospital, Medical School of Southeast University, Nanjing, PR China.,Central Laboratory, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, PR China
| | - Nan Sun
- Central Laboratory, Nanjing Chest Hospital, Medical School of Southeast University, Nanjing, PR China.,Central Laboratory, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, PR China
| | - Xiaoyuan Wu
- Central Laboratory, Nanjing Chest Hospital, Medical School of Southeast University, Nanjing, PR China.,Central Laboratory, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, PR China
| |
Collapse
|
19
|
Triaca V, Carito V, Fico E, Rosso P, Fiore M, Ralli M, Lambiase A, Greco A, Tirassa P. Cancer stem cells-driven tumor growth and immune escape: the Janus face of neurotrophins. Aging (Albany NY) 2019; 11:11770-11792. [PMID: 31812953 PMCID: PMC6932930 DOI: 10.18632/aging.102499] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/17/2019] [Indexed: 05/12/2023]
Abstract
Cancer Stem Cells (CSCs) are self-renewing cancer cells responsible for expansion of the malignant mass in a dynamic process shaping the tumor microenvironment. CSCs may hijack the host immune surveillance resulting in typically aggressive tumors with poor prognosis.In this review, we focus on neurotrophic control of cellular substrates and molecular mechanisms involved in CSC-driven tumor growth as well as in host immune surveillance. Neurotrophins have been demonstrated to be key tumor promoting signaling platforms. Particularly, Nerve Growth Factor (NGF) and its specific receptor Tropomyosin related kinase A (TrkA) have been implicated in initiation and progression of many aggressive cancers. On the other hand, an active NGF pathway has been recently proven to be critical to oncogenic inflammation control and in promoting immune response against cancer, pinpointing possible pro-tumoral effects of NGF/TrkA-inhibitory therapy.A better understanding of the molecular mechanisms involved in the control of tumor growth/immunoediting is essential to identify new predictive and prognostic intervention and to design more effective therapies. Fine and timely modulation of CSCs-driven tumor growth and of peripheral lymph nodes activation by the immune system will possibly open the way to precision medicine in neurotrophic therapy and improve patient's prognosis in both TrkA- dependent and independent cancers.
Collapse
Affiliation(s)
- Viviana Triaca
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), International Campus A. Buzzati-Traverso, Monterotondo Scalo, Rome, Italy
| | - Valentina Carito
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), at Department of Sense Organs, University of Rome La Sapienza, Rome, Italy
| | - Elena Fico
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), at Department of Sense Organs, University of Rome La Sapienza, Rome, Italy
| | - Pamela Rosso
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), at Department of Sense Organs, University of Rome La Sapienza, Rome, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), at Department of Sense Organs, University of Rome La Sapienza, Rome, Italy
| | - Massimo Ralli
- Department of Sense Organs, University of Rome La Sapienza, Rome, Italy
| | | | - Antonio Greco
- Department of Sense Organs, University of Rome La Sapienza, Rome, Italy
| | - Paola Tirassa
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), at Department of Sense Organs, University of Rome La Sapienza, Rome, Italy
| |
Collapse
|
20
|
Gonçalves NP, Mohseni S, El Soury M, Ulrichsen M, Richner M, Xiao J, Wood RJ, Andersen OM, Coulson EJ, Raimondo S, Murray SS, Vægter CB. Peripheral Nerve Regeneration Is Independent From Schwann Cell p75 NTR Expression. Front Cell Neurosci 2019; 13:235. [PMID: 31191256 PMCID: PMC6548843 DOI: 10.3389/fncel.2019.00235] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/09/2019] [Indexed: 01/27/2023] Open
Abstract
Schwann cell reprogramming and differentiation are crucial prerequisites for neuronal regeneration and re-myelination to occur following injury to peripheral nerves. The neurotrophin receptor p75NTR has been identified as a positive modulator for Schwann cell myelination during development and implicated in promoting nerve regeneration after injury. However, most studies base this conclusion on results obtained from complete p75NTR knockout mouse models and cannot dissect the specific role of p75NTR expressed by Schwann cells. In this present study, a conditional knockout model selectively deleting p75NTR expression in Schwann cells was generated, where p75NTR expression is replaced with that of an mCherry reporter. Silencing of Schwann cell p75NTR expression was confirmed in the sciatic nerve in vivo and in vitro, without altering axonal expression of p75NTR. No difference in sciatic nerve myelination during development or following sciatic nerve crush injury was observed, as determined by quantification of both myelinated and unmyelinated nerve fiber densities, myelinated axonal diameter and myelin thickness. However, the absence of Schwann cell p75NTR reduced motor nerve conduction velocity after crush injury. Our data indicate that the absence of Schwann cell p75NTR expression in vivo is not critical for axonal regrowth or remyelination following sciatic nerve crush injury, but does play a key role in functional recovery. Overall, this represents the first step in redefining the role of p75NTR in the peripheral nervous system, suggesting that the Schwann cell-axon unit functions as a syncytium, with the previous published involvement of p75NTR in remyelination most likely depending on axonal/neuronal p75NTR and/or mutual glial-axonal interactions.
Collapse
Affiliation(s)
- Nádia P. Gonçalves
- Danish Research Institute of Translational Neuroscience – DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus, Denmark
- The International Diabetic Neuropathy Consortium, Aarhus University Hospital, Aarhus, Denmark
| | - Simin Mohseni
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Marwa El Soury
- Department of Clinical and Biological Sciences, Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| | - Maj Ulrichsen
- Danish Research Institute of Translational Neuroscience – DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Mette Richner
- Danish Research Institute of Translational Neuroscience – DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Junhua Xiao
- Department of Anatomy and Neuroscience, School of Biomedical Science, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Rhiannon J. Wood
- Department of Anatomy and Neuroscience, School of Biomedical Science, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Olav M. Andersen
- Danish Research Institute of Translational Neuroscience – DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Elizabeth J. Coulson
- School of Biomedical Sciences, Faculty of Medicine, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Stefania Raimondo
- Department of Anatomy and Neuroscience, School of Biomedical Science, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Simon S. Murray
- Department of Anatomy and Neuroscience, School of Biomedical Science, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Christian B. Vægter
- Danish Research Institute of Translational Neuroscience – DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus, Denmark
- The International Diabetic Neuropathy Consortium, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
21
|
Johnsen JI, Dyberg C, Wickström M. Neuroblastoma-A Neural Crest Derived Embryonal Malignancy. Front Mol Neurosci 2019; 12:9. [PMID: 30760980 PMCID: PMC6361784 DOI: 10.3389/fnmol.2019.00009] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/11/2019] [Indexed: 12/14/2022] Open
Abstract
Neuroblastoma is a neural crest derived malignancy of the peripheral nervous system and is the most common and deadliest tumor of infancy. It is characterized by clinical heterogeneity with a disease spectrum ranging from spontaneous regression without any medical intervention to treatment resistant tumors with metastatic spread and poor patient survival. The events that lead to the development of neuroblastoma from the neural crest have not been fully elucidated. Here we discuss factors and processes within the neural crest that when dysregulated have the potential to be initiators or drivers of neuroblastoma development. A more precise biological understanding of neuroblastoma causes and cell of origin is highly warranted. This will give valuable information for the development of medicines that specifically target molecules within neuroblastoma cells and also give hint about the mechanisms behind treatment resistance that is frequently seen in neuroblastoma.
Collapse
Affiliation(s)
- John Inge Johnsen
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet (KI), Stockholm, Sweden
| | - Cecilia Dyberg
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet (KI), Stockholm, Sweden
| | - Malin Wickström
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet (KI), Stockholm, Sweden
| |
Collapse
|
22
|
Mu W, Wang Z, Zöller M. Ping-Pong-Tumor and Host in Pancreatic Cancer Progression. Front Oncol 2019; 9:1359. [PMID: 31921628 PMCID: PMC6927459 DOI: 10.3389/fonc.2019.01359] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022] Open
Abstract
Metastasis is the main cause of high pancreatic cancer (PaCa) mortality and trials dampening PaCa mortality rates are not satisfying. Tumor progression is driven by the crosstalk between tumor cells, predominantly cancer-initiating cells (CIC), and surrounding cells and tissues as well as distant organs, where tumor-derived extracellular vesicles (TEX) are of major importance. A strong stroma reaction, recruitment of immunosuppressive leukocytes, perineural invasion, and early spread toward the peritoneal cavity, liver, and lung are shared with several epithelial cell-derived cancer, but are most prominent in PaCa. Here, we report on the state of knowledge on the PaCIC markers Tspan8, alpha6beta4, CD44v6, CXCR4, LRP5/6, LRG5, claudin7, EpCAM, and CD133, which all, but at different steps, are engaged in the metastatic cascade, frequently via PaCIC-TEX. This includes the contribution of PaCIC markers to TEX biogenesis, targeting, and uptake. We then discuss PaCa-selective features, where feedback loops between stromal elements and tumor cells, including distorted transcription, signal transduction, and metabolic shifts, establish vicious circles. For the latter particularly pancreatic stellate cells (PSC) are responsible, furnishing PaCa to cope with poor angiogenesis-promoted hypoxia by metabolic shifts and direct nutrient transfer via vesicles. Furthermore, nerves including Schwann cells deliver a large range of tumor cell attracting factors and Schwann cells additionally support PaCa cell survival by signaling receptor binding. PSC, tumor-associated macrophages, and components of the dysplastic stroma contribute to perineural invasion with signaling pathway activation including the cholinergic system. Last, PaCa aggressiveness is strongly assisted by the immune system. Although rich in immune cells, only immunosuppressive cells and factors are recovered in proximity to tumor cells and hamper effector immune cells entering the tumor stroma. Besides a paucity of immunostimulatory factors and receptors, immunosuppressive cytokines, myeloid-derived suppressor cells, regulatory T-cells, and M2 macrophages as well as PSC actively inhibit effector cell activation. This accounts for NK cells of the non-adaptive and cytotoxic T-cells of the adaptive immune system. We anticipate further deciphering the molecular background of these recently unraveled intermingled phenomena may turn most lethal PaCa into a curatively treatable disease.
Collapse
Affiliation(s)
- Wei Mu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Wei Mu
| | - Zhe Wang
- Department of Oncology, The First Affiliated Hospital of Guangdong, Pharmaceutical University, Guangzhou, China
| | - Margot Zöller
- Department of Oncology, The First Affiliated Hospital of Guangdong, Pharmaceutical University, Guangzhou, China
| |
Collapse
|