1
|
Idowu OK, Oluyomi OO, Faniyan OO, Dosumu OO, Akinola OB. The synergistic ameliorative activity of peroxisome proliferator-activated receptor-alpha and gamma agonists, fenofibrate and pioglitazone, on hippocampal neurodegeneration in a rat model of insulin resistance. IBRAIN 2022; 8:251-263. [PMID: 37786742 PMCID: PMC10528802 DOI: 10.1002/ibra.12059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 10/04/2023]
Abstract
Insulin resistance (IR) is a risk factor for metabolic disorders and neurodegeneration. Peroxisome proliferator-activated receptor (PPAR) agonists have been proven to mitigate the neuronal pathology associated with IR. However, the synergetic efficacy of these agonists is yet to be fully described. Hence, we aimed to investigate the efficacy of PPARα/γ agonists (fenofibrate and pioglitazone) on a high-fat diet (HFD) and streptozotocin (STZ)-induced hippocampal neurodegeneration. Male Wistar rats (200 ± 25 mg/body weight [BW]) were divided into five groups. The experimental groups were fed on an HFD for 12 weeks coupled with 5 days of an STZ injection (30 mg/kg/BW, i.p) to induce IR. Fenofibrate (FEN; 100 mg/kg/BW, orally), pioglitazone (PIO; 20 mg/kg/BW, orally), and their combination were administered for 2 weeks postinduction. Behavioral tests were conducted, and blood was collected to determine insulin sensitivity after treatment. Animals were killed for assessment of oxidative stress, cellular morphology characterization, and astrocytic evaluation. HFD/STZ-induced IR increased malondialdehyde (MDA) levels and decreased glutathione (GSH) levels. Evidence of cellular alterations and overexpression of astrocytic protein was observed in the hippocampus. By contrast, monotherapy of FEN and PIO increased the GSH level (p < 0.05), decreased the MDA level (p < 0.05), and improved cellular morphology and astrocytic expression. Furthermore, the combined treatment led to improved therapeutic activities compared to monotherapies. In conclusion, FEN and PIO exerted a therapeutic synergistic effect on HFD/STZ-induced IR in the hippocampus.
Collapse
Affiliation(s)
| | | | - Oluwatomisin O. Faniyan
- Department of Physiology, School of Bioscience and Veterinary MedicineUniversity of CamerinoCamerinoItaly
| | | | | |
Collapse
|
2
|
Ferguson LB, Roberts AJ, Mayfield RD, Messing RO. Blood and brain gene expression signatures of chronic intermittent ethanol consumption in mice. PLoS Comput Biol 2022; 18:e1009800. [PMID: 35176017 PMCID: PMC8853518 DOI: 10.1371/journal.pcbi.1009800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 01/03/2022] [Indexed: 02/03/2023] Open
Abstract
Alcohol Use Disorder (AUD) is a chronic, relapsing syndrome diagnosed by a heterogeneous set of behavioral signs and symptoms. There are no laboratory tests that provide direct objective evidence for diagnosis. Microarray and RNA-Seq technologies enable genome-wide transcriptome profiling at low costs and provide an opportunity to identify biomarkers to facilitate diagnosis, prognosis, and treatment of patients. However, access to brain tissue in living patients is not possible. Blood contains cellular and extracellular RNAs that provide disease-relevant information for some brain diseases. We hypothesized that blood gene expression profiles can be used to diagnose AUD. We profiled brain (prefrontal cortex, amygdala, and hypothalamus) and blood gene expression levels in C57BL/6J mice using RNA-seq one week after chronic intermittent ethanol (CIE) exposure, a mouse model of alcohol dependence. We found a high degree of preservation (rho range: [0.50, 0.67]) between blood and brain transcript levels. There was small overlap between blood and brain DEGs, and considerable overlap of gene networks perturbed after CIE related to cell-cell signaling (e.g., GABA and glutamate receptor signaling), immune responses (e.g., antigen presentation), and protein processing / mitochondrial functioning (e.g., ubiquitination, oxidative phosphorylation). Blood gene expression data were used to train classifiers (logistic regression, random forest, and partial least squares discriminant analysis), which were highly accurate at predicting alcohol dependence status (maximum AUC: 90.1%). These results suggest that gene expression profiles from peripheral blood samples contain a biological signature of alcohol dependence that can discriminate between CIE and Air subjects.
Collapse
Affiliation(s)
- Laura B. Ferguson
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, Texas, United States of America
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, Texas, United States of America
- Department of Neuroscience, University of Texas at Austin, Austin, Texas, United States of America
| | - Amanda J. Roberts
- Animal Models Core Facility, The Scripps Research Institute, San Diego, California, United States of America
| | - R. Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, Texas, United States of America
- Department of Neuroscience, University of Texas at Austin, Austin, Texas, United States of America
| | - Robert O. Messing
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, Texas, United States of America
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, Texas, United States of America
- Department of Neuroscience, University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
3
|
Parksepp M, Haring L, Kilk K, Koch K, Uppin K, Kangro R, Zilmer M, Vasar E. The Expanded Endocannabinoid System Contributes to Metabolic and Body Mass Shifts in First-Episode Schizophrenia: A 5-Year Follow-Up Study. Biomedicines 2022; 10:biomedicines10020243. [PMID: 35203453 PMCID: PMC8869544 DOI: 10.3390/biomedicines10020243] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
Alterations in the expanded endocannabinoid system (eECS) and cell membrane composition have been implicated in the pathophysiology of schizophrenia spectrum disorders. We enrolled 54 antipsychotic (AP)-naïve first-episode psychosis (FEP) patients and 58 controls and applied a targeted metabolomics approach followed by multivariate data analysis to investigate the profile changes in the serum levels of endocannabinoids: 2-arachidonoylglycerol (2-AG) and anandamide, endocannabinoids-like N-acylethanolamines (NAEs: linoleoylethanolamide, oleoylethanolamide, and palmitoylethanolamide), and their dominating lipid precursor’s phosphatidylcholines. Biomolecule profiles were measured at the onset of first-episode psychosis (FEP) and 0.6 years and 5.1 years after the initiation of AP treatment. The results indicated that FEP might be characterized by elevated concentrations of NAEs and by decreased 2-AG levels. At this stage of the disease, the NAE-mediated upregulation of peroxisome proliferator-activated receptors (PPARs) manifested themselves in energy expenditure. A 5-year disease progression and AP treatment adverse effects led to a robust increase in 2-AG levels, which contributed to strengthened cannabinoid (CB1) receptor-mediated effects, which manifested in obesity. Dynamic 2-AG, NAEs, and their precursors in terms of phosphatidylcholines are relevant to the description of the metabolic shifts resulting from the altered eECS function during and after FEP.
Collapse
Affiliation(s)
- Madis Parksepp
- Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia;
- Psychiatry Clinic of Viljandi Hospital, 71024 Viljandi, Estonia
| | - Liina Haring
- Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia;
- Psychiatry Clinic of Tartu University Hospital, 50406 Tartu, Estonia; (K.K.); (K.U.)
- Centre of Excellence for Genomics and Translational Medicine, Institute of Biomedicine and Translational Medicine, Univesignallingrsity of Tartu, 50090 Tartu, Estonia; (K.K.); (M.Z.); (E.V.)
- Correspondence: ; Tel.: +372-7318-767
| | - Kalle Kilk
- Centre of Excellence for Genomics and Translational Medicine, Institute of Biomedicine and Translational Medicine, Univesignallingrsity of Tartu, 50090 Tartu, Estonia; (K.K.); (M.Z.); (E.V.)
| | - Kadri Koch
- Psychiatry Clinic of Tartu University Hospital, 50406 Tartu, Estonia; (K.K.); (K.U.)
| | - Kärt Uppin
- Psychiatry Clinic of Tartu University Hospital, 50406 Tartu, Estonia; (K.K.); (K.U.)
| | - Raul Kangro
- Institute of Mathematics and Statistics, University of Tartu, 50090 Tartu, Estonia;
| | - Mihkel Zilmer
- Centre of Excellence for Genomics and Translational Medicine, Institute of Biomedicine and Translational Medicine, Univesignallingrsity of Tartu, 50090 Tartu, Estonia; (K.K.); (M.Z.); (E.V.)
| | - Eero Vasar
- Centre of Excellence for Genomics and Translational Medicine, Institute of Biomedicine and Translational Medicine, Univesignallingrsity of Tartu, 50090 Tartu, Estonia; (K.K.); (M.Z.); (E.V.)
| |
Collapse
|
4
|
van Steenwyk G, Gapp K, Jawaid A, Germain P, Manuella F, Tanwar DK, Zamboni N, Gaur N, Efimova A, Thumfart KM, Miska EA, Mansuy IM. Involvement of circulating factors in the transmission of paternal experiences through the germline. EMBO J 2020; 39:e104579. [PMID: 33034389 PMCID: PMC7705452 DOI: 10.15252/embj.2020104579] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 09/04/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022] Open
Abstract
Environmental factors can change phenotypes in exposed individuals and offspring and involve the germline, likely via biological signals in the periphery that communicate with germ cells. Here, using a mouse model of paternal exposure to traumatic stress, we identify circulating factors involving peroxisome proliferator-activated receptor (PPAR) pathways in the effects of exposure to the germline. We show that exposure alters metabolic functions and pathways, particularly lipid-derived metabolites, in exposed fathers and their offspring. We collected data in a human cohort exposed to childhood trauma and observed similar metabolic alterations in circulation, suggesting conserved effects. Chronic injection of serum from trauma-exposed males into controls recapitulates metabolic phenotypes in the offspring. We identify lipid-activated nuclear receptors PPARs as potential mediators of the effects from father to offspring. Pharmacological PPAR activation in vivo reproduces metabolic dysfunctions in the offspring and grand-offspring of injected males and affects the sperm transcriptome in fathers and sons. In germ-like cells in vitro, both serum and PPAR agonist induce PPAR activation. Together, these results highlight the role of circulating factors as potential communication vectors between the periphery and the germline.
Collapse
Affiliation(s)
- Gretchen van Steenwyk
- Laboratory of NeuroepigeneticsBrain Research InstituteMedical Faculty of the University of ZurichZurichSwitzerland
- Institute for NeuroscienceDepartment of Health Sciences and TechnologyETH ZurichZurichSwitzerland
- Zurich Neuroscience CenterETH Zurich and University of ZurichZurichSwitzerland
| | - Katharina Gapp
- Institute for NeuroscienceDepartment of Health Sciences and TechnologyETH ZurichZurichSwitzerland
- Zurich Neuroscience CenterETH Zurich and University of ZurichZurichSwitzerland
- Laboratory of Molecular and Behavioral NeuroscienceETH ZurichZurichSwitzerland
- Gurdon InstituteUniversity of CambridgeCambridgeUK
- Wellcome Trust Sanger InstituteHinxtonUK
- Department of GeneticsUniversity of CambridgeCambridgeUK
| | - Ali Jawaid
- Laboratory of NeuroepigeneticsBrain Research InstituteMedical Faculty of the University of ZurichZurichSwitzerland
- Institute for NeuroscienceDepartment of Health Sciences and TechnologyETH ZurichZurichSwitzerland
- Zurich Neuroscience CenterETH Zurich and University of ZurichZurichSwitzerland
- Laboratory of Translational Research in Neuropsychiatric DisordersBRAINCITY Nencki‐EMBL Center of Excellence for Neural Plasticity and Brain DisordersWarsawPoland
| | - Pierre‐Luc Germain
- Laboratory of NeuroepigeneticsBrain Research InstituteMedical Faculty of the University of ZurichZurichSwitzerland
- Institute for NeuroscienceDepartment of Health Sciences and TechnologyETH ZurichZurichSwitzerland
- Statistical Bioinformatics GroupSwiss Institute of BioinformaticsZürichSwitzerland
| | - Francesca Manuella
- Laboratory of NeuroepigeneticsBrain Research InstituteMedical Faculty of the University of ZurichZurichSwitzerland
- Institute for NeuroscienceDepartment of Health Sciences and TechnologyETH ZurichZurichSwitzerland
- Zurich Neuroscience CenterETH Zurich and University of ZurichZurichSwitzerland
| | - Deepak K Tanwar
- Laboratory of NeuroepigeneticsBrain Research InstituteMedical Faculty of the University of ZurichZurichSwitzerland
- Institute for NeuroscienceDepartment of Health Sciences and TechnologyETH ZurichZurichSwitzerland
- Zurich Neuroscience CenterETH Zurich and University of ZurichZurichSwitzerland
- Statistical Bioinformatics GroupSwiss Institute of BioinformaticsZürichSwitzerland
| | - Nicola Zamboni
- Institute of Molecular Systems BiologyETH ZurichZurichSwitzerland
| | - Niharika Gaur
- Laboratory of NeuroepigeneticsBrain Research InstituteMedical Faculty of the University of ZurichZurichSwitzerland
- Institute for NeuroscienceDepartment of Health Sciences and TechnologyETH ZurichZurichSwitzerland
- Zurich Neuroscience CenterETH Zurich and University of ZurichZurichSwitzerland
| | - Anastasiia Efimova
- Laboratory of NeuroepigeneticsBrain Research InstituteMedical Faculty of the University of ZurichZurichSwitzerland
- Institute for NeuroscienceDepartment of Health Sciences and TechnologyETH ZurichZurichSwitzerland
- Zurich Neuroscience CenterETH Zurich and University of ZurichZurichSwitzerland
| | - Kristina M Thumfart
- Laboratory of NeuroepigeneticsBrain Research InstituteMedical Faculty of the University of ZurichZurichSwitzerland
- Institute for NeuroscienceDepartment of Health Sciences and TechnologyETH ZurichZurichSwitzerland
- Zurich Neuroscience CenterETH Zurich and University of ZurichZurichSwitzerland
| | - Eric A Miska
- Gurdon InstituteUniversity of CambridgeCambridgeUK
- Wellcome Trust Sanger InstituteHinxtonUK
- Department of GeneticsUniversity of CambridgeCambridgeUK
| | - Isabelle M Mansuy
- Laboratory of NeuroepigeneticsBrain Research InstituteMedical Faculty of the University of ZurichZurichSwitzerland
- Institute for NeuroscienceDepartment of Health Sciences and TechnologyETH ZurichZurichSwitzerland
- Zurich Neuroscience CenterETH Zurich and University of ZurichZurichSwitzerland
| |
Collapse
|
5
|
Bordet R, Deplanque D. Brain–liver axis: a new pathway for cognitive disorders related to hepatic fibrosis. Eur J Neurol 2020; 27:2111-2112. [DOI: 10.1111/ene.14454] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 12/17/2022]
Affiliation(s)
- R. Bordet
- Univ Lille, Inserm, CHU Lille. Lille Neuroscience & Cognition Lille France
| | - D. Deplanque
- Univ Lille, Inserm, CHU Lille. Lille Neuroscience & Cognition Lille France
| |
Collapse
|
6
|
He J, Hong B, Bian M, Jin H, Chen J, Shao J, Zhang F, Zheng S. Docosahexaenoic acid inhibits hepatic stellate cell activation to attenuate liver fibrosis in a PPARγ-dependent manner. Int Immunopharmacol 2019; 75:105816. [PMID: 31437794 DOI: 10.1016/j.intimp.2019.105816] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/16/2019] [Accepted: 08/09/2019] [Indexed: 12/13/2022]
Abstract
Docosahexaenoic acid (DHA) has been found to have a hepatoprotective effect. In this study, we investigated the role of peroxisome proliferator-activated receptor γ (PPARγ) in DHA regulation of liver fibrosis. DHA was found to inhibit hepatic stellate cell (HSC)-LX2 cell viability and downregulate marker proteins of HSC activation. Furthermore, DHA induced cell cycle arrest at G1 phase in HSCs. Antagonism of PPARγ by GW9662 abrogated the effects of DHA on HSCs. Computer-aided molecular docking predicted that DHA bound to PPARγ via hydrogen bonding with residues Ser289, His323, Tyr473, and His499. We overexpressed Ser289 mutant PPARγ in HSC-LX2 cells and investigated fibrotic marker modulation, and found that DHA effects on HSCs were diminished. Thus, bonding with the Ser289 residue might be indispensable for DHA to activate PPARγ to exert its inhibiting effect on activated HSCs. Last, data from a CCl4-treated mouse model confirmed that PPARγ activation was required for DHA to attenuate liver fibrosis.
Collapse
Affiliation(s)
- Jianlin He
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, PR China; Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210029, PR China
| | - Bihong Hong
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, PR China
| | - Mianli Bian
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210029, PR China
| | - Huanhuan Jin
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210029, PR China; Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu 241000, PR China
| | - Junde Chen
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, PR China
| | - Jiangjuan Shao
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210029, PR China
| | - Feng Zhang
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210029, PR China.
| | - Shizhong Zheng
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210029, PR China.
| |
Collapse
|