1
|
Liu D, Wang L, Huang Z, Chen L. Neuronal calcium sensor 1: A key factor in the development of diseases. Life Sci 2025; 366-367:123461. [PMID: 39947313 DOI: 10.1016/j.lfs.2025.123461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/31/2025] [Accepted: 02/10/2025] [Indexed: 02/23/2025]
Abstract
Neuronal calcium sensor 1 (NCS1) belongs to the family of neuronal calcium sensing proteins, which are distributed in various tissues of the human body, mainly in nerve tissues. NCS1 has multiple functions, including participating in the transduction of intracellular calcium signals, neuronal morphology, development and exocytosis. NCS1 performs related functions by interacting with a variety of proteins, including inositol 1,4,5-trisphosphate receptors (InsP3Rs), voltage-gated K+ and Ca2+ channels, phosphatidylinositol 4-kinase IIIβ (PI (4) KIIIβ). Over the years, researches on NCS1 and diseases have mostly focused on the nervous system and cardiovascular system, it is found that the abnormal expression of NCS1 is also related to cancer. Starting from the structure of NCS1 and the proteins that interact with it, this review expounds the mechanism or potential mechanism of NCS1 imbalance leading to various diseases.
Collapse
Affiliation(s)
- Duo Liu
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Lingzhi Wang
- Department of Pharmacy, The First Affiliated Hospital of Jishou University, Jishou, Hunan 416000, China
| | - Zhen Huang
- The First Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang 421001, China.
| |
Collapse
|
2
|
Rivas-Santisteban R, Lillo J, Garrigós C, Navarro G, Franco R. GPR88 impairs the signaling of kappa opioid receptors in a heterologous system and in primary striatal neurons. Neuropharmacology 2025; 265:110242. [PMID: 39613254 DOI: 10.1016/j.neuropharm.2024.110242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/14/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
The physiological role of GPR88, an orphan G protein-coupled receptor (GPCR) predominantly expressed in the striatum, remains unclear, despite its altered expression in parkinsonian animal models. GPR88 is known to interact with other GPCRs. Specifically, GPR88 expression inhibits signaling mediated by the μ-opioid receptor in cells coexpressing both receptors. The effect of GPR88 on the kappa-opioid receptor (KOR) is less understood. In this study, we examine the interaction between GPR88 and KOR, and the impact of GPR88 expression on KOR-mediated signaling in heterologous cells and primary striatal neurons. Bioluminescence resonance energy transfer and proximity ligation assays revealed an interaction between GPR88 and KOR. Functional assays showed that GPR88 antagonized the effects of U69,593, a selective KOR agonist, on forskolin-stimulated cAMP levels, β-arrestin-2 recruitment, and phosphorylation of extracellular signal-regulated kinases (ERK1/2) in HEK-293T cells coexpressing both receptors. In primary striatal neurons, GPR88 and KOR complexes were observed, with KOR activation effects enhanced when GPR88 expression was suppressed using RNA interference. These results suggest that GPR88 and KOR are coexpressed in striatal neurons, where GPR88 inhibits KOR activation. Notably, the GPR88-KOR heteromer was more prevalent in dopamine D1-receptor-containing neurons of the direct pathway of the basal ganglia. Given the roles of KORs in dopamine release, motor function regulation, and pain and reward perception, the GPR88-KOR interaction warrants further investigation in the context of neuropathic pain, Parkinson's disease, and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Rafael Rivas-Santisteban
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Autonomous University of Barcelona, Campus Bellaterra, 08193, Barcelona, Spain; Network Center for Biomedical Research in Neurodegenerative Diseases. CiberNed., Spanish National Health Institute Carlos iii, Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain.
| | - Jaume Lillo
- Network Center for Biomedical Research in Neurodegenerative Diseases. CiberNed., Spanish National Health Institute Carlos iii, Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain; Molecular Neurobiology Laboratory, Dept. Biochemistry and Molecular Biomedicine, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Claudia Garrigós
- Molecular Neurobiology Laboratory, Dept. Biochemistry and Molecular Biomedicine, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Gemma Navarro
- Network Center for Biomedical Research in Neurodegenerative Diseases. CiberNed., Spanish National Health Institute Carlos iii, Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain; Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Rafael Franco
- Network Center for Biomedical Research in Neurodegenerative Diseases. CiberNed., Spanish National Health Institute Carlos iii, Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain; Molecular Neurobiology Laboratory, Dept. Biochemistry and Molecular Biomedicine, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain; School of Chemistry, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
3
|
Rivas-Santisteban R, Muñoz A, Lillo J, Raïch I, Rodríguez-Pérez AI, Navarro G, Labandeira-García JL, Franco R. Cannabinoid regulation of angiotensin II-induced calcium signaling in striatal neurons. NPJ Parkinsons Dis 2024; 10:220. [PMID: 39548112 PMCID: PMC11568119 DOI: 10.1038/s41531-024-00827-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/23/2024] [Indexed: 11/17/2024] Open
Abstract
Calcium ion (Ca2+) homeostasis is crucial for neuron function and neurotransmission. This study focused on the actions mediated by the CB1 receptor (CB1R), the most abundant G protein-coupled receptor (GPCR) in central nervous system (CNS) neurons, over by the AT1R, which is one of the few G protein-coupled CNS receptors able to regulate cytoplasmic Ca2+ levels. A functional interaction suggesting a direct association between these receptors was detected. AT1-CB1 receptor heteromers (AT1CB1Hets) were identified in HEK-293T cells by bioluminescence resonance energy transfer (BRET2). Functional interactions within the AT1-CB1 complex and their potential relevance in Parkinson's disease (PD) were assessed. In situ proximity ligation assays (PLA) identified AT1CB1Hets in neurons, in which an important finding was that Ca2+ level increase upon AT1R activation was reduced in the presence of cannabinoids acting on CB1Rs. AT1CB1Het expression was quantified in samples from the 6-hydroxydopamine (6-OHDA) hemilesioned rat model of PD in which a lower expression of AT1CB1Hets was observed in striatal neurons from lesioned animals (versus non-lesioned). AT1CB1Het expression changed depending on both the lesion and the consequences of levodopa administration, i.e., dyskinesias versus lack of involuntary movements. A partial recovery in AT1CB1Het expression was detected in lesioned animals that developed levodopa-induced dyskinesias. These findings support the existence of a compensatory mechanism mediated by AT1CB1Hets that modulates susceptibility to levodopa-induced dyskinesias in PD. Therefore, cannabinoids may be useful in reducing calcium dyshomeostasis in dyskinesia.
Collapse
Affiliation(s)
- Rafael Rivas-Santisteban
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Autonomous University of Barcelona, Campus Bellaterra, Barcelona, Spain.
- Network Center for Biomedical Research in Neurodegenerative Diseases, CiberNed, Spanish National Health Institute Carlos iii, Madrid, Spain.
| | - Ana Muñoz
- Network Center for Biomedical Research in Neurodegenerative Diseases, CiberNed, Spanish National Health Institute Carlos iii, Madrid, Spain
- Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Jaume Lillo
- Network Center for Biomedical Research in Neurodegenerative Diseases, CiberNed, Spanish National Health Institute Carlos iii, Madrid, Spain
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Iu Raïch
- Network Center for Biomedical Research in Neurodegenerative Diseases, CiberNed, Spanish National Health Institute Carlos iii, Madrid, Spain
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Ana I Rodríguez-Pérez
- Network Center for Biomedical Research in Neurodegenerative Diseases, CiberNed, Spanish National Health Institute Carlos iii, Madrid, Spain
- Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Gemma Navarro
- Network Center for Biomedical Research in Neurodegenerative Diseases, CiberNed, Spanish National Health Institute Carlos iii, Madrid, Spain
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
- Institute of Neuroscience of the University of Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - José L Labandeira-García
- Network Center for Biomedical Research in Neurodegenerative Diseases, CiberNed, Spanish National Health Institute Carlos iii, Madrid, Spain
- Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Rafael Franco
- Network Center for Biomedical Research in Neurodegenerative Diseases, CiberNed, Spanish National Health Institute Carlos iii, Madrid, Spain.
- Molecular Neurobiology Laboratory, Dept. Biochemistry and Molecular Biomedicine, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain.
- School of Chemistry, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
4
|
Pramanik S, Devi M H, Chakrabarty S, Paylar B, Pradhan A, Thaker M, Ayyadhury S, Manavalan A, Olsson PE, Pramanik G, Heese K. Microglia signaling in health and disease - Implications in sex-specific brain development and plasticity. Neurosci Biobehav Rev 2024; 165:105834. [PMID: 39084583 DOI: 10.1016/j.neubiorev.2024.105834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/21/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Microglia, the intrinsic neuroimmune cells residing in the central nervous system (CNS), exert a pivotal influence on brain development, homeostasis, and functionality, encompassing critical roles during both aging and pathological states. Recent advancements in comprehending brain plasticity and functions have spotlighted conspicuous variances between male and female brains, notably in neurogenesis, neuronal myelination, axon fasciculation, and synaptogenesis. Nevertheless, the precise impact of microglia on sex-specific brain cell plasticity, sculpting diverse neural network architectures and circuits, remains largely unexplored. This article seeks to unravel the present understanding of microglial involvement in brain development, plasticity, and function, with a specific emphasis on microglial signaling in brain sex polymorphism. Commencing with an overview of microglia in the CNS and their associated signaling cascades, we subsequently probe recent revelations regarding molecular signaling by microglia in sex-dependent brain developmental plasticity, functions, and diseases. Notably, C-X3-C motif chemokine receptor 1 (CX3CR1), triggering receptors expressed on myeloid cells 2 (TREM2), calcium (Ca2+), and apolipoprotein E (APOE) emerge as molecular candidates significantly contributing to sex-dependent brain development and plasticity. In conclusion, we address burgeoning inquiries surrounding microglia's pivotal role in the functional diversity of developing and aging brains, contemplating their potential implications for gender-tailored therapeutic strategies in neurodegenerative diseases.
Collapse
Affiliation(s)
- Subrata Pramanik
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Harini Devi M
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Saswata Chakrabarty
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Berkay Paylar
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Ajay Pradhan
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Manisha Thaker
- Eurofins Lancaster Laboratories, Inc., 2425 New Holland Pike, Lancaster, PA 17601, USA
| | - Shamini Ayyadhury
- The Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Arulmani Manavalan
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 600077, India
| | - Per-Erik Olsson
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Gopal Pramanik
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India.
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133791, the Republic of Korea.
| |
Collapse
|
5
|
Raïch I, Lillo J, Rebassa JB, Capó T, Cordomí A, Reyes-Resina I, Pallàs M, Navarro G. Dual Role of NMDAR Containing NR2A and NR2B Subunits in Alzheimer's Disease. Int J Mol Sci 2024; 25:4757. [PMID: 38731978 PMCID: PMC11084423 DOI: 10.3390/ijms25094757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 05/13/2024] Open
Abstract
Alzheimer's disease (AD) is the main cause of dementia worldwide. Given that learning and memory are impaired in this pathology, NMDA receptors (NMDARs) appear as key players in the onset and progression of the disease. NMDARs are glutamate receptors, mainly located at the post-synapse, which regulate voltage-dependent influx of calcium into the neurons. They are heterotetramers, and there are different subunits that can be part of the receptors, which are usually composed of two obligatory GluN1 subunits plus either two NR2A or two NR2B subunits. NR2A are mostly located at the synapse, and their activation is involved in the expression of pro-survival genes. Conversely, NR2B are mainly extrasynaptic, and their activation has been related to cell death and neurodegeneration. Thus, activation of NR2A and/or inactivation of NR2B-containing NMDARS has been proposed as a therapeutic strategy to treat AD. Here, we wanted to investigate the main differences between both subunits signalling in neuronal primary cultures of the cortex and hippocampus. It has been observed that Aβ induces a significant increase in calcium release and also in MAPK phosphorylation signalling in NR2B-containing NMDAR in cortical and hippocampal neurons. However, while NR2A-containing NMDAR decreases neuronal death and favours cell viability after Aβ treatment, NR2B-containing NMDAR shows higher levels of cytotoxicity and low levels of neuronal survival. Finally, it has been detected that NMDAR has no effect on pTau axonal transport. The present results demonstrate a different role between GluNA and GluNB subunits in neurodegenerative diseases such as Alzheimer's.
Collapse
Affiliation(s)
- Iu Raïch
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), National Institute of Health Carlos III, 28029 Madrid, Spain; (I.R.); (J.L.); (J.B.R.); (I.R.-R.)
- Institut de Neurociències UB, Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain;
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain;
| | - Jaume Lillo
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), National Institute of Health Carlos III, 28029 Madrid, Spain; (I.R.); (J.L.); (J.B.R.); (I.R.-R.)
- Institut de Neurociències UB, Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain;
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Joan Biel Rebassa
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), National Institute of Health Carlos III, 28029 Madrid, Spain; (I.R.); (J.L.); (J.B.R.); (I.R.-R.)
- Institut de Neurociències UB, Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain;
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain;
| | - Toni Capó
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain;
| | - Arnau Cordomí
- Bioinformatics, Escola Superior de Comerç Internacional-University Pompeu Fabra (ESCI-UPF), 08003 Barcelona, Spain;
| | - Irene Reyes-Resina
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), National Institute of Health Carlos III, 28029 Madrid, Spain; (I.R.); (J.L.); (J.B.R.); (I.R.-R.)
- Institut de Neurociències UB, Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain;
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain;
| | - Mercè Pallàs
- Institut de Neurociències UB, Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain;
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Av Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Gemma Navarro
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), National Institute of Health Carlos III, 28029 Madrid, Spain; (I.R.); (J.L.); (J.B.R.); (I.R.-R.)
- Institut de Neurociències UB, Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain;
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain;
| |
Collapse
|
6
|
Reyes-Resina I, Lillo J, Raïch I, Rebassa JB, Navarro G. The Expression and Functionality of CB 1R-NMDAR Complexes Are Decreased in A Parkinson's Disease Model. Int J Mol Sci 2024; 25:3021. [PMID: 38474266 PMCID: PMC10931566 DOI: 10.3390/ijms25053021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 03/14/2024] Open
Abstract
One of the hallmarks of Parkinson's disease (PD) is the alteration in the expression and function of NMDA receptor (NMDAR) and cannabinoid receptor 1 (CB1R). The presence of CB1R-NMDAR complexes has been described in neuronal primary cultures. The activation of CB1R in CB1R-NMDAR complexes was suggested to counteract the detrimental NMDAR overactivation in an AD mice model. Thus, we aimed to explore the role of this receptor complex in PD. By using Bioluminescence Resonance Energy Transfer (BRET) assay, it was demonstrated that α-synuclein induces a reorganization of the CB1R-NMDAR complex in transfected HEK-293T cells. Moreover, α-synuclein treatment induced a decrease in the cAMP and MAP kinase (MAPK) signaling of both CB1R and NMDAR not only in transfected cells but also in neuronal primary cultures. Finally, the interaction between CB1R and NMDAR was studied by Proximity Ligation Assay (PLA) in neuronal primary cultures, where it was observed that the expression of CB1R-NMDAR complexes was decreased upon α-synuclein treatment. These results point to a role of CB1R-NMDAR complexes as a new therapeutic target in Parkinson's disease.
Collapse
Affiliation(s)
- Irene Reyes-Resina
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, 08028 Barcelona, Spain; (I.R.); (J.B.R.)
- Network Center for Biomedical Research in Neurodegenerative Diseases, CiberNed, Spanish National Health Institute Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain;
- Institut de Neurociències UB, Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain
| | - Jaume Lillo
- Network Center for Biomedical Research in Neurodegenerative Diseases, CiberNed, Spanish National Health Institute Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain;
- Institut de Neurociències UB, Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain
- Molecular Neurobiology Laboratory, Department Biochemistry and Molecular Biomedicine, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Iu Raïch
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, 08028 Barcelona, Spain; (I.R.); (J.B.R.)
- Network Center for Biomedical Research in Neurodegenerative Diseases, CiberNed, Spanish National Health Institute Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain;
- Institut de Neurociències UB, Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain
| | - Joan Biel Rebassa
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, 08028 Barcelona, Spain; (I.R.); (J.B.R.)
- Network Center for Biomedical Research in Neurodegenerative Diseases, CiberNed, Spanish National Health Institute Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain;
- Institut de Neurociències UB, Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain
| | - Gemma Navarro
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, 08028 Barcelona, Spain; (I.R.); (J.B.R.)
- Network Center for Biomedical Research in Neurodegenerative Diseases, CiberNed, Spanish National Health Institute Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain;
- Institut de Neurociències UB, Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain
| |
Collapse
|
7
|
Rivas-Santisteban R, Rico AJ, Muñoz A, Rodríguez-Pérez AI, Reyes-Resina I, Navarro G, Labandeira-García JL, Lanciego JL, Franco R. Boolean analysis shows a high proportion of dopamine D 2 receptors interacting with adenosine A 2A receptors in striatal medium spiny neurons of mouse and non-human primate models of Parkinson's disease. Neurobiol Dis 2023; 188:106341. [PMID: 37918757 DOI: 10.1016/j.nbd.2023.106341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/16/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023] Open
Abstract
The antagonistic effect of adenosine on dopaminergic transmission in the basal ganglia indirect motor control pathway is mediated by dopamine D2 (D2R) and adenosine A2A (A2AR) receptors co-expressed on medium spiny striatal neurons. The pathway is unbalanced in Parkinson's disease (PD) and an A2AR blocker has been approved for use with levodopa in the therapy of the disease. However, it is not known whether the therapy is acting on individually expressed receptors or in receptors forming A2A-D2 receptor heteromers, whose functionality is unique. For two proteins prone to interact, a very recently developed technique, MolBoolean, allows to determine the number of proteins that are either non-interacting or interacting. After checking the feasibility of the technique and reliability of data in transfected cells and in striatal primary neurons, the Boolean analysis of receptors in the striatum of rats and monkeys showed a high percentage of D2 receptors interacting with the adenosine receptor, while, on the contrary, a significant proportion of A2A receptors do not interact with dopamine receptors. The number of interacting receptors increased when rats and monkeys were lesioned to become a PD model. The use of a tracer of the indirect pathway in monkeys confirmed that the data was restricted to the population of striatal neurons projecting to the GPe. The results are not only relevant for being the first study quantifying individual versus interacting G protein-coupled receptors, but also for showing that the D2R in these specific neurons, in both control and PD animals, is under the control of the A2AR. The tight adenosine/dopamine receptor coupling suggest benefits of early antiparkinsonian treatment with adenosine receptor blockers.
Collapse
Affiliation(s)
- Rafael Rivas-Santisteban
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Autonomous University of Barcelona, Campus Bellaterra, 08193 Barcelona. Spain; Network Center for Biomedical Research in Neurodegenerative Diseases, CiberNed, Spanish National Health Institute Carlos iii, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain.
| | - Alberto José Rico
- Network Center for Biomedical Research in Neurodegenerative Diseases, CiberNed, Spanish National Health Institute Carlos iii, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain; CNS Gene Therapy Department, Center for Applied Medical Research (CIMA, IdiSNA), University of Navarra, Pamplona, Spain
| | - Ana Muñoz
- Network Center for Biomedical Research in Neurodegenerative Diseases, CiberNed, Spanish National Health Institute Carlos iii, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain; Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana I Rodríguez-Pérez
- Network Center for Biomedical Research in Neurodegenerative Diseases, CiberNed, Spanish National Health Institute Carlos iii, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain; Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Irene Reyes-Resina
- Network Center for Biomedical Research in Neurodegenerative Diseases, CiberNed, Spanish National Health Institute Carlos iii, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain; Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Gemma Navarro
- Network Center for Biomedical Research in Neurodegenerative Diseases, CiberNed, Spanish National Health Institute Carlos iii, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain; Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, 08028 Barcelona, Spain; Institute of Neuroscience of the University of Barcelona, Universitat de Barcelona, 08028 Barcelona, Spain
| | - José Luis Labandeira-García
- Network Center for Biomedical Research in Neurodegenerative Diseases, CiberNed, Spanish National Health Institute Carlos iii, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain; Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - José Luis Lanciego
- Network Center for Biomedical Research in Neurodegenerative Diseases, CiberNed, Spanish National Health Institute Carlos iii, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain; CNS Gene Therapy Department, Center for Applied Medical Research (CIMA, IdiSNA), University of Navarra, Pamplona, Spain
| | - Rafael Franco
- Network Center for Biomedical Research in Neurodegenerative Diseases, CiberNed, Spanish National Health Institute Carlos iii, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain; Molecular Neurobiology laboratory, Dept. Biochemistry and Molecular Biomedicine, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; School of Chemistry, Universitat de Barcelona. Barcelona, Spain.
| |
Collapse
|
8
|
Rivas-Santisteban R, Lillo J, Raïch I, Muñoz A, Lillo A, Rodríguez-Pérez AI, Labandeira-García JL, Navarro G, Franco R. The cannabinoid CB 1 receptor interacts with the angiotensin AT 2 receptor. Overexpression of AT 2-CB 1 receptor heteromers in the striatum of 6-hydroxydopamine hemilesioned rats. Exp Neurol 2023; 362:114319. [PMID: 36632949 DOI: 10.1016/j.expneurol.2023.114319] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/14/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
It is of particular interest the potential of cannabinoid and angiotensin receptors as targets in the therapy of Parkinson's disease (PD). While endocannabinoids are neuromodulators that act through the CB1 and CB2 cannabinoid receptors, the renin angiotensin-system is relevant for regulation of the correct functioning of several brain circuits. Resonance energy transfer assays in a heterologous system showed that the CB1 receptor (CB1R) can directly interact with the angiotensin AT2 receptor (AT2R). Coactivation of the two receptors results in increased Gi-signaling. The AT2-CB1 receptor heteromer imprint consists of a blockade of AT2R-mediated signaling by rimonabant, a CB1R antagonist. Interestingly, the heteromer imprint, discovered in the heterologous system, was also found in primary striatal neurons thus demonstrating the expression of the heteromer in these cells. In situ proximity ligation assays confirmed the occurrence of AT2-CB1 receptor heteromers in striatal neurons. In addition, increased expression of the AT2-CB1 receptor heteromeric complexes was detected in the striatum of a rodent PD model consisting of rats hemilesioned using 6-hydroxydopamine. Expression of the heteromer was upregulated in the striatum of lesioned animals and, also, of lesioned animals that upon levodopa treatment became dyskinetic. In contrast, there was no upregulation in the striatum of lesioned rats that did not become dyskinetic upon chronic levodopa treatment. The results suggest that therapeutic developments focused on the CB1R should consider that this receptor can interact with the AT2R, which in the CNS is involved in mechanisms related to addictive behaviors and to neurodegenerative and neuroinflammatory diseases.
Collapse
Affiliation(s)
- Rafael Rivas-Santisteban
- Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain; CiberNed. Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain
| | - Jaume Lillo
- Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain; CiberNed. Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain
| | - Iu Raïch
- Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain; CiberNed. Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain
| | - Ana Muñoz
- CiberNed. Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain; Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Department of Morphological Sciences, Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Alejandro Lillo
- Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain; CiberNed. Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain
| | - Ana I Rodríguez-Pérez
- CiberNed. Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain; Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Department of Morphological Sciences, Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - José L Labandeira-García
- CiberNed. Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain; Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Department of Morphological Sciences, Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Gemma Navarro
- Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain; CiberNed. Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain; Neurosciences Institute, University of Barcelona (NeuroUB), Facultad de Psicología Campus de Mundet Paseo de la Vall d'Hebron, 171 08035 Barcelona, Spain.
| | - Rafael Franco
- CiberNed. Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain; Molecular Neurobiology laboratory, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain; School of Chemistry, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
9
|
The Interplay between α-Synuclein and Microglia in α-Synucleinopathies. Int J Mol Sci 2023; 24:ijms24032477. [PMID: 36768798 PMCID: PMC9916729 DOI: 10.3390/ijms24032477] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 02/01/2023] Open
Abstract
Synucleinopathies are a set of devastating neurodegenerative diseases that share a pathologic accumulation of the protein α-synuclein (α-syn). This accumulation causes neuronal death resulting in irreversible dementia, deteriorating motor symptoms, and devastating cognitive decline. While the etiology of these conditions remains largely unknown, microglia, the resident immune cells of the central nervous system (CNS), have been consistently implicated in the pathogenesis of synucleinopathies. Microglia are generally believed to be neuroprotective in the early stages of α-syn accumulation and contribute to further neurodegeneration in chronic disease states. While the molecular mechanisms by which microglia achieve this role are still being investigated, here we highlight the major findings to date. In this review, we describe how structural varieties of inherently disordered α-syn result in varied microglial receptor-mediated interactions. We also summarize which microglial receptors enable cellular recognition and uptake of α-syn. Lastly, we review the downstream effects of α-syn processing within microglia, including spread to other brain regions resulting in neuroinflammation and neurodegeneration in chronic disease states. Understanding the mechanism of microglial interactions with α-syn is vital to conceptualizing molecular targets for novel therapeutic interventions. In addition, given the significant diversity in the pathophysiology of synucleinopathies, such molecular interactions are vital in gauging all potential pathways of neurodegeneration in the disease state.
Collapse
|
10
|
The Expression of Cellular Prion Protein, PrPC, Favors pTau Propagation and Blocks NMDAR Signaling in Primary Cortical Neurons. Cells 2023; 12:cells12020283. [PMID: 36672218 PMCID: PMC9856489 DOI: 10.3390/cells12020283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/14/2022] [Accepted: 12/30/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The N-methyl-D-aspartate receptor (NMDAR) is a target in current treatments for Alzheimer's disease (AD). The human prion protein (PrPC) has an important role in the pathophysiology of AD. We hypothesized that PrPC modulates NMDA signaling, thus being a process associated with Alzheimer's disease. METHODS NMDAR signaling was characterized in the absence or presence of PrPC in cAMP level determination, mitogen-activated protein kinase (MAPK) pathway and label-free assays in homologous and heterologous systems. Bioluminescence resonance energy transfer was used to detect the formation of NMDAR-PrPC complexes. AXIS™ Axon Isolation Devices were used to determine axonal transport of Tau and pTau proteins in cortical primary neurons in the absence or presence of PrPC. Finally, proximity ligation assays were used to quantify NMDA-PrPC complex formation in neuronal primary cultures isolated from APPSw/Ind transgenic mice, an Alzheimer's disease model expressing the Indiana and Swedish mutated version of the human amyloid precursor protein (APP). RESULTS We discovered a direct interaction between the PrPC and the NMDAR and we found a negative modulation of NMDAR-mediated signaling due to the NMDAR-PrPC interaction. In mice primary neurons, we identified NMDA-PrPC complexes where PrPC was capable of blocking NMDAR-mediated effects. In addition, we observed how the presence of PrPC results in increased neurotoxicity and neuronal death. Similarly, in microglial primary cultures, we observed that PrPC caused a blockade of the NMDA receptor link to the MAPK signaling cascade. Interestingly, a significant increase in NMDA-PrPC macromolecular complexes was observed in cortical neurons isolated from the APPSw,Ind transgenic model of AD. CONCLUSIONS PrPC can interact with the NMDAR, and the interaction results in the alteration of the receptor functionality. NMDAR-PrPC complexes are overexpressed in neurons of APPSw/Ind mouse brain. In addition, PrPC exacerbates axonal transport of Tau and pTau proteins.
Collapse
|
11
|
Xing J, Wang Η, Chen L, Wang H, Huang H, Huang J, Xu C. Blocking Cx43 alleviates neuropathic pain in rats with chronic constriction injury via the P2X4 and P38/ERK-P65 pathways. Int Immunopharmacol 2023; 114:109506. [PMID: 36442284 DOI: 10.1016/j.intimp.2022.109506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Neuropathic pain is a growing concern in the medical community, and studies on new analgesic targets for neuropathic pain have become a new hot spot. Whether Connexin43 (Cx43) has a key role in neuropathic pain mediated by the purinergic 2X4 (P2X4) receptor in rats with chronic constriction injury (CCI) was explored in this study. Our experimental results show that blockade of Cx43 could attenuate neuropathic pain in rats suffering from CCI via the P2X4, p38, ERK, and NF-kB signalling pathways. These results suggest that Cx43 may be a promising therapeutic target for the development of novel pharmacological agents in the management of neuropathic pain.
Collapse
Affiliation(s)
- Juping Xing
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, Jiangxi, PR China; Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang 330006, Jiangxi, PR China
| | - Ηongji Wang
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, Jiangxi, PR China
| | - Lisha Chen
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, Jiangxi, PR China
| | - Hanxi Wang
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, Jiangxi, PR China
| | - Huan Huang
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, Jiangxi, PR China
| | - Jiabao Huang
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, Jiangxi, PR China
| | - Changshui Xu
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, Jiangxi, PR China; Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang 330006, Jiangxi, PR China; The Clinical Medical School, Jiangxi Medical College, Shangrao 334000, Jiangxi, PR China; The First Affiliated Hospital, Jiangxi Medical College, Shangrao 334000, Jiangxi, PR China.
| |
Collapse
|
12
|
Raïch I, Rebassa JB, Lillo J, Cordomi A, Rivas-Santisteban R, Lillo A, Reyes-Resina I, Franco R, Navarro G. Antagonization of OX 1 Receptor Potentiates CB 2 Receptor Function in Microglia from APP Sw/Ind Mice Model. Int J Mol Sci 2022; 23:12801. [PMID: 36361598 PMCID: PMC9656664 DOI: 10.3390/ijms232112801] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/04/2022] [Accepted: 10/14/2022] [Indexed: 08/01/2023] Open
Abstract
Microdialysis assays demonstrated a possible role of orexin in the regulation of amyloid beta peptide (Aß) levels in the hippocampal interstitial fluid in the APP transgenic model. CB2R is overexpressed in activated microglia, showing a neuroprotective effect. These two receptors may interact, forming CB2-OX1-Hets and becoming a new target to combat Alzheimer's disease. Aims: Demonstrate the potential role of CB2-OX1-Hets expression and function in microglia from animal models of Alzheimer's disease. Receptor heteromer expression was detected by immunocytochemistry, bioluminescence resonance energy transfer (BRET) and proximity ligation assay (PLA) in transfected HEK-293T cells and microglia primary cultures. Quantitation of signal transduction events in a heterologous system and in microglia cells was performed using the AlphaScreen® SureFire® kit, western blot, the GCaMP6 calcium sensor and the Lance Ultra cAMP kit (PerkinElmer). The formation of CB2-OX1 receptor complexes in transfected HEK-293T cells has been demonstrated. The tetrameric complex is constituted by one CB2R homodimer, one OX1R homodimer and two G proteins, a Gi and a Gq. The use of TAT interfering peptides showed that the CB2-OX1 receptor complex interface is TM4-TM5. At the functional level it has been observed that the OX1R antagonist, SB334867, potentiates the action induced by CB2R agonist JWH133. This effect is observed in transfected HEK-293T cells and microglia, and it is stronger in the Alzheimer's disease (AD) animal model APPSw/Ind where the expression of the complex assessed by the proximity ligation assay indicates an increase in the number of complexes compared to resting microglia. The CB2-OX1 receptor complex is overexpressed in microglia from AD animal models where OX1R antagonists potentiate the neuroprotective actions of CB2R activation. Taken together, these results point to OX1R antagonists as drugs with therapeutic potential to combat AD. Data access statement: Raw data will be provided by the corresponding author upon reasonable requirement.
Collapse
Affiliation(s)
- Iu Raïch
- Molecular Neuropharmacology Laboratory, Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, 08007 Barcelona, Spain
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, 28029 Madrid, Spain
- Neurosciences Institut, University of Barcelona (NeuroUB), 08028 Barcelona, Spain
| | - Joan Biel Rebassa
- Molecular Neuropharmacology Laboratory, Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, 08007 Barcelona, Spain
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, 28029 Madrid, Spain
- Neurosciences Institut, University of Barcelona (NeuroUB), 08028 Barcelona, Spain
| | - Jaume Lillo
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, 28029 Madrid, Spain
- Neurosciences Institut, University of Barcelona (NeuroUB), 08028 Barcelona, Spain
| | | | - Rafael Rivas-Santisteban
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, 28029 Madrid, Spain
- Neurosciences Institut, University of Barcelona (NeuroUB), 08028 Barcelona, Spain
| | - Alejandro Lillo
- Molecular Neuropharmacology Laboratory, Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, 08007 Barcelona, Spain
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, 28029 Madrid, Spain
- Neurosciences Institut, University of Barcelona (NeuroUB), 08028 Barcelona, Spain
| | - Irene Reyes-Resina
- Molecular Neuropharmacology Laboratory, Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, 08007 Barcelona, Spain
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, 28029 Madrid, Spain
- Neurosciences Institut, University of Barcelona (NeuroUB), 08028 Barcelona, Spain
| | - Rafael Franco
- Molecular Neuropharmacology Laboratory, Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, 08007 Barcelona, Spain
- School of Chemistry, Universitat de Barcelona, 08007 Barcelona, Spain
| | - Gemma Navarro
- Molecular Neuropharmacology Laboratory, Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, 08007 Barcelona, Spain
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, 28029 Madrid, Spain
- Neurosciences Institut, University of Barcelona (NeuroUB), 08028 Barcelona, Spain
| |
Collapse
|
13
|
Rivas-Santisteban R, Lillo A, Lillo J, Rebassa JB, Contestí JS, Saura CA, Franco R, Navarro G. N-Methyl-D-aspartate (NMDA) and cannabinoid CB 2 receptors form functional complexes in cells of the central nervous system: insights into the therapeutic potential of neuronal and microglial NMDA receptors. Alzheimers Res Ther 2021; 13:184. [PMID: 34749800 PMCID: PMC8576920 DOI: 10.1186/s13195-021-00920-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/18/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND The cannabinoid CB2 receptor (CB2R), which is a target to afford neuroprotection, and N-methyl-D-aspartate (NMDA) ionotropic glutamate receptors, which are key in mediating excitatory neurotransmission, are expressed in both neurons and glia. As NMDA receptors are the target of current medication in Alzheimer's disease patients and with the aim of finding neuromodulators of their actions that could provide benefits in dementia, we hypothesized that cannabinoids could modulate NMDA function. METHODS Immunocytochemistry was used to analyze the colocalization between CB2 and NMDA receptors; bioluminescence resonance energy transfer was used to detect CB2-NMDA receptor complexes. Calcium and cAMP determination, mitogen-activated protein kinase (MAPK) pathway activation, and label-free assays were performed to characterize signaling in homologous and heterologous systems. Proximity ligation assays were used to quantify CB2-NMDA heteromer expression in mouse primary cultures and in the brain of APPSw/Ind transgenic mice, an Alzheimer's disease model expressing the Indiana and Swedish mutated version of the human amyloid precursor protein (APP). RESULTS In a heterologous system, we identified CB2-NMDA complexes with a particular heteromer print consisting of impairment by cannabinoids of NMDA receptor function. The print was detected in activated primary microglia treated with lipopolysaccharide and interferon-γ. CB2R activation blunted NMDA receptor-mediated signaling in primary hippocampal neurons from APPSw/Ind mice. Furthermore, imaging studies showed that in brain slices and in primary cells (microglia or neurons) from APPSw/Ind mice, there was a marked overexpression of macromolecular CB2-NMDA receptor complexes thus becoming a tool to modulate excessive glutamate input by cannabinoids. CONCLUSIONS The results indicate a negative cross-talk in CB2-NMDA complexes signaling. The expression of the CB2-NMDA receptor heteromers increases in both microglia and neurons from the APPSw/Ind transgenic mice, compared with levels in samples from age-matched control mice.
Collapse
Affiliation(s)
- Rafael Rivas-Santisteban
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), National Institute of Health Carlos iii, Madrid, Spain
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Alejandro Lillo
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
| | - Jaume Lillo
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), National Institute of Health Carlos iii, Madrid, Spain
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Joan-Biel Rebassa
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
| | - Joan S. Contestí
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
| | - Carlos A. Saura
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Rafael Franco
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), National Institute of Health Carlos iii, Madrid, Spain
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona, 08028 Barcelona, Spain
- School of Chemistry, University of Barcelona, Barcelona, Spain
| | - Gemma Navarro
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), National Institute of Health Carlos iii, Madrid, Spain
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
| |
Collapse
|
14
|
Riluzole Administration to Rats with Levodopa-Induced Dyskinesia Leads to Loss of DNA Methylation in Neuronal Genes. Cells 2021; 10:cells10061442. [PMID: 34207710 PMCID: PMC8228416 DOI: 10.3390/cells10061442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 11/16/2022] Open
Abstract
Dyskinesias are characterized by abnormal repetitive involuntary movements due to dysfunctional neuronal activity. Although levodopa-induced dyskinesia, characterized by tic-like abnormal involuntary movements, has no clinical treatment for Parkinson’s disease patients, animal studies indicate that Riluzole, which interferes with glutamatergic neurotransmission, can improve the phenotype. The rat model of Levodopa-Induced Dyskinesia is a unilateral lesion with 6-hydroxydopamine in the medial forebrain bundle, followed by the repeated administration of levodopa. The molecular pathomechanism of Levodopa-Induced Dyskinesia is still not deciphered; however, the implication of epigenetic mechanisms was suggested. In this study, we investigated the striatum for DNA methylation alterations under chronic levodopa treatment with or without co-treatment with Riluzole. Our data show that the lesioned and contralateral striata have nearly identical DNA methylation profiles. Chronic levodopa and levodopa + Riluzole treatments led to DNA methylation loss, particularly outside of promoters, in gene bodies and CpG poor regions. We observed that several genes involved in the Levodopa-Induced Dyskinesia underwent methylation changes. Furthermore, the Riluzole co-treatment, which improved the phenotype, pinpointed specific methylation targets, with a more than 20% methylation difference relative to levodopa treatment alone. These findings indicate potential new druggable targets for Levodopa-Induced Dyskinesia.
Collapse
|
15
|
He C, Zhao X, Li H, Wang F, Zhang J, Wang Y, Han Y, Yuan C, Niu Q. Regulation of mGluR1 on the Expression of PKC and NMDAR in Aluminum-Exposed PC12 Cells. Neurotox Res 2021; 39:634-644. [PMID: 33464538 DOI: 10.1007/s12640-020-00319-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/16/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022]
Abstract
Aluminum demonstrates clear neurotoxicity and can cause Alzheimer's disease (AD)-like symptoms, including cognitive impairment. One toxic effect of aluminum is a decrease in synaptic plasticity, but the specific mechanism remains unclear. In this study, PC12 cells were treated with Al(mal)3 to construct a toxic cell model. (S)-3,5-Dihydroxyphenylglycine (DHPG), α-methyl-4-carboxyphenylglycine (MCPG), and mGluR1-siRNA were used to interfere with the expression of metabotropic glutamate receptor subtype 1 (mGluR1). Polymerase chain reaction and western blotting were used to investigate the expression of mGluR1, protein kinase C (PKC), and N-methyl-D-aspartate receptor (NMDAR) subunits. ELISA was used to detect PKC enzyme activity. In PC12 cells, mRNA and protein expressions of PKC and NMDAR subunits were inhibited by Al(mal)3. Aluminum may further regulate the expression of NMDAR1 and NMDAR2B through mGluR1 to regulate PKC enzyme activity, thereby affecting learning and memory functions. Furthermore, the results implied that the mGluR1-PKC-NMDAR signaling pathway may predominately involve positive regulation. These findings provide new targets for studying the neurotoxic mechanism of aluminum.
Collapse
Affiliation(s)
- Chanting He
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,Key Lab of Environmental Hazard & Health of Shanxi Province, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,Key Lab of Cellular Physiology of Education Ministry, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,Department of Anatomy, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xiaoyan Zhao
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Huan Li
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Fei Wang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jingsi Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yanni Wang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yingchao Han
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Chunman Yuan
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Qiao Niu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China. .,Key Lab of Environmental Hazard & Health of Shanxi Province, Shanxi Medical University, Taiyuan, 030001, Shanxi, China. .,Key Lab of Cellular Physiology of Education Ministry, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
16
|
Hopp SC. Targeting microglia L-type voltage-dependent calcium channels for the treatment of central nervous system disorders. J Neurosci Res 2021; 99:141-162. [PMID: 31997405 PMCID: PMC9394523 DOI: 10.1002/jnr.24585] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 12/14/2022]
Abstract
Calcium (Ca2+ ) is a ubiquitous mediator of a multitude of cellular functions in the central nervous system (CNS). Intracellular Ca2+ is tightly regulated by cells, including entry via plasma membrane Ca2+ permeable channels. Of specific interest for this review are L-type voltage-dependent Ca2+ channels (L-VDCCs), due to their pleiotropic role in several CNS disorders. Currently, there are numerous approved drugs that target L-VDCCs, including dihydropyridines. These drugs are safe and effective for the treatment of humans with cardiovascular disease and may also confer neuroprotection. Here, we review the potential of L-VDCCs as a target for the treatment of CNS disorders with a focus on microglia L-VDCCs. Microglia, the resident immune cells of the brain, have attracted recent attention for their emerging inflammatory role in several CNS diseases. Intracellular Ca2+ regulates microglia transition from a resting quiescent state to an "activated" immune-effector state and is thus a valuable target for manipulation of microglia phenotype. We will review the literature on L-VDCC expression and function in the CNS and on microglia in vitro and in vivo and explore the therapeutic landscape of L-VDCC-targeting agents at present and future challenges in the context of Alzheimer's disease, Parkinson's disease, Huntington's disease, neuropsychiatric diseases, and other CNS disorders.
Collapse
Affiliation(s)
- Sarah C. Hopp
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
- Department of Pharmacology, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| |
Collapse
|
17
|
Gasterstädt I, Jack A, Stahlhut T, Rennau LM, Gonda S, Wahle P. Genetically Encoded Calcium Indicators Can Impair Dendrite Growth of Cortical Neurons. Front Cell Neurosci 2020; 14:570596. [PMID: 33192315 PMCID: PMC7606991 DOI: 10.3389/fncel.2020.570596] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/31/2020] [Indexed: 12/11/2022] Open
Abstract
A battery of genetically encoded calcium indicators (GECIs) with different binding kinetics and calcium affinities was developed over the recent years to permit long-term calcium imaging. GECIs are calcium buffers and therefore, expression of GECIs may interfere with calcium homeostasis and signaling pathways important for neuronal differentiation and survival. Our objective was to investigate if the biolistically induced expression of five commonly used GECIs at two postnatal time points (days 14 and 22–25) could affect the morphological maturation of cortical neurons in organotypic slice cultures of rat visual cortex. Expression of GCaMP3 in both time windows, and of GCaMP5G and TN-XXL in the later time window impaired apical and /or basal dendrite growth of pyramidal neurons. With time, the proportion of GECI transfectants with nuclear filling increased, but an only prolonged expression of TN-XXL caused higher levels of neurodegeneration. In multipolar interneurons, only GCaMP3 evoked a transient growth delay during the early time window. GCaMP6m and GCaMP6m-XC were quite “neuron-friendly.” Since growth-impaired neurons might not have the physiological responses typical of age-matched wildtype neurons the results obtained after prolonged developmental expression of certain GECIs might need to be interpreted with caution.
Collapse
Affiliation(s)
- Ina Gasterstädt
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Alexander Jack
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Tobias Stahlhut
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Lisa-Marie Rennau
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Steffen Gonda
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Petra Wahle
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
18
|
Das R, Chinnathambi S. Microglial priming of antigen presentation and adaptive stimulation in Alzheimer's disease. Cell Mol Life Sci 2019; 76:3681-3694. [PMID: 31093687 PMCID: PMC11105582 DOI: 10.1007/s00018-019-03132-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/02/2019] [Accepted: 05/06/2019] [Indexed: 12/21/2022]
Abstract
The prominent pathological consequences of Alzheimer's disease (AD) are the misfolding and mis-sorting of two cellular proteins, amyloid-β and microtubule-associated protein Tau. The accumulation of toxic phosphorylated Tau inside the neurons induces the increased processing of amyloid-β-associated signaling cascade and vice versa. Neuroinflammation-driven synaptic depletion and cognitive decline are substantiated by the cross talk of activated microglia and astroglia, leading to neuron degeneration. Microglia are the brain-resident immune effectors that prove their diverse functions in maintaining CNS homeostasis via collaboration with astrocytes and T lymphocytes. Age-related senescence and chronic inflammation activate microglia with increased pro-inflammatory markers, oxidative damage and phagocytosis. But the improper processing of misfolded protein via lysosomal pathway destines the spreading of 'seed' constituents to the nearby healthy neurons. Primed microglia process and present self-antigen such as amyloid-β and modified Tau to the infiltrated T lymphocytes through MHC I/II molecules. After an effective conversation with CD4+ T cells, microglial phenotype can be altered from pro-active M1 to neuro-protective M2 type, which corresponds to the tissue remodeling and homeostasis. In this review, we are focusing on the change in functionality of microglia from innate to adaptive immune response in the context of neuroprotection, which may help in the search of novel immune therapy in AD.
Collapse
Affiliation(s)
- Rashmi Das
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Pune, 411008, India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Pune, 411008, India.
| |
Collapse
|
19
|
Ondrejcak T, Hu NW, Qi Y, Klyubin I, Corbett GT, Fraser G, Perkinton MS, Walsh DM, Billinton A, Rowan MJ. Soluble tau aggregates inhibit synaptic long-term depression and amyloid β-facilitated LTD in vivo. Neurobiol Dis 2019; 127:582-590. [PMID: 30910746 DOI: 10.1016/j.nbd.2019.03.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/01/2019] [Accepted: 03/21/2019] [Indexed: 01/29/2023] Open
Abstract
Soluble synaptotoxic aggregates of the main pathological proteins of Alzheimer's disease, amyloid β-protein (Aß) and tau, have rapid and potent inhibitory effects on long-term potentiation (LTP). Although the promotion of synaptic weakening mechanisms, including long-term depression (LTD), is posited to mediate LTP inhibition by Aß, little is known regarding the action of exogenous tau on LTD. The present study examined the ability of different assemblies of full-length human tau to affect LTD in the dorsal hippocampus of the anaesthetized rat. Unlike Aß, intracerebroventricular injection of soluble aggregates of tau (SτAs), but not monomers or fibrils, potently increased the threshold for LTD induction in a manner that required cellular prion protein. However, MTEP, an antagonist of the putative prion protein coreceptor metabotropic glutamate receptor 5, did not prevent the disruption of synaptic plasticity by SτAs. In contrast, systemic treatment with Ro 25-6981, a selective antagonist at GluN2B subunit-containing NMDA receptors, reduced SτA-mediated inhibition of LTD, but not LTP. Intriguingly, SτAs completely blocked Aß-facilitated LTD, whereas a subthreshold dose of SτAs facilitated Aß-mediated inhibition of LTP. Overall, these findings support the importance of cellular prion protein in mediating a range of, sometimes opposing, actions of soluble Aß and tau aggregates with different effector mechanisms on synaptic plasticity.
Collapse
Affiliation(s)
- Tomas Ondrejcak
- Department of Pharmacology & Therapeutics, Institute of Neuroscience, Trinity College, Dublin 2, Ireland.
| | - Neng-Wei Hu
- Department of Pharmacology & Therapeutics, Institute of Neuroscience, Trinity College, Dublin 2, Ireland; Department of Physiology and Neurobiology, Zhengzhou University School of Medicine, Zhengzhou 450001, China
| | - Yingjie Qi
- Department of Pharmacology & Therapeutics, Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | - Igor Klyubin
- Department of Pharmacology & Therapeutics, Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | - Grant T Corbett
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Graham Fraser
- Neuroscience, IMED Biotech Unit, AstraZeneca, Cambridge CB21 6GH, UK
| | | | - Dominic M Walsh
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Andrew Billinton
- Neuroscience, IMED Biotech Unit, AstraZeneca, Cambridge CB21 6GH, UK
| | - Michael J Rowan
- Department of Pharmacology & Therapeutics, Institute of Neuroscience, Trinity College, Dublin 2, Ireland.
| |
Collapse
|
20
|
Liu J, Chang L, Song Y, Li H, Wu Y. The Role of NMDA Receptors in Alzheimer's Disease. Front Neurosci 2019; 13:43. [PMID: 30800052 PMCID: PMC6375899 DOI: 10.3389/fnins.2019.00043] [Citation(s) in RCA: 294] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/16/2019] [Indexed: 12/13/2022] Open
Abstract
In Alzheimer’s disease (AD), early synaptic dysfunction is associated with the increased oligomeric amyloid-beta peptide, which causes NMDAR-dependent synaptic depression and spine elimination. Memantine, low-affinity NMDAR channel blocker, has been used in the treatment of moderate to severe AD. However, clear evidence is still deficient in demonstrating the underlying mechanisms and a relationship between NMDARs dysfunction and AD. This review focuses on not only changes in expression of different NMDAR subunits, but also some unconventional modes of NMDAR action.
Collapse
Affiliation(s)
- Jinping Liu
- School of Medicine, Tsinghua University, Beijing, China
| | - Lirong Chang
- Department of Anatomy, Ministry of Science and Technology Laboratory of Brain Disorders, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Yizhi Song
- Department of Anatomy, Ministry of Science and Technology Laboratory of Brain Disorders, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Hui Li
- Department of Anatomy, Ministry of Science and Technology Laboratory of Brain Disorders, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Yan Wu
- Department of Anatomy, Ministry of Science and Technology Laboratory of Brain Disorders, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
21
|
Mundhenk J, Fusi C, Kreutz MR. Caldendrin and Calneurons-EF-Hand CaM-Like Calcium Sensors With Unique Features and Specialized Neuronal Functions. Front Mol Neurosci 2019; 12:16. [PMID: 30787867 PMCID: PMC6372560 DOI: 10.3389/fnmol.2019.00016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/17/2019] [Indexed: 01/02/2023] Open
Abstract
The calmodulin (CaM)-like Ca2+-sensor proteins caldendrin, calneuron-1 and -2 are members of the neuronal calcium-binding protein (nCaBP)-family, a family that evolved relatively late during vertebrate evolution. All three proteins are abundant in brain but show a strikingly different subcellular localization. Whereas caldendrin is enriched in the postsynaptic density (PSD), calneuron-1 and -2 accumulate at the trans-Golgi-network (TGN). Caldendrin exhibit a unique bipartite structure with a basic and proline-rich N-terminus while calneurons are the only EF-Hand CaM-like transmembrane proteins. These uncommon structural features come along with highly specialized functions of calneurons in Golgi-to-plasma-membrane trafficking and for caldendrin in actin-remodeling in dendritic spine synapses. In this review article, we will provide a synthesis of available data on the structure and biophysical properties of all three proteins. We will then discuss their cellular function with special emphasis on synaptic neurotransmission. Finally, we will summarize the evidence for a role of these proteins in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jennifer Mundhenk
- RG Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Camilla Fusi
- RG Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Michael R Kreutz
- RG Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Leibniz Group "Dendritic Organelles and Synaptic Function", Center for Molecular Neurobiology, ZMNH, Hamburg, Germany
| |
Collapse
|